Background: Hereditary angioedema (HAE) comprises HAE with C1-inhibitor deficiency (C1-INH-HAE) and HAE with normal C1-INH activity (nl-C1-INH-HAE), due to mutations in factor XII (FXII-HAE), plasminogen (PLG-HAE), angiopoietin 1 (ANGPT1-HAE), kininogen 1 genes (KNG1-HAE), or angioedema of unknown origin (U-HAE). The Italian network for C1-INH-HAE (ITACA) created a registry including different forms of angioedema without wheals. Objective: We analyzed clinical and laboratory features of a cohort of Italian subjects with nl-C1-INH-HAE followed by ITACA to identify specific biomarkers. Methods: A total of 105 nl-C1-INH-HAE patients were studied. Plasma concentrations of cleaved high-molecular-weight kininogen (cHK), vascular endothelial growth factors (VEGFs), angiopoietins (Angs), and secreted phospholipase A2 enzymes (sPLA2) were evaluated. Results: We identified 43 FXII-HAE patients, 58 U-HAE, and 4 ANGPT1-HAE. We assessed a prevalence of 1:1.4 × 106 for FXII-HAE and 1:1.0 × 106 for U-HAE. cHK levels in U-HAE patients were similar to controls in plasma collected using protease inhibitors cocktail (PIC), but they significantly increased in the absence of PIC. In FXII-HAE patients, cHK levels, in the absence of PIC, were significantly higher than in controls. We found a significant increase of VEGF-A, VEGF-C, and Ang1 levels in U-HAE patients compared to controls. In FXII-HAE, only VEGF-C levels were increased. Ang2 concentrations and sPLA2 activity were not modified. The levels of these mediators in ANGPT1-HAE patients were not altered. Conclusions: Our results suggest that pathogenesis of FXII-, ANGPT1-, and U-HAE moves through an unbalanced control of kallikrein activity, with bradykinin as most likely mediator. VEGFs and Ang1 participate in the pathophysiology of U-HAE increasing the basal vascular permeability.
Impaired control of the contact system in hereditary angioedema with normal C1-inhibitor
Bafunno V.;Cordisco G.;Margaglione M.;
2020-01-01
Abstract
Background: Hereditary angioedema (HAE) comprises HAE with C1-inhibitor deficiency (C1-INH-HAE) and HAE with normal C1-INH activity (nl-C1-INH-HAE), due to mutations in factor XII (FXII-HAE), plasminogen (PLG-HAE), angiopoietin 1 (ANGPT1-HAE), kininogen 1 genes (KNG1-HAE), or angioedema of unknown origin (U-HAE). The Italian network for C1-INH-HAE (ITACA) created a registry including different forms of angioedema without wheals. Objective: We analyzed clinical and laboratory features of a cohort of Italian subjects with nl-C1-INH-HAE followed by ITACA to identify specific biomarkers. Methods: A total of 105 nl-C1-INH-HAE patients were studied. Plasma concentrations of cleaved high-molecular-weight kininogen (cHK), vascular endothelial growth factors (VEGFs), angiopoietins (Angs), and secreted phospholipase A2 enzymes (sPLA2) were evaluated. Results: We identified 43 FXII-HAE patients, 58 U-HAE, and 4 ANGPT1-HAE. We assessed a prevalence of 1:1.4 × 106 for FXII-HAE and 1:1.0 × 106 for U-HAE. cHK levels in U-HAE patients were similar to controls in plasma collected using protease inhibitors cocktail (PIC), but they significantly increased in the absence of PIC. In FXII-HAE patients, cHK levels, in the absence of PIC, were significantly higher than in controls. We found a significant increase of VEGF-A, VEGF-C, and Ang1 levels in U-HAE patients compared to controls. In FXII-HAE, only VEGF-C levels were increased. Ang2 concentrations and sPLA2 activity were not modified. The levels of these mediators in ANGPT1-HAE patients were not altered. Conclusions: Our results suggest that pathogenesis of FXII-, ANGPT1-, and U-HAE moves through an unbalanced control of kallikrein activity, with bradykinin as most likely mediator. VEGFs and Ang1 participate in the pathophysiology of U-HAE increasing the basal vascular permeability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.