The present research was aimed to the optimization of the production of a fish fermented salami-like product using autochthonous Lactiplantibacillus plantarum starters. The activity was performed through two phases: (1) Optimization of fermented fish product composition by using a 2k-p Fractional Factorial Design: the variables tested were nitrites (0–150 ppm), salt (2.5–7.5%), sucrose (0–4%), white pepper (0–0.10%), and fermentation temperature (10–30°C); (2) Product realization and evaluation of its microbiological profile [aerobic microbiota (APC), Pseudomonadaceae (PSE), Enterobacteriaceae (E), and lactic acid bacteria (LAB) populations], chemico-physical parameters (pH and aw), and sensorial quality (odor, texture, color, and overall acceptability) during its storage at 4°C for 21 days. In the first step, the fish pulp was mixed with the appropriate amounts of ingredients, according to the experimental design; each batch was individually inoculated with the studied starter (L. plantarum 11, L. plantarum 69, and L. plantarum DSM1055) at 107 cfu/g and incubated at 10, 20, or 30°C for 7 days. The lowest fermentation time (time to reach pH 4.4) was obtained with 4% sucrose, 100 ppm nitrite and a process temperature of 30°C. In the second step, salami-like were produced according to the individuated formulation and inoculated with the studied starters (107 cfu/g); the fish mixture was stuffed into a natural casing and left to ferment at 30°C for 7 days. The use of the selected strains not only assured a correct fermentation but reduced the process time at only 2 days; during refrigerated storage, a good microbiological, chemico-physical and sensorial quality of the final product was recorded for at least 21 days.

Use of Autochthonous Lactiplantibacillus plantarum Strains to Produce Fermented Fish Products

Speranza B.;Racioppo A.;Campaniello D.;Altieri C.;Sinigaglia M.;Corbo M. R.;Bevilacqua A.
2020-01-01

Abstract

The present research was aimed to the optimization of the production of a fish fermented salami-like product using autochthonous Lactiplantibacillus plantarum starters. The activity was performed through two phases: (1) Optimization of fermented fish product composition by using a 2k-p Fractional Factorial Design: the variables tested were nitrites (0–150 ppm), salt (2.5–7.5%), sucrose (0–4%), white pepper (0–0.10%), and fermentation temperature (10–30°C); (2) Product realization and evaluation of its microbiological profile [aerobic microbiota (APC), Pseudomonadaceae (PSE), Enterobacteriaceae (E), and lactic acid bacteria (LAB) populations], chemico-physical parameters (pH and aw), and sensorial quality (odor, texture, color, and overall acceptability) during its storage at 4°C for 21 days. In the first step, the fish pulp was mixed with the appropriate amounts of ingredients, according to the experimental design; each batch was individually inoculated with the studied starter (L. plantarum 11, L. plantarum 69, and L. plantarum DSM1055) at 107 cfu/g and incubated at 10, 20, or 30°C for 7 days. The lowest fermentation time (time to reach pH 4.4) was obtained with 4% sucrose, 100 ppm nitrite and a process temperature of 30°C. In the second step, salami-like were produced according to the individuated formulation and inoculated with the studied starters (107 cfu/g); the fish mixture was stuffed into a natural casing and left to ferment at 30°C for 7 days. The use of the selected strains not only assured a correct fermentation but reduced the process time at only 2 days; during refrigerated storage, a good microbiological, chemico-physical and sensorial quality of the final product was recorded for at least 21 days.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/396606
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact