A solar still is a device which allows obtaining fresh water from seawater or brackish water. It utilizes the greenhouse effect by using solar energy. In a conventional solar still the production of fresh water in bright sunny weather and with warm air temperature is about 5-5.5 L m -2 d -1, according to the depth of the water in the solar still. In some devices it is possible to obtain efficiencies of up to 0.50 and 0.60. The aim of this research is to increase distillation productivity by utilizing the latent heat released by the condensing water steam. For this purpose the author built a solar still characterized by two basins (B1 and B2) superimposed upon each other. The building materials were a sheet of black Plexiglas for the bottom of the solar still, a sheet of transparent Plexiglas for all boxes, and a sheet of expanded polystyrene, used as insulating material. The solar still was hermetically sealed to reduce the leakage of vapor to the surroundings. The greatest quantity of fresh water obtained by the tested solar still was 1.7-1.8 L m -2 d -1. This result was achieved in the third week of July when solar radiation was 27-28 MJ m -2 d- t. The efficiency of the tested solar still was about 0.16. This low efficiency is probably due to the low temperature of the water contained in the still (about 50°C). The solar still has only been used in experiments for some months, during which it has not been possible to study the deterioration of the material (Plexiglas). These results show that an elaborate design and the increased costs for such design and construction do not always improve the water yield.
An experiment with a plastic solar still
CAPPELLETTI, GIULIO MARIO
2002-01-01
Abstract
A solar still is a device which allows obtaining fresh water from seawater or brackish water. It utilizes the greenhouse effect by using solar energy. In a conventional solar still the production of fresh water in bright sunny weather and with warm air temperature is about 5-5.5 L m -2 d -1, according to the depth of the water in the solar still. In some devices it is possible to obtain efficiencies of up to 0.50 and 0.60. The aim of this research is to increase distillation productivity by utilizing the latent heat released by the condensing water steam. For this purpose the author built a solar still characterized by two basins (B1 and B2) superimposed upon each other. The building materials were a sheet of black Plexiglas for the bottom of the solar still, a sheet of transparent Plexiglas for all boxes, and a sheet of expanded polystyrene, used as insulating material. The solar still was hermetically sealed to reduce the leakage of vapor to the surroundings. The greatest quantity of fresh water obtained by the tested solar still was 1.7-1.8 L m -2 d -1. This result was achieved in the third week of July when solar radiation was 27-28 MJ m -2 d- t. The efficiency of the tested solar still was about 0.16. This low efficiency is probably due to the low temperature of the water contained in the still (about 50°C). The solar still has only been used in experiments for some months, during which it has not been possible to study the deterioration of the material (Plexiglas). These results show that an elaborate design and the increased costs for such design and construction do not always improve the water yield.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.