Lactobacillus fermentum isolated from sourdough was able to produce riboflavin. Spontaneous roseoflavinresistant mutants were obtained by exposing the wild strain (named L. fermentum PBCC11) to increasing concentrations of roseoflavin. Fifteen spontaneous roseoflavin-resistant mutants were isolated, and the level of vitamin B2 was quantified by HPLC. Seven mutant strains produced concentrations of vitamin B2 higher than 1 mg L−1. Interestingly, three mutants were unable to overproduce riboflavin even though they were able to withstand the selective pressure of roseoflavin. Alignment of the rib leader region of PBCC11 and its derivatives showed only point mutations at two neighboring locations of the RFN element. In particular, the highest riboflavinproducing isolates possess an A to G mutation at position 240, while the lowest riboflavin producer carries a T to A substitution at position 236. No mutations were detected in the derivative strains that did not have an overproducing phenotype. The best riboflavin overproducing strain, named L. fermentum PBCC11.5, and its parental strain were used to fortify bread. The effect of two different periods of fermentation on the riboflavin level was compared. Bread produced using the coinoculum yeast and L. fermentum PBCC11.5 led to an approximately twofold increase of final vitamin B2 content

Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread

RUSSO, PASQUALE;CAPOZZI, VITTORIO;ARENA, MATTIA PIA;SPADACCINO, GIUSEPPINA;FIOCCO, DANIELA;SPANO, GIUSEPPE
2014-01-01

Abstract

Lactobacillus fermentum isolated from sourdough was able to produce riboflavin. Spontaneous roseoflavinresistant mutants were obtained by exposing the wild strain (named L. fermentum PBCC11) to increasing concentrations of roseoflavin. Fifteen spontaneous roseoflavin-resistant mutants were isolated, and the level of vitamin B2 was quantified by HPLC. Seven mutant strains produced concentrations of vitamin B2 higher than 1 mg L−1. Interestingly, three mutants were unable to overproduce riboflavin even though they were able to withstand the selective pressure of roseoflavin. Alignment of the rib leader region of PBCC11 and its derivatives showed only point mutations at two neighboring locations of the RFN element. In particular, the highest riboflavinproducing isolates possess an A to G mutation at position 240, while the lowest riboflavin producer carries a T to A substitution at position 236. No mutations were detected in the derivative strains that did not have an overproducing phenotype. The best riboflavin overproducing strain, named L. fermentum PBCC11.5, and its parental strain were used to fortify bread. The effect of two different periods of fermentation on the riboflavin level was compared. Bread produced using the coinoculum yeast and L. fermentum PBCC11.5 led to an approximately twofold increase of final vitamin B2 content
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/244556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 109
social impact