Oxidative stress contributes to many inflammatory-based diseases of dairy cattle especially during periods of increased metabolic activity such as around calving. Endothelial cells play a key role in maintaining normal inflammatory responses, but they are especially susceptible to macromolecule damage during times of oxidative stress. Therefore, bovine aortic endothelial cells (BAEC) were used to study the effect of natural tannin-based extracts on oxidative stress that may improve health and well-being of cattle. Tannins are secondary metabolites in plants with potent antioxidant activity that have been used as natural feed additives for food-producing animals. However, there is little information on how tannin-rich plant extracts may affect oxidative stress in dairy cattle. The objective of this study was to evaluate the antioxidant effect of pomegranate (Punica granatum; PMG), tara (Caesalpinia spinosa; TA), chestnut (Castanea sativa; CH), and gambier (Uncaria gambir; GM) natural extracts using an in vitro BAEC model of oxidative stress. Natural extracts were tested at a concentration of 80 μg/mL. Viability, apoptosis, intracellular reactive oxygen species, and isoprostanes were determined on cultured BAEC treated with different plant natural extracts. No changes in cell viability was detected following PMG and GM treatments. In contrast, there was a 30% reduction of BAEC viability following treatment with CH or TA extracts. Intracellular reactive oxygen species production was significantly less abundant in cells treated with natural extracts than with the lipopolysaccharide control. Moreover, antioxidant activity varied according to the tested extract, showing a reduction of 63, 45, 51, and 27% in PMG, GM, CH, and TA, respectively. The formation of isoprostanes as a consequence of lipid peroxidation after induction of oxidative stress also were significantly decreased in PMG-treated cells when compared with the untreated cells. Theses findings suggest that PMG extract has the potential to mitigate oxidative stress without detrimental effects on cell viability. Further in vitro and in vivo research is warranted to explore the antioxidant potential of PMG extract as a dietary supplement to control oxidative stress in dairy cattle.

Evaluation of natural plant extracts as antioxidants in a bovine in vitro model of oxidative stress

Ciampi F.;Caroprese M.;Sevi A.;Albenzio M.;Santillo A.
2020-01-01

Abstract

Oxidative stress contributes to many inflammatory-based diseases of dairy cattle especially during periods of increased metabolic activity such as around calving. Endothelial cells play a key role in maintaining normal inflammatory responses, but they are especially susceptible to macromolecule damage during times of oxidative stress. Therefore, bovine aortic endothelial cells (BAEC) were used to study the effect of natural tannin-based extracts on oxidative stress that may improve health and well-being of cattle. Tannins are secondary metabolites in plants with potent antioxidant activity that have been used as natural feed additives for food-producing animals. However, there is little information on how tannin-rich plant extracts may affect oxidative stress in dairy cattle. The objective of this study was to evaluate the antioxidant effect of pomegranate (Punica granatum; PMG), tara (Caesalpinia spinosa; TA), chestnut (Castanea sativa; CH), and gambier (Uncaria gambir; GM) natural extracts using an in vitro BAEC model of oxidative stress. Natural extracts were tested at a concentration of 80 μg/mL. Viability, apoptosis, intracellular reactive oxygen species, and isoprostanes were determined on cultured BAEC treated with different plant natural extracts. No changes in cell viability was detected following PMG and GM treatments. In contrast, there was a 30% reduction of BAEC viability following treatment with CH or TA extracts. Intracellular reactive oxygen species production was significantly less abundant in cells treated with natural extracts than with the lipopolysaccharide control. Moreover, antioxidant activity varied according to the tested extract, showing a reduction of 63, 45, 51, and 27% in PMG, GM, CH, and TA, respectively. The formation of isoprostanes as a consequence of lipid peroxidation after induction of oxidative stress also were significantly decreased in PMG-treated cells when compared with the untreated cells. Theses findings suggest that PMG extract has the potential to mitigate oxidative stress without detrimental effects on cell viability. Further in vitro and in vivo research is warranted to explore the antioxidant potential of PMG extract as a dietary supplement to control oxidative stress in dairy cattle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/463184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact