The doctoral thesis focused on the analysis of non-destructive technologies available for the control quality of agri-food products, along the whole supply chain. In particular, the thesis concerns the application of computer vision system to evaluate the quality of fresh rocket leaves. The thesis is structured in three parts (introduction, experimental applications and conclusions) and in 5 chapters, the first and second focused on non-destructive technologies and in particular on computer vision systems for monitoring the quality of agri-food products, respectively. The third, quarter, and fifth chapters aim to assess the rocket leaves based on the estimation of quality aspects, considering different aspects: (i) the variability due to the different agricultural practices, (ii) the senescence of packed and unpacked products, and (iii) development and exploitation of the advantages of new models simpler than the machine learning used in the previous experiments. The research work of this doctoral thesis was carried out by the University of Foggia, the Institute of Science of Food Production (ISPA) and the Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of National Research Council (CNR). It was conducted within the Project SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), funded by MUR- PRIN 2017, and aimed at sustaining quality of production and of the environment using low input agricultural practices and non-destructive quality evaluation.
La tesi di dottorato è incentrata sull'analisi di tecnologie non distruttive per il controllo della qualità dei prodotti agroalimentari, lungo l'intera filiera agroalimentare. In particolare, la tesi riguarda l'applicazione del sistema di visione artificiale per valutare la qualità delle foglie di rucola fresh-cut. La tesi è strutturata in tre parti (introduzione, applicazioni sperimentali e conclusioni) e in cinque capitoli, rispettivamente il primo e il secondo incentrati sulle tecnologie non distruttive e in particolare sui sistemi di computer vision per il monitoraggio della qualità dei prodotti agroalimentari. Il terzo, quarto e quinto capitolo mirano a valutare le foglie di rucola sulla base della stima di parametri qualitativi, considerando diversi aspetti: (i) la variabilità dovuta alle diverse pratiche agricole, (ii) la senescenza dei prodotti confezionati e non, e (iii) lo sviluppo e sfruttamento dei vantaggi di nuovi modelli più semplici rispetto al machine learning utilizzato negli esperimenti precedenti. Il lavoro di ricerca di questa tesi di dottorato è stato svolto dall'Università di Foggia, dall'Istituto di Scienze delle Produzioni Alimentari (ISPA) e dall'Istituto di Tecnologie e Sistemi Industriali Intelligenti per le Manifatture Avanzate (STIIMA) del Consiglio Nazionale delle Ricerche (CNR). L’attività di ricerca è stata condotta nell'ambito del Progetto SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), finanziato dal MUR-PRIN 2017, e volto a sostenere la qualità della produzione e dell'ambiente utilizzando pratiche agricole a basso input e la valutazione non distruttiva della qualità di prodotti ortofrutticoli.
Computer Vision System for Non-Destructive and Contactless Evaluation of Quality Traits in Fresh Rocket Leaves (Diplotaxis Tenuifolia L.) / Palumbo, Michela. - (2023). [10.14274/palumbo-michela_phd2023]
Computer Vision System for Non-Destructive and Contactless Evaluation of Quality Traits in Fresh Rocket Leaves (Diplotaxis Tenuifolia L.)
PALUMBO, MICHELA
2023-01-01
Abstract
The doctoral thesis focused on the analysis of non-destructive technologies available for the control quality of agri-food products, along the whole supply chain. In particular, the thesis concerns the application of computer vision system to evaluate the quality of fresh rocket leaves. The thesis is structured in three parts (introduction, experimental applications and conclusions) and in 5 chapters, the first and second focused on non-destructive technologies and in particular on computer vision systems for monitoring the quality of agri-food products, respectively. The third, quarter, and fifth chapters aim to assess the rocket leaves based on the estimation of quality aspects, considering different aspects: (i) the variability due to the different agricultural practices, (ii) the senescence of packed and unpacked products, and (iii) development and exploitation of the advantages of new models simpler than the machine learning used in the previous experiments. The research work of this doctoral thesis was carried out by the University of Foggia, the Institute of Science of Food Production (ISPA) and the Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of National Research Council (CNR). It was conducted within the Project SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), funded by MUR- PRIN 2017, and aimed at sustaining quality of production and of the environment using low input agricultural practices and non-destructive quality evaluation.File | Dimensione | Formato | |
---|---|---|---|
Palumbo_tesi dottorato_XXXV ciclo_stampadef_signed.pdf
accesso aperto
Descrizione: Tesi di dottorato
Tipologia:
PDF Editoriale
Licenza:
Dominio pubblico
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.