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EXTENDED ABSTRACT 

The demand for healthy, safe, high-quality and ready-to-eat fresh produce has increased in the 

last few years with the change in the lifestyle of modern consumers. Food quality is related to 

a determined maturity stage, where the composition, or the combination of physical and 

chemical attributes, has the maximum acceptance by consumers. Some of these quality traits 

can be perceived with the use of senses, while others, such as nutritional value, chemical and 

microbial safety, and degree of sustainability of the cultivation approach, cannot be judged 

directly by consumers. The acceptability of foods could be increased by providing this 

information to consumers. 

The quality of fruit and vegetables is usually assessed by sensorial and subjective determination, 

using scoring rating scales. Moreover, conventional destructive methods are used to support the 

sensory evaluation by the assessment of desired chemical and physical attributes related to the 

quality of the product. Even if they are still widely used, analytical and destructive techniques 

are time consuming and expensive, adversely impact the environment, require sophisticated 

equipment and need careful sample preparations. Finally, they are not suitable for in-line 

applications where speed, accuracy and sustainability are required. 

Recent researches have been focused on the use of contactless, non-destructive, rapid and 

accurate techniques, as well as non-polluting, for quality assessment of fruit and vegetables 

with the aim to predict their sensory and desired compositional traits in an objective and 

consistent way. Non-destructive (ND) techniques do not need sample preparation once the final 

model is developed making the prediction process rapid and objective. Additionally, the 

growing awareness of modern consumers toward the economic, social and environmental 

sustainability of production processes has prompted many researchers to develop ND tools for 

the discrimination of cultivation approach, in order to better support the added value of the 

products. 

Nevertheless, it is important to know that, even if these non-invasive methods provide more 

significant advantages than analytical and destructive analysis, they cannot completely replace 

the conventional methods, as, at the moment, they can only be a support in saving time, also 

reducing impact on the environment. 

The thesis focused on the analysis of non-destructive technologies available for the control 

quality of agri-food products, along the whole supply chain. In particular, the thesis concerns 

the application of computer vision system to evaluate the quality of fresh rocket leaves. The 

thesis is structured in three parts (introduction, experimental applications and conclusions) and 
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in 5 chapters, the first and second focused on non-destructive technologies and in particular on 

computer vision systems for monitoring the quality of agri-food products, respectively. The 

third, quarter, and fifth chapters aim to assess the rocket leaves based on the estimation of 

quality aspects, considering different aspects: (i) the variability due to the different agricultural 

practices, (ii) the senescence of packed and unpacked products, and (iii) development and 

exploitation of the advantages of new models simpler than the machine learning used in the 

previous experiments. 

The research work of this doctoral thesis was carried out by the University of Foggia, the 

Institute of Science of Food Production (ISPA) and the Institute of Intelligent Industrial 

Technologies and Systems for Advanced Manufacturing (STIIMA) of National Research 

Council (CNR). It was conducted within the Project SUS&LOW (Sustaining Low-impact 

Practices in Horticulture through Non-destructive Approach to Provide More Information on 

Fresh Produce History & Quality), funded by MUR-PRIN 2017, and aimed at sustaining quality 

of production and of the environment using low input agricultural practices (LIP) and ND 

quality evaluation. According to the main focus of SUS&LOW, ND evaluation could (i) 

provide evidence about the inner quality of production, (ii) be considered an additional tool for 

the discrimination of fresh produce obtained with LIP, and (iii) enable for the estimation of 

quality and shelf-life of fresh produce also when in the plastic package. This information may 

be used in order to design strategies to ensure better marketing conditions for fresh fruit and 

vegetables obtained by LIP. Details about the objective, main results, and general conclusions 

of activities carried out within SUS&LOW are published in Advances in Horticultural Science 

and reported in Chapter 1 of this Thesis. 

Among innovative and ND methodologies commonly studied and used in quality assessment 

of fruit and vegetables, image analysis by computer vision systems (CVS) represents an 

innovative and contactless technology suitable for in-line grading. Different types of CVS have 

been developed, based on conventional, multispectral and hyperspectral imaging. 

The solutions based on conventional imaging (CVS-CI) use RGB colour cameras that are 

sensible to the visible wavelengths of the electromagnetic spectrum. Their simplicity, flexibility 

and cost allow for a continuous monitoring of quality along the entire supply chain, from harvest 

to final consumer, thus reducing wastes and losses. They typically acquire images using a setup 

composed of the combination of a digital camera, an illumination system, and a personal 

computer that extracts classification features and builds appropriate models, using statistical 

methods or machine learning approaches. Besides the automatic external inspection of fresh 

produce based on morphological traits (size, shape, defects and colour changes), CVS-CI has 
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also shown to be effective in determining some internal characteristics related to the nutritional 

quality. Moreover, the integration of machine learning methodologies in these systems 

significantly increases their efficiency and simplifies their design, development and 

deployment. 

CVS-CI technologies may evaluate only internal quality traits strictly related to external visible 

changes as physical alteration or colour changes (e.g., soluble solids content, chlorophyll 

content, ammonia content, enzymatic activity, phenols content, antioxidant activity). These 

limitations have prompted researchers to improve the image analysis performed by CVS-CI 

through the studying and developing of more advanced solutions. A detailed description of 

CVS-CI technology, all the advantages and limitations in the quality assessment of fresh and 

packaged fruit and vegetables and future perspectives have been discussed in Chapter 2 of this 

Thesis. The content of this chapter was published on Postharvest Biology and Technology 

including the current state of art about the quality evaluation of fruit and vegetables by CVS-

CI, highlighting its potentiality for a continuous and efficient monitoring of quality along the 

entire distribution chain. 

The research work described in this Thesis is aimed to develop and validate predictive models 

based on the use of CVS-CI for the assessment of the quality level (QL) and the main quality 

parameters of fresh rocket leaves (Diplotaxis tenuifolia L.) with or without packaging. Rocket 

is a common name which denotes many species of green leaves belonging to the Brassicaceae 

family and it is distinguished by a pungent smell, a bitter taste and a wide range of 

phytonutrients, such as provitamin A, vitamin C, flavonoids, glucosinolates, fibers, potassium 

and sulphur. It is widely consumed raw in the Mediterranean countries alone or in mixed leafy 

salads and, among the variability of rocket species, Eruca sativa L. and Diplotaxis tenuifolia L. 

are the ones commonly present in the market. Because of the increase of rocket consumption in 

the recent years, this vegetable is mainly marketed as ready-to-eat product. The storage 

conditions (temperature, atmosphere and packaging) and processing operations may limit its 

shelf-life accelerating some typical degradation processes such as wilting, yellowing, loss of 

nutritional properties and of sensorial attributes. The possibility of monitoring the shelf-life of 

rocket leaves from farm to fork, identifying and predicting the QL of the product at each step 

of the supply chain, could reduce wastes and enhance the sustainability of the production 

process. 

The proposed CVS was able to automatically select, without human intervention, the most 

relevant colour traits strictly related to the quality of rocket leaves using the Random Forest as 

machine learning model ensuring a consistent prediction of the product shelf-life. 
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During the first study, CVS was applied to fresh rocket leaves obtained by LIP, to objectively 

assess its QL during the storage at 10 °C according to a 5 to 1 rating scale and to discriminate 

the fertilization and irrigation management applied during the cultivation. Three colour 

correction techniques (i.e. white balance, linear correction, and polynomial correction) were 

evaluated and compared in terms of classification performance, in order to identify the best 

solution for providing consistent colour measurements. Among them, linear colour correction 

proved to be the best trade-off between efficacy and efficiency in making consistent colour 

measurements. Promising results showed an accuracy of 95 % in the QL assessment and of 

about 65-70 % in the discrimination of the cultivation approach. This research activity is 

published on a special issue of Agronomy and reported in Chapter 3 of the Thesis. 

In the second study, five experiments were conducted to validate the CVS in estimating internal 

quality traits (chlorophyll and ammonia content) related to senescence of rocket leaves, in 

packaged and unpackaged samples. The same CVS, using its machine learning components, 

was able to build effective models for both the classification (visual quality level assignment) 

and the regression (estimation of senescence indicators such as chlorophyll and ammonia 

contents) problems by just changing the training data. The results, published on Postharvest 

Biology and Technology and reported in Chapter 4, showed similar achievements, with a 

negligible performance loss, on packaged (Pearson’s linear correlation coefficient of 0.84 for 

chlorophyll and 0.91 for ammonia) and unpackaged products (0.86 for chlorophyll and 0.92 for 

ammonia). Moreover, three PLS models were compared to estimate the QL of rocket leaves 

using the chlorophyll contents obtained by destructive methods (Model I), by CVS on packaged 

(Model II) and by CVS on unpackaged products (Model III) as predictors. Those estimated non-

destructively and contactless by the CVS (Model II and Model III) provided better 

performances in the QL prediction (R2v of 0.77, 0.80, respectively) than the ones measured by 

destructive analysis (R2v of 0.70). 

The third study of this Thesis was the exploring a clustering approach to identify relevant and 

representative colour cues and to construct simpler algorithms for the prediction of the QL of 

rocket leaves than the ones obtained by the Random Forest model.  

Machine learning techniques may have significant computational costs and often produce 

models not easily understandable by humans. An interesting area of research consists in 

exploiting the advantages of learning while keeping the solutions simple, fast and interpretable 

by humans. The research paper, submitted for publication in Journal of Food Engineering and 

reported in Chapter 5, takes new steps in this direction, based on results obtained in the previous 

experiments. By analysing the Random Forest model already used to classify the QL and to 
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estimate chlorophyll and ammonia contents in rocket leaves, new methods were proposed to (i) 

identify relevant clusters of colours that are informative about the properties of the product at 

hand, (ii) further select the clusters more significant to estimate the desired properties, and, (iii) 

describe shape and size of regions of the ab-plane in the CIELab colour representation 

corresponding to the clusters of interest. Comparing the results obtained in the previous 

experiments, these findings provided objective bases for the design of different computational 

schemes with different execution times enabling the best trade-off between efficacy and 

efficiency. In detail, two of the considered methods (M3b-C9-P and M1-C5-R) provided good 

prediction of chlorophyll and ammonia contents, assessing the quality of rocket leaves in an 

objective and robust way. Additionally, the two methods have computational time of 3 and 1 

ms (respectively for M3b-C9-P and M1-C5-R) much shorter than the time required by the 

Random Forest model (not less than 20 ms). 

Overall, results reported in this doctoral thesis could have a significant impact on advanced 

applications of the traditional vision systems commonly used for the inspection of fruit and 

vegetables. In particular, the ND and contactless CVS applied on fresh rocket leaves represents 

a valid alternative to destructive, expensive and time-consuming analyses in the laboratory and 

can be effectively and extensively used along the whole supply chain, even on packaged leaves 

which cannot be analysed by traditional tools. 
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Chapter 1 
 

SUSTAINING LOW-IMPACT PRACTICES IN HORTICULTURE 

THROUGH NON-DESTRUCTIVE APPROACH TO PROVIDE MORE 

INFORMATION ON FRESH PRODUCE HISTORY & QUALITY: 

THE SUS&LOW PROJECT 
Maria Luisa Amodio1, Giovanni Attolico2, Lucia Bonelli3, Maria Cefola4, 

Hassan Fazayeli1, Francesco Fabiano Montesano3, Bernardo Pace4, Michela 

Palumbo1,4, Francesco Serio3, Antonio Stasi1, Giancarlo Colelli1 
 
1 Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 

Via Napoli 25, 71122 Foggia 
2 Institute on Intelligent Industrial Systems and Technologies for Advanced Manufacturing, CNR, Via 

G. Amendola, 122/O, 70126 Bari  
3 Institute of Sciences of Food Production, CNR, Via G. Amendola, 122/O, 70126 Bari 
4 Institute of Sciences of Food Production, CNR, c/o CS-DAT, Via Michele Protano, 71121 Foggia  
 

ABSTRACT 

The general aim of the PRIN project SUS&LOW is to increase the sustainability of fresh 

produce by testing and implementing low-input agricultural practices (LIP) with positive 

impact on product quality with the support of non-destructive (ND) tools for real-time quality 

assessment and for product discrimination. Additionally, new marketing strategies are 

generated to better support the added value of the products and to satisfy the final consumers’ 

preferences. The SUS&LOW project consists of three work packages (WP) and the adopted 

methodology used two model crops: rocket salad and tomato. The WP1, focused on the 

reduction of agricultural inputs, showed that sensor-based fertigation management might 

improve sustainability of soilless cultivation. Results coming from WP2, aimed to the 

evaluation of ND techniques, outlined the high potentiality of hyperspectral imaging (HSI) and 

Fourier transformed-near infrared (FT-NIR) techniques for the authentication of sustainable 

growing methods. Moreover, project activities’ proved computer vision system (CVS) as an 

effective tool for evaluating the product quality also through the bag. The WP3, dealing with 

marketing strategies, indicated a positive approach of consumers compared to LIP products 

certified through a visual storytelling platform. 

 

Keywords: sustainability, quality, non-destructive assessment, shelf-life, marketing strategies.  
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1. INTRODUCTION 

Production of vegetable crops under controlled environments (i.e. greenhouses) has expanded 

considerably over recent decades in Mediterranean areas (FAO, 2013). Initially, research efforts 

and the related introduction of technical innovations focused on high-quality, healthy products. 

However, concern with environmentally-sustainable production has risen in the last decade as 

industrial greenhouse crops are usually seen as entailing high environmental impact (Torrellas 

et al., 2012). On the other hand, there is also plenty of evidence that greenhouse vegetable 

production may decrease the environmental impact compared to the field cultivation 

(Stanghellini, 2014).  

The efficient use of resources (water and fertilizers), in irrigated greenhouse agriculture, is a 

promising and increasingly adopted strategy to achieve better crop performance, improved 

nutritional and sensorial quality (Montesano et al., 2015; Montesano et al., 2018). With respect 

to traditional systems, soilless cultivation and, particularly, closed-cycle with recycling of 

nutrient solution (NS) produce a number of benefits, including the possibility to standardize the 

production process, to improve plant growth and yield, and to obtain higher efficiency in water 

and nutrients use. In addition, it is also possible to modulate the regulation of the secondary 

metabolism of plants through an optimal control of the nutrient solution composition, or by 

imposing controlled stresses, or through biofortification treatments, generally leading to an 

improvement in the nutritional value of products (Rouphael et al., 2018; Renna et al., 2022). 

Innovative technologies based on the use of sensor networks for fertigation management may 

considerably reduce water and fertilizers consumption and increase the overall use efficiency 

of those inputs, and may lead to qualitative and quantitative improvements while preventing 

both under- and over-irrigation.  

The most used instrumental techniques to measure quality attributes of fruit and vegetables are 

destructive and involve a considerable amount of manual work, primarily due to sample 

preparation. In addition, most of these analytical techniques are time consuming and sometimes 

may require sophisticated equipment. Finally, they can be performed only on a limited number 

of specimens (samples) and therefore their statistical relevance may be limited (Amodio et al., 

2017a). Research has been focused on developing non-contact, rapid, environmental-friendly, 

and accurate methods for non-invasive evaluation of quality in fruit and vegetables. Nowadays, 

there are a few emerging non-destructive analytical instruments and approaches for this task, 

including spectroscopy, hyperspectral imaging, and computer vision (Liu et al., 2017).  

Near infrared spectroscopy has gained wide attention in the food sector due to its capacity of 

providing fingerprints of different products on the base of the interaction between their 
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molecular structure and the incident light (Workman and Shenk, 2004) which is the result of 

different pre-harvest factors that also affect the final composition and quality. The feasibility of 

NIRS-based analysis to evaluate quality attributes of fresh fruits for commercial application 

have been reported by numerous authors (Arendse et al., 2018; Palumbo et al., 2022a).  

Hyperspectral imaging (HSI) combines the principles of spectroscopy and conventional 

imaging or computer vision. It is mainly used for internal bruise and defect detection in fruit 

and vegetables (Ariana et al., 2010; Babellahi et al., 2020; Tsouvaltzis et al. 2020) but also to 

predict the internal composition (Piazzolla et al., 2013 and 2017; Yang et al., 2015; Liu et al., 

2017). Amodio et al. (2017a) showed the potentiality of hyperspectral imaging in the Vis-NIR 

spectral range to predict internal content of soluble solids, phenols, and antioxidant activity of 

fennel heads. In addition, this technique provided important information about the maturity of 

fennel heads which may be used to determine the optimal harvest time. Some studies 

successfully applied these methods for the discrimination of production origin and agricultural 

practices, as revised in Amodio et al. (2020). NIR and HIS were in fact used for the 

classification of apples (Guo et al., 2013), persimmon (Khanmohammadi et al., 2014), and 

arabica coffee (Bona et al., 2017) from different origins. As for production systems (Sánchez 

et al., 2013) investigated the potentiality of NIRS technologies to discriminate green asparagus 

grown under organic and conventional methods. More recently, Amodio et al. (2017b) 

successfully discriminated conventionally and organically grown strawberries, being also able 

to identify two different types of organic production systems applied to the same genetic 

material on the same site, soil, unheated tunnel. 

All these studies have suggested multispectral and hyperspectral systems as valid tools to 

evaluate quality of different agricultural products and, more interestingly, as tools for product 

authentication. 

Finally, Computer Vision Systems (CVS) may be applied to extend quality prediction and 

discrimination along the whole supply chain from harvesting up to consumers. CVS combine 

mechanics, optical instrumentation, electromagnetic sensing, and digital image processing 

technology (Patel et al., 2012). Recently, CVSs have been used to assess quality and 

marketability of tomatoes (Arias et al., 2000), artichokes (Amodio et al., 2011), fresh-cut 

nectarines (Pace et al., 2011), fresh-cut lettuce (Pace et al., 2014), fresh-cut radicchio (Pace et 

al., 2015), and rocket leaves (Cavallo et al., 2017). Moreover, they have been applied for the 

prediction of internal quality of colored carrots (Pace et al., 2013). Even more interesting is the 

application of these systems during the post-packaging phase and along the whole distribution 

chain. Despite the relevance of quality evaluation of packaged products, few investigations 
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were reported in literature. Multi-spectral reflective image analysis has been applied to monitor 

the evolution and spoilage of leafy spinach covered by plastic materials (Lara et al., 2013); 

more recently, Cavallo et al. (2018) have proposed an application of image analysis by CVS 

for non-destructive and contactless evaluation of quality of packaged fresh-cut lettuce. 

Therefore, the interest of investigating the application of CVS to detect quality and shelf-life of 

packaged products. 

Finally, the possibility of using non-destructive technique for increasing the information on 

product history (e.g. growing location and agricultural practices) may be considered as baseline 

to develop marketing tools to promote the diffusion of sustainable production system. Cost 

barrier is an obstacle for choosing low input products instead of the conventional, even if 

environment is mentioned as a strong commitment (Krystallis and Chryssohoidis, 2005). 

Therefore, the knowledge about consumer preferences for the adoption of LIP is still matter of 

debate. 

The general aim of the project is to increase the amount of sustainably-produced food by testing 

and implementing low-input agricultural practices with positive impact on product quality with 

the support of non-destructive tools for real-time quality assessment and product 

discrimination, which may inspire new marketing strategies to better support the added value 

of the products and increase incomes of potential users. 

 

2. PROJECT ACTIVITIES AND MAIN RESULTS 

The SUS&LOW project structure consists of three work packages (WP). WP1 focused on 

research activities aimed to reduce agricultural inputs (water and fertilizers) in greenhouse 

cultivation, chosen as a strategic high-value sector for Mediterranean agriculture. This WP was 

also in charge of making available to the project team vegetables products (rocket and tomato) 

different for the level of sustainability characterizing the cropping system adopted, to be used 

in other WPs for the related investigations. Then, WP2 was aimed to the quality assessment and 

to the implementation of new tools to acquire information about quality and history of fresh 

produce obtained with LIP (WP1). Non-destructive methods (including NIR, hyperspectral 

imaging and image analysis by CVS) have been used for food authentication, showing 

interesting and promising results. Finally, WP3 realized ad hoc survey to analyse the consumer 

behaviour with respect to the possibility of purchasing fruit and vegetables LIP certified (WP1) 

and identified by ND technologies (WP2) with the aim to implement adequate marketing 

strategies. In this section, an overview of the research strategies and approaches adopted in the 

three WPs is provided. The main results are reported and discussed. 
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2.1. WP1: quality crops through low-impact practices 

Based on the overall project structure, this WP was focused on soilless cultivation, since it has 

the potentiality to achieve extremely high water and fertilizers use efficiency, beside high yield 

and quality, in intensive cropping systems. However, the adoption of free-drain open cycle with 

empiric fertigation schedule management operated by timers (the predominant case in 

Mediterranean area), may compromise the sustainability of soilless culture. Therefore, the 

adoption of strategies aimed to rational use of water and fertilizers and excess leaching 

prevention is a key-factor for increased sustainability and reduced environmental impact of 

soilless culture (Massa et al., 2020). In this context, substrate moisture/EC (electrical 

conductivity) sensor-based irrigation is a promising and increasingly adopted strategy to reduce 

water and fertilizers consumption and losses, and to improve the overall crop performance, 

product quality and production process sustainability in soilless greenhouse cultivation 

(Palumbo et al., 2021a).  

Several experiments were carried out at the Experimental Farm La Noria (Mola di Bari, BA) of 

the CNR-ISPA (Bari), with the common approach to compare treatments providing 

traditionally adopted empirical fertigation management techniques with treatments in which 

advanced sensor-based fertigation management was implemented. The main results of selected 

experiments carried out during the project are reported hereafter. 

The research activities focused on two model species [rocket salad (Diplotaxis tenuifolia L.) 

and tomato (Solanum lycopersicum L.)] selected for their relevance in Mediterranean 

greenhouse vegetable production. In particular, rocket is reported as an emerging leaf vegetable 

which cultivation is widespread and in further expansion (Schiattone et al., 2017), while tomato 

is the most important greenhouse crop grown in soilless cultivation systems (Montesano et al., 

2015). 

A study was carried out to test two irrigation scheduling approaches (timer- or sensor-based) 

and two fertilization levels (high or low, with reference to the standard dosage range 

recommended for the specific fertilizers used) of open-cycle soilless rocket in Mediterranean 

autumn-winter unheated greenhouse conditions (Montesano et al., 2021). Rocket plants (cv. 

Dallas, Isi Sementi) were grown in a peat:perlite (3:1) mixture in 4.5 L plastic pots. Four 

treatments were compared: timer with high or low fertilization (T-HF, T-LF), and sensor-based 

with high or low fertilization (S-HF, S-LF). In timer-based treatments, irrigation schedule was 

periodically adjusted based on leaching fraction measurements (≈35 % was set as a target, 

according to common practice). In sensor-based treatments, on-demand irrigation was operated 

based on substrate EC/temperature/moisture sensors (GS3, Decagon Devices). These were 
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connected to a CR1000 datalogger programmed to automatically open irrigation valves and 

supply water enough to constantly maintain volumetric water content to a pre-defined set-point 

(0.35 m3 m-3, close to maximum water holding capacity), with no leaching. Slow-release 

fertilizers (Osmocote Exact and CalMag, ICL) were mixed with the substrate at high (3.75 and 

1 g L-1, respectively) or low dosage (2.25 and 0.6 g L-1). Yield, quality, water use and substrate 

parameters trends were evaluated. Sensors improved water use efficiency compared to timer 

(34.4 vs 21.4 g FW L-1, on average) (Figure 1) matching water supply with plant needs, and 

preventing leaching (Figure 1) (no interactive effects of fertilization treatments were observed 

on those parameters). 

 

 
Figure 1. Water use efficiency (WUE), leaching rate, total yield, and partial fertilizer factor 

productivity of rocket (Diplotaxis tenuifolia) grown in open free drain soilless system with 

timer- (T) or sensor-based (S) irrigation management, and subjected to high (HF) or low (LF) 

fertilization rate. 

 

Sensor-based irrigation also provided the best plant growth conditions, with interesting 

interactive effects with fertilization rate. In particular, the highest and the lowest cumulative 

(three harvests) yield values were obtained in S-HF and T-LF respectively (144.8 and 102.2 g 

FW pot-1), while similar values were observed in S-LF and T-HF (131.4 g FW pot-1, on average) 
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(Figure 1). The partial fertilizer factor productivity (g product fresh weight / g fertilizers 

applied) was higher at low dosage, and, with the same dosage, when the sensors were used 

(Figure 1). After each harvest time the fresh-cut rocket leaves were immediately transported in 

refrigerate conditions to the postharvest laboratory (see WP2 section below) (Palumbo et al., 

2021b). 

In another set of studies, we aimed to apply approaches for the sustainable fertigation 

management of soilless tomato (semi-closed cycle recirculation; sensor-based nutrient solution 

supply management) in comparison with a traditional open cycle free-drain nutrient solution 

management providing the use timer for fertigation schedule. Experiments were conducted with 

different tomato types (cherry – cv. Carminio, Seminis-Bayer, and intermediate type – cv. 

Mose, Syngenta), and in different environmental conditions typical of Mediterranean areas 

(including the use of brackish water for nutrient solution preparation). In general, both 

approaches (semiclosed-cycle cultivation and open cycle with sensor-based fertigation 

management) reduced the environmental impact of the production process (reduced 

water/fertilizers usage; less nutrient solution released into the environment, increased water use 

efficiency) and positively affected tomato quality traits, compared to empirically management 

open-free drain cultivation. 

 

2.2. WP2: non-destructive discrimination for low-impact practices and non-destructive 

quality assessment 

2.2.1 NIR spectroscopy and Hyperspectral imaging 

In this WP, the objective of the tasks was to assess the potentiality of Fourier transformed-near 

infrared (FT-NIR) spectrometry and hyperspectral imaging (HSI) to discriminate tomatoes and 

rocket leaves produced with different level of input as described in WP1, taking also into 

account the degree of efficiency in water and fertilizers used efficiency (WUE and FUE 

indexes). A hyperspectral line-scan scanner (Version 1.4, DV srl, Padova, Italy) equipped with 

two spectrographs, one in the Vis-NIR range, and the second in the NIR range, was used to 

obtain the HS images. The Vis-NIR spectrograph (400-1000 nm) has a spatial resolution of 

1000 × 2000 pixels with a spectral resolution of 5 nm and was connected to a CCD camera. As 

for the NIR spectrograph (900-1700 nm), the spatial resolution was 600 × 320 pixels with a 

spectral resolution of 5 nm; and a CMOS (Specim Spectral Imaging Ltd., Oulu, Finland) with 

50 frames per second equipped with C-mount lenses was used. As for FT-NIR spectrometry an 

MPA Multi-Purpose (FT-NIR Analyzer, Bruker Optics, Ettlingen, Germany), was used during 

spectral acquisition over the range of 800–2777 nm (sphere macrosample resolution 1.71 nm, 
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scanner velocity 10 kHz, sample scan time 64 scans, background scan time 64 scans). After 

image processing and spectra extraction for the HSI, all spectra belonging to HSI and FT-NIR 

were tested in discrimination using the agronomic treatments as discriminant classes and Partial 

Least Squares-Discriminant Analysis (PLS-DA) as classification technique. As for rocket 

leaves, PLS-DA was conducted with the 4 classes (T-HF; T-LF; S-HF, S-LF) described in the 

paragraph related to WP1, using 70 percent of samples for calibration purpose and the 

remaining 30 % for the external validation. The model performance was evaluated based on the 

accuracy, which is an average of the sensitivity calculated over the various classes, and gives 

an overall idea of the goodness of the classification. Results indicated HSI as a promising 

technique for the discrimination of rocket produced with different cultural techniques, with an 

accuracy of classification in the prediction phase of 97.2 % in Vis-NIR and 99.5 % in NIR 

range. In Figure 2, the results of the discrimination models can be observed. 

 

Figure 2. Estimated class index values in the calibration and in the prediction process for the 

classification based on PLS-DA modes in VNIR range (left) and NIR range (right). 

 

Regarding tomato, where 2 experiments with 2 different varieties were conducted (WP1), for 

each trial a first PLS-DA was aimed to discriminate the three treatments of cultivation and a 

second discrimination was performed for different levels of WUE and FUE. According to the 

efficiency of use of water and fertilizers we could individuate 2 levels (high and low) in each 

experiment and 3 levels (High, medium, and low) merging the data of both experiments. 

Therefore, a PLS-DA with 3 levels of WUE (and FUE) was also generated with the full dataset. 

Among the different non-destructive techniques, FT-NIR and HIS in the VIS-NIR range gave 

comparable performances in discriminating tomato according to cultural practices and different 

use of sources. Discrimination for WUE for each variety improved the classification results, 
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respect to the individual treatments, but the highest accuracy was obtained when the 

discrimination was based on 3 levels of WUE merging the 2 datasets, reaching 92.1 %. In 

literature there are no studies aimed to discriminate crops for WUE or FUE, while we may find 

the application of HSI for the classification of water-stressed plants, as for the case of tomatoes 

(Rinaldi et al., 2015). In comparison to this study, reporting a mean accuracy of around 77 % 

for discrimination of the two differently irrigated areas, our findings showed higher accuracy, 

exploring new area of the application for these techniques. 

 

2.2.2. Application of CVS for non-destructive quality evaluation on packaged products  

A research activity was carried out to develop and validate an innovative CVS integrating a 

Random Forest model for classification: this model automatically selects from the image the 

most relevant colour features for the task of interest. The developed CVS was applied to digital 

images of fresh-cut rocket leaves cultivated with LIP (WP1) to objectively estimate the 

evolution of their quality levels (QL) during storage and to discriminate the cultivation 

approach applied on field. At harvest, rocket leaves were stored at 10 °C in open polypropylene 

(PP) bags for a number of days required to reach the lowest QL, according to the rating scale 

from 5 (very good) to 1 (very poor), as reported in Figure 3. 

 

 
Figure 3. Changes in the sensory quality level (QL) of fresh-cut rocket leaves during the storage 

at 10 °C according to the 5 to 1 rating scale reported by Palumbo et al. (2021). In detail, 

QL5=very good; QL4= good; QL3=fair; QL2=poor; QL1=very poor. 

 

Very good
(very fresh, no
signs of yellowing,
bright, dark and
uniform green, no
defects, firm)

Fair
(slight wilting,
moderate signs of
yellowing, slight
discoloration, minor
defects, loss of
firmness)

Poor
(wilting, evident
yellowing,
discoloration, severe
loss of firmness)

Very poor
(unacceptable quality
due to decay, severe
wilting and yellowing,
complete loss of
firmness and other
evident defects)

Good
(fresh, slight signs of
yellowing, light green,
slight loss of
firmness)

QL5 QL4 QL3 QL2 QL1

LIMIT OF 
MARKETABILITY

LIMIT OF 
EDIBILITY
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At each QL, all the samples were subjected to postharvest quality evaluation, detecting colour 

parameters by a traditional colorimeter (CR400, Konica Minolta, Osaka, Japan) and physical 

and chemical parameters, in detail respiration rate (Kader, 2002), electrolyte leakage (Kim et 

al., 2005) and total chlorophyll content (Cefola and Pace, 2015). Then, images of the same 

samples were acquired by the CVS for non-destructive quality assessment and for recognizing 

traits related to the sustainability of the cultivation management used on the field, with specific 

reference to water and nutrients use (WP1). Image pre-processing was applied: to separate the 

product from the background; to identify the colour-chart placed in the scene to estimate the 

effects of lights and of the sensors and to correct colours to minimize these effects. Three colour 

correction methods (white balance, linear correction, and polynomial correction) with 

increasing level of complexity were evaluated and compared in terms of consistency of colour 

measurements and of classification performance. Linear colour correction proved to be the best 

trade-off between efficacy and efficiency providing a slightly lower performance than 

polynomial correction with significantly simpler computation. Finally, a Random Forest model 

was used to train classifiers to assess the QL of rocket leaves and to identify the treatments used 

during the cultivation. 

All the postharvest quality parameters measured by traditional destructive methods were 

significant in QL assessment of fresh-cut rocket leaves. The proposed classifier based on the 

Random Forest model was able to identify and select the most relevant colour traits for both 

the tasks (QL assessment and treatment identification) without human intervention. The 

accuracy achieved in evaluating QLs of rocket leaves during storage was high (about 95 %), 

while the performance in discriminating the cultivation approach was lower and not sufficient 

for practical applications (about 65 -70 %). Indeed, the different cultivation approaches did not 

significantly affect the visual characteristics of the product and the destructive measures: this 

task needs further investigations. 

Another research activity was carried out to develop and validate the capability of the non-

destructive and contactless CVS to assess the visual quality changes during the cold storage of 

fresh-cut rocket leaves coming from soil and soilless growing systems (WP1) and to estimate 

some internal quality attributes (chlorophyll and ammonia content) also through the packaging 

material. Evaluating quality through the package is critical to identify the regions of the bag 

where the product is visible without shadows or highlights created by illumination: this is 

mandatory to measure colour properties in a reliable and meaningful way. At harvest, rocket 

leaves, cultivated on soil or soilless system (WP1), were packed in open PP bags and stored at 

10 °C for about 18 d. During storage, all samples were observed to attribute the QL according 
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to the rating scale reported in Figure 3 and the postharvest quality traits were evaluated by 

destructive conventional methods (colour parameters, chlorophyll content, ammonia content 

(Fadda et al., 2016) and electrolyte leakage). Then, images of unpackaged and packaged 

samples were acquired by the CVS. During image acquisition, no constraints were imposed on 

the position of the product in the bag, on the position of the bag in the scene or on the highlights 

created by the illumination on the surface of the bag: this was necessary to demonstrate the 

applicability of this technology into a real industrial line. Colour correction was performed by 

the linear model, identified as the best trade-off between effectiveness and computational 

complexity in the previous research activity. Packed and unpacked products were processed 

using exactly the same phases apart from the artefacts’ elimination step applied to the images 

of packaged products to select the regions where the colour information was meaningful, 

without interference from light artefacts and reflections. At last, the Random Forest model was 

used to solve both the classification problem (assessment of the QLs) and the regression 

problems (estimation of quality marker parameters such as chlorophyll and ammonia contents). 

The same architecture was used for all the tasks, by simply changing the training data. The 

histogram of the image, evaluated in the a-b plane of the CIELab colour space, was used as the 

set of features. The Random Forest model was able to automatically select the subset of values 

more suitable for solving each task. 

All the postharvest quality parameters detected by conventional analysis during the storage of 

fresh-cut rocket leaves were significant in the QL assessment and, among them, chlorophyll 

and ammonia contents proved to be useful marker parameters for the objective separation of 

each QL considered, both on soil and soilless cultivation approach. 

The CVS was able to operate without relevant differences on unpackaged and packaged 

products. The test was done joining all the samples, regardless of the cultivation approach: the 

results showed a not significant performance loss on packaged leaves (Pearson’s linear 

correlation coefficient of 0.84 for chlorophyll and 0.91 for ammonia) with respect to 

unpackaged ones (0.86 for chlorophyll and 0.92 for ammonia) (Figure 4). 
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Figure 4. Values estimated by the CVS (abscissa) vs. values measured in the laboratory 

(ordinate) for ammonia content on unpackaged (A) and packaged (B) rocket leaves and for total 

chlorophyll content on unpackaged (C) and packaged (D) samples (Palumbo et al., 2022). 

 

Finally, three Partial Least Square (PLS) models were performed to predict the QL using as 

predictors chlorophyll and ammonia contents obtained by destructive methods (Model I), by 

CVS on packaged products (Model II) and by CVS on unpackaged ones (Model III) (Table 1). 

The results showed high performances in terms of R2 and the model obtained by predictors 

estimated non-destructively by the CVS (Model II and III) provided better performances in the 

QL prediction than one obtained by destructive analysis, in both calibration and validation. 

 

  

  
 



21 
 

Table 1. Root Mean Square Error (RMSE) and the coefficient of determination (R2) in 

calibration (c) or validation (v) of the Partial Least Square (PLS) Models predicting visual 

quality of rocket leaves (Palumbo et al., 2022) 

PLS Models Predictors    RMSEc R2c  RMSEv R2v 

I Total chlorophyll and ammonia 
obtained by destructive methods   

0.45 0.9 0.86 0.70 

II 
Total chlorophyll and ammonia 
obtained by CVS on packaged 
rocket leaves   

0.46 0.89 0.75 0.77 

III 
Total chlorophyll and ammonia 
obtained by CVS on unpackaged 
rocket leaves   

0.46 0.89 0.7 0.8 

 

 

2.3. WP3: marketing strategies to support the added value of the products LIP and ND 

certified 

Implementing a marketing strategy, based on often intangible characteristics to consumers such 

as LIP and ND, it is not an easy task. Low impact practices do not have a highly distinctive 

impact on product characteristics nor determine unique taste, flavour, or look elements to 

consumers. However, certifications could be used to signal quality through the application of 

standards of quality and practices. Whether certifications could be effective in terms of 

marketing in the case of products LIP and ND, or for signalling quality in general is matter of 

discussion. Vecchio and Annunziata (2011), for instance, in their work question the possibility 

of effective understanding of certification by consumers. At this purpose the research team of 

WP3 decided to implement a different strategy and test it on the market. Visual storytelling 

certifying LIP and ND has been then hypothesized to better communicate the importance and 

the impact of those practices on food. 

The research activity, therefore, has been organized in three steps: identifying the 

communication strategy and set-up; testing through focus-groups the opportunity conditions for 

farms and companies; testing though a survey and an econometric analysis the consumers’ 

preference and their willingness to pay for products with LIP and ND. Therefore, a draft 

platform has been developed containing basic communication rules in order to highlight 

sustainability attributes of products through storytelling. Workflow has been established and a 

simulation has been conducted (Figure 5).  



22 
 

 
Figure 5. Workflow for products LIP and ND certified platform 

 

Focus group with producers has allowed verifying the general appreciation for the marketing 

approach and allowed a better set-up of the strategy. Finally, a picture-based simulation has 

been produced for the final test and the survey to consumers (Figure 6). 

 

 
Figure 6. Picture based simulation of visual storytelling certification for LIP producs and ND. 

 

As last activity, a questionnaire based survey has been prepared and administered to 467 

consumers and an econometric model to estimate willingness to pay and consumers orientation 

has been set up and then estimated. The whole set of activties within the research project 

allowed understanding how important is a correct communication of products and how different 

could be the perception of a product based on how you certify or narrate the production method. 

Result allow understanding that older conumsers are more aware of sustainability and are more 

willing to pay for LIP products. Psicological profile such as traditionalism and benevolence 

identify the consumer that, more than other profiles, would be willing to pay a higher price. 
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3. CONCLUSIONS 

Sensor-based fertigation management applied to rocket leaves and tomato confirmed to be a 

feasible approach to improve sustainability of soilless cultivation, also in cases where the 

complete and rapid switch to closed cycle recirculation systems is still impaired by economic, 

social, and environmental factors such as in Mediterranean area.  

The results of this project related to non-destructive discrimination of tomatoes and rocket 

leaves, according to cultural practices using different levels of inputs (water and fertilizers), 

indicated the high potentiality of HSI and FT-NIR techniques for the authentication of 

sustainable growing methods. Moreover, project activities’ proved CVS as an effective tool for 

evaluating the product quality also through the bag, even working only on the regions of the 

image that provide meaningful colour information about the product’s surface. The integration 

of machine learning modules inside the CVS confirmed to be useful to simplify the design and 

tuning, done mostly automatically without human intervention. Moreover, the flexibility 

introduced by machine learning makes the resulting architecture more flexible in adapting to 

different products and applications.  

As regards the marketing approach, consumers resulted willing to pay a higher price for LIP 

products certified through a visual storytelling platform. In the next future, there could be a 

good chance that sustainability-oriented practices coupled with a visual storytelling 

certification style could gain shares on food markets. 
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ABSTRACT 

Quality assessment of fresh fruit and vegetables is an arduous and complex process which needs 

very intensive labour of correlation among sensory and subjective determinations and 

conventional destructive methods. Consumers’ requests for fruit and vegetables with high 

quality in terms of appearance, nutritional value and safety have prompted industries and 

researchers to develop rapid, precise and low-cost techniques for food analysis. Among 

innovative techniques, image analysis by computer vision systems based on conventional 

imagin (CVS-CI) have proved to be effective and suitable for application at industrial level. 

This review summarizes developments on CVS-CI technology for the evaluation, along the 

entire distribution chain, of external defects, colour changes and internal chemical-physical 

attributes of fresh fruit and vegetables, with or without the presence of plastic packaging. The 

most interesting researches carried out during the last ten years on CVS-CI employments are 

reported and discussed. The description of each application points out the performances 

obtained, the hardware components, the image processing techniques used to extract 

information from the images acquired, the classification/regression models used to grade 

products and to estimate their quality traits. Finally, future perspectives and possible new 

applications of CVS-CI in postharvest field are proposed. 

 

Keywords: contactless technology, fresh produce, image analysis, packaging material, quality 

assessment.  
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1. INTRODUCTION 

The quality of fruit and vegetables is related to their degree of maturation, whose combination 

of physical and chemical attributes determine the acceptability by consumers (Brasil and 

Siddiqui, 2018). It is possible to distinguish five different attributes that define the quality of 

fruit and vegetables: visual quality or appearance (i.e. size, shape, colour, and defects), texture, 

flavour (taste and aroma), nutritional values, and safety. While appearance, texture and flavour 

are directly evaluated by consumers through the use of senses, nutritional values and safety 

cannot be perceived and determined at the time of purchase. According to Kader and Rolle 

(2004), the quality of fresh fruit and vegetables is initially evaluated by consumers only on the 

base of external aspects. The consumers’ satisfaction of this first experience is then determined 

by internal quality parameters (such as acidity, sweetness, sugars to acid ratio and texture) 

related to taste and aroma at the eating moment. So, fresh and fresh-cut fruit and vegetables 

should have an attractive appearance to induce the first purchase and acceptable flavour and 

texture, as well as appropriate nutritional values, to convince consumers to continue their 

purchases. 

Generally, the quality of fruit and vegetables is assessed by sensory and subjective 

determination, using scoring rating scales, whose single quality levels are characterized by a 

brief description and exemplifying photographs of the product at hand (Amodio et al., 2007). 

Moreover, conventional destructive methods are used to measure the chemical and physical 

attributes of fruit and vegetables to support the sensory evaluation: taste (i.e. crunchiness, 

bitterness and sweetness) and sugar and acid content in chicory and raspberry (François et al., 

2008; Stavang et al., 2015; Aaby et al., 2019); appearance and colour traits, flavour and soluble 

solids content, hedonic liking and volatiles in mango (Salinas-Hernandez et al., 2015; Sung et 

al., 2019); sensory (i.e. juiciness, mealiness, etc.) and instrumental texture attributes in melon 

genotypes (Bianchi et al., 2016; Farcuh et al., 2020). 

Although still widely used, analytical and destructive techniques are time-consuming and 

expensive, adversely impact the environment, may require sophisticated equipment and need 

careful sample preparation. Finally, they are unsuitable for application in industrial lines, where 

rapid, reliable, non-destructive, less expensive and less polluting methods for grading fruit and 

vegetables, assessing their quality and detecting defects are required (Narendra and 

Amithkumar, 2019). 

Recently researchers have focused on the use of contactless, non-destructive, rapid and 

accurate, as well as non-polluting, techniques for fruit and vegetables analysis to objectively 

assess sensory and compositional quality. They can be considered complementary along the 
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supply chain enabling time and cost saving, continuous and reliable monitoring and reduction 

of impact on environment (Chaudhry et al., 2020). 

Computer vision systems (CVS) represent an innovative and contactless non-destructive 

technology suitable for in-line grading and quality assessment of fruit and vegetables (Fan et 

al., 2020). 

The most common CVS for the quality inspection of fresh produce is a traditional system based 

on RGB colour cameras that reproduce the vision of human eyes using three monochromatic 

filters centred on red (R), green (G) and blue (B) wavelengths at 700, 546 and 435 nm, 

respectively (Lorente et al., 2012). CVS based on conventional imaging (CVS-CI) mimic 

human vision, acquiring and analysing images of the visible surface of food to assess its quality 

(Bhargava and Bansal, 2021). The CVS-CI can measure and detect many external quality traits 

(i.e. colour, shape, size and texture) and defects. CVS-CI automatically extract from images the 

most discriminative features related to quality and grade product using properly trained 

classification or regression models. 

Recently, with the advances in hardware, software and high-resolution cameras, multispectral 

and hyperspectral CVS have been developed as efficient technologies for quality assessment of 

agricultural products (Baranowski et al., 2012; Chen et al., 2017; Li et al., 2018; Sendin et al., 

2018). The spectral imaging data acquired by the hyperspectral and multispectral CVS provide 

information about internal and external traits that the CVS-CI can difficultly evaluate and 

analyse (Zhang et al., 2014). Such techniques provide consistent and accurate quality 

assessment but acquiring multispectral and hyperspectral images produces a large amount of 

data, requires costly and complex devices for acquisition and processing. Their application 

often requires specific competences by users and poses relevant constraints on the acquisition 

environment. These characteristics make them unfeasible for cost effective and pervasive 

application along the supply-chain to provide a continuous monitoring of the parameters of 

interest from harvest to final customers. The use of CVS-CI, where feasible, can provide greater 

flexibility to match cost (they exploit cameras that can be already available on the market at 

relatively low cost), time constraints and environment requirements at different points of the 

supply chain up to the final user. 

A careful design is required to integrate mechanical and optical components for producing 

digital images that contain the relevant information for the task at hand (Patel et al., 2012). 

CVS-CI typically uses high resolution charged coupled device (CCD) or complementary metal-

oxide semiconductor (CMOS) digital cameras based on RGB colour for image acquisition. 

They involve the choice of a proper illumination system, carefully selecting spectral distribution 
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and spatial geometry of the light sources. The position as long as the choice between front or 

back lighting, the type of lamps (incandescent, fluorescent, lasers, led or infrared lamps), colour 

quality and uniform distribution of the illumination are all important concerns when designing 

an efficient and accurate vision system (Zhang et al., 2014). Finally, a personal computer 

normally collects data acquired by the sensors, performs some basic processing (colour 

correction, segmentation, feature extraction), accomplishes features classification or parameters 

estimation by constructing suitable models using statistical methods or machine learning 

techniques (i.e. decision trees, regression trees, ensemble learning, random forest or 

convolutional neural network) (Figure 1). 

 

 
Figure 1. General workflow of an image processing performed by the CVS-CI. 

 

In the last decades, many researchers have studied CVS-CI technology to automatically assess 

several and relevant attributes of fruit and vegetables in quality control. Classifying and sorting 

are key factors in quality assessment of fruit and vegetables during postharvest handling. 

Computer vision is highly effective in grading foods free from defects and with good 

appearance in terms of colour, texture, shape and weight. Moreover, recent research works have 

demonstrated the possibility to predict also internal quality parameters of products through 

elaborated images acquired by a conventional vision system. During postharvest storage, 

ripening or senescence processes lead to an alteration of inner quality of fruit and vegetables 

causing changes in the visual appearance (colour or texture) (Xia et al., 2016). The existence of 

correlations between colour and physical or chemical attributes (i.e. vitamins, antioxidants, total 

phenols, titratable acidity, soluble solids content or enzymatic activity) allows the estimation of 

internal fruit properties starting from CVS-CI images. 

In addition, a CVS-CI may be very useful also on high-convenience fresh-cut products, where 

a high level of quality in terms of appearance, sensorial, and nutritional characteristics is 

required and where the higher convenience often corresponds to a more rapid perishability 
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during the shelf-life (Watada et al., 1996; Barrett et al., 2010; Francis et al., 2012). For these 

products, another important aspect to consider is the increasing consumers’ need to ascertain 

the real quality level inside the packaging. The use of CVS-CI can be helpful in monitoring 

fresh-cut fruit quality along the whole supply chain. A relevant challenge to face in ensuring a 

correct quality assessment through the packaging material by CVS-CI is the separation of 

opaque and affected regions of bags from the transparent area where the product is visible with 

acceptable fidelity of visual appearance. This separation step requires robust and powerful 

segmentation approaches (Cavallo et al., 2018). At the moment, research results have been 

reported about the application of non-destructive technologies working at higher wavelengths 

than the visible spectrum to quality assessment of fresh-cut products through packaging 

material (Lara et al., 2013; Giovenzana et al., 2014). Few researchers have reported interesting 

results about the use of CVS-CI through packaging. A powerful improvement of applications 

of CVS-CIs comes from the integration of machine learning techniques in several steps of 

processing. These methodologies can increase the flexibility of systems while simplifying their 

tuning and deployment. Moreover, in several fields machine learning paradigms (such as deep-

learning architectures) are providing unparalleled performances widening the applicability of 

CVS-CI to solving relevant problems in food evaluation. 

To the best of our knowledge, a detailed summarization of recent developments and 

applications of CVS-CI to evaluate external and internal quality of fruit and vegetables is not 

available. The present comprehensive review aims to report the most interesting researches 

carried out on computer vision technology based on conventional imaging (CVS-CI) for non-

invasive analysis of fresh produce. In detail, 37 articles published in the last decade on 

important international journals and on proceedings of international congresses were reviewed 

and discussed. The literature research was focussed on image analysis by conventional CVS for 

the assessment of quality traits of fresh and packaged fruit and vegetables at harvest or during 

the postharvest storage. Research works from 2011 to date were considered, reporting the 

methodology adopted and their most important findings on quality prediction in terms of 

accuracy. Finally, a brief discussion on challenges and future research needs is also mentioned. 

Each cited work is supported by Table 1, where objectives, classification methods and the main 

results are reported, and by Table 2, in which the main software and technical aspects of CVS-

CI adopted for the image analysis of fruit and vegetables are described. Image analysis and 

classification can be performed by several kind of software available either as open source or 

upon paying a fee. In Table 2, the literature is listed according to the software used for the 

elaboration and classification steps of image analysis. Matlab is the most used one probably 
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because it offers to customers specific image processing applications of easy and rapid insight. 

Finally, Table S1 shows additional information about methodology, results evaluation and 

validation tests developed by the authors cited in the review. 

 

2. CVS-CI TO ESTIMATE THE VISUAL APPEARANCE OF FRESH AND 

PACKAGED FRUIT AND VEGETABLES ON THE BASIS OF EXTERNAL 

DEFECT AND COLOUR CHANGE 

Recent literature reports several works carried out on the visual quality assessment of fruit and 

vegetables by the use of CVS-CI. Automatic external inspection of fresh produce by the use of 

innovative CVSs, on the basis of the morphological traits, is widely used in industrial lines for 

grading and classification (Chopde et al., 2017). In food sorting systems, it has been shown that 

CVS-CI can judge marketability and edibility of foods on the basis of shape, size and the 

presence of external defects on their surface, both at harvest and postharvest (Bagri and Johari, 

2015; Sa et al., 2016; Jana et al., 2017). Automated grading speeds up the processing time, 

reducing errors occurring during manual classification. On the contrary, grading fruit and 

vegetables through other appearance features, such as bruises, colour changes, rottenness or 

other defects (i.e. stem-end and calyx confusion with other types of defects) is not yet efficient 

and is not still applied on automatic work lines in industry (Leiva-Valenzuela and Aguilera, 

2013). 

The colour of both raw and processed fruits is one of the most important and the first perceived 

quality hint that determines consumers’ acceptance. In food technology, colour is traditionally 

expressed in the CIELab colour space that is device independent and in which distances 

between colours are closer to the evaluations made by human vision. Measurements are usually 

performed using colorimeters. Although these instruments are non-destructive, easy to use and 

to calibrate, they need to touch the samples and they normally measure only very small areas 

(limited to a few mm2), being sensitive to the choice of sampling points. For these reasons their 

use at industrial level and for in-line monitoring is limited (Go˜ni and Salvadori, 2017). 

In the last decades, digital image analysis has been largely used for the assessment of food 

colour. An important difference between a CVS-CI and a traditional colorimeter is the degree 

of dependency on the environment condition: colorimeters, touching the product, can reduce to 

a minimum the influence of the light in the environment. CVS-CIs, that operate at variable 

distances from the observed scenes, need a more careful calibration in order to account for the 

influence of the light present in the environment on the measurement of colours. Another 

relevant difference is the amount of colour information that the two instruments can acquire 
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and analyse. Indeed, a CVS-CI extracts quantitative colour information with the resolution of 

the pixel of the digital image whose geometrical correspondent region can be controlled by 

properly choosing sensor resolution and optics. A CVS-CI can examine the whole visible 

surface of a product and provide distinct colour information for every single pixel. Therefore, 

it can provide global statistical colour information about the whole product but also 

semantically separate different regions of the product, describe the spatial distribution of colour 

and even analyse separately the different objects present in the scene (Wu and Sun, 2013). 

Many research applications have demonstrated the speed, accuracy, effectiveness and 

consistency of CVS-CI in the assessment of colour features and the evaluation of colour change 

in whole and fresh-cut fruit and vegetables. 

 

3. DETECTION OF EXTERNAL DEFECTS 

3.1. Fruit 

CVS-CI proved to be a useful tool for the improvement of blueberries quality during the 

postharvest storage (Leiva-Valenzuela and Aguilera, 2013). A pattern recognition methodology 

is developed to sort blueberry into four classes and two fruit orientations through the extraction 

and selection of visible features from images (Table 1). This methodology could also improve 

common commercial sorting systems whose classification is a grading only on the overall 

colour of berries, without recognizing specific defects on the fruit surface (Table S1). Among 

several classifiers applied, the best ones were the linear discriminant analysis (LDA) and the 

support vector machine (SVM), that successfully distinguish the blueberry’s orientation in 96.8 

% of the cases and were able to classify berries with good accuracy (Table 1). The proposed 

statistical pattern recognition methodology is a useful and promising single-step tool for in-line 

sorting and grading of blueberries with regard to different defects and orientations. 

An automated fruit grading system was designed to detect defects on the surface of mango and 

apples with the aim to achieve greater efficiency for manual classification (Table 1). In detail, 

for image acquisition, a rotating desk with a 12 V motor was used to acquire images of the 

entire surface of the products (Table 2). A graphical user interface (GUI) was specifically 

designed to allow operators to interact with the imaging system and to simplify and speed up 

the grading operation. The GUI showed the total number and the positions of defects (Table 

S1) (Ali and Thai, 2017). 

It was possible to effectively detect the defects on orange surface by the development of a new 

segmentation algorithm without additional lightness correction on images acquired by the CVS-

CI (Table 2) (Rong et al., 2017). For this purpose, about 1200 images of randomly selected 



38 
 

samples were analysed to classify several types of surface defects (Table 1). The main steps of 

the image processing consisted of background removal, image binarization with a sliding 

comparison window, image subtraction, hole filling and identification and removal of stem-end 

pixels (Table S1). The proposed method was able to correctly detect 97 % of defective oranges 

and had a performance rate of 91.9 % in the individual defect detection (Table 1). 

Quality control plays an important role in apple-based industries. Recently, an apple grading 

computer vision algorithm was introduced into an ordinary machine vision system (Table 2) 

(Moallem et al., 2017). This algorithm firstly detected stem-end, by a combination of 

morphological methods and a classifier based on mahalanobis distance, and calyx area, by 

applying K-means clustering on the Cb component in YCbCr colour space, separating them 

from defective regions; then defects segmentation was achieved using a multi-layer perceptron 

(MLP) neural network. Two types of classification were done analysing colour, textural and 

geometric features (Table 2): two apple categories were distinguished in the first ranking and 3 

categories in the second one (Table 1). A good accuracy was achieved for the calyx detection 

algorithm both when the stem-end was inside the image (94 %) and when it was outside (81 

%), even if it was lower than previous one. Moreover, SVM classifier was the best one for the 

recognition of 2 categories and 3 quality ranks (Table 1). 

A novel methodology, through the construction of three algorithms, was proposed for automatic 

defect identification and maturity detection of mango by the use of CVS-CI for practical 

application on industrial lines (Table S1) (Sahu and Potdar, 2017). As results, the fruits were 

graded into two classes (defected or not-defected and mature or immature) based on the quality 

ratio and maturity, respectively. If the value of the quality ratio was greater than the threshold 

value, the fruit was rotten, while if the value was less than the threshold value, the fruit was 

good. The proposed algorithm efficiently and accurately determined the quality of mango 

(Table 1) and a similar approach was used also for maturity detection (Table S1). 

Finally, as for CVS-CI applications on fruits, a new automatic approach was proposed for 

manual orange classification (Chen et al., 2018). Oranges were divided into 3 groups (Table 1) 

for each of the characteristic indexes: colour, size, defect and shape. Finally, the extracted 

characteristic parameters were studied and classified by using a back propagation (BP) neural 

network (Table 1). The grading accuracy was very high (Table 1) demonstrating how this 

classification system, based on image analysis, could realize a real-time automatic oranges 

grading detection reducing the labour loss and improving the efficiency compared to the 

traditional method. 
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3.2. Vegetables and fruit vegetables 

As regard the CVS-CI implementation on vegetables, an automatic, accurate and low-cost 

system was developed for quality inspection of tomatoes in the agroindustry using image 

processing techniques to classify the fruit vegetables in terms of ripeness and defects (Arakeri 

and Lakshmana, 2016). Several colour and textural features were extracted from the acquired 

images and the final classification was carried out through an artificial neural network (ANN) 

(Table 1). The system was able to separate defective from non-defective and ripe from unripe 

tomatoes with very good performance (Table 1). 

An eggplant grading system was developed to grade healthy or unhealthy samples using an 

automated CVS-CI, described in Table 2 (Akter and Rahman, 2017). The diseased areas of the 

eggplants were segmented by Otsu and binary transformation methods (Table 1 and S1). For 

the final classification, performed by K-nearest neighbour (KNN) method, features on the size, 

shape, colour and percentage of diseased areas were considered, distinguishing four categories 

of the product (Table 1). Because of little problems of shadow and lightning created during the 

image acquisition, the system was able to grade the eggplants with an accuracy of 88 % and 

further investigation are being studied to improve the final results. 

 

3.3. Fresh-cut fruit and vegetables 

Regarding the fresh-cut products, a CVS-CI was used to detect the freshness of fresh-cut 

spinaches stored in a plastic bag at 4 °C for 12 d (Huang et al., 2019). As they are extremely 

perishable, for both physiological and microbial degradation, spinaches were divided into 4 

grades related to tissue decay, from good to bad (Table 1). KNN, SVM, and back-propagation 

artificial neural network (BPNN) were applied and compared in predicting spinach freshness 

(Table S1). BPNN and KNN models achieved the same classification accuracy as reported in 

Table 1. Furthermore, the study also applied the E-nose technology to obtain odour information 

of the spinach samples and a multisensory data fusion approach based on machine vision and 

E-nose data to detect the freshness of spinach during storage. As result, the BPNN model based 

on this multisensory data fusion widely improved the accuracy of spinach freshness detection 

(93.75 %). 

 

4. EVALUATION OF COLOUR CHANGES 

4.1. Fruit 

Banana is a fruit widely addressed by image processing applications. Its peel colour, considered 

the main quality parameter for traders and consumers, shows relevant changes from harvest to 
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the end of the artificial ripening process. A typical over-ripe process, called senescent spotting, 

consists of brown spots on the external peel. The banana maturity stage is usually classified by 

a 7-point scale, from green to yellow and a CVS-CI was implemented to grade the 7 ripening 

stages of bananas using colour and image texture information, as well as the development of 

brown spots, extracted by image analysis (Table S1) (Mendoza and Aguilera, 2004). Results 

showed that a simple classification technique, based on L*, a* and b* parameters, brown area 

percentage and contrast, was able to identify the 7 ripening stages of bananas with an accuracy 

of 98 % (Table 1). 

A recent research showed that the correct physiological maturity stage of bananas at harvest is 

as important as the assessment of the ripening stage after harvest to ensure the quality during 

the storage in the ripening chambers (Prabha and Kumar, 2015). With this objective a CVS-CI, 

described in Table 2, was implemented to extract colour and size features of fresh banana fruit 

images to classify 3 main categories before harvest, finding that the mean colour intensity and 

area features were more significant than other features for the assessment of maturity stages 

(Table 1). The model developed in this study could be used to identify an automatic detection 

system for banana maturity assessment directly in the field. 

The accuracy of CVS-CI in comparison with the use of traditional colorimeters and sensory 

tests was demonstrated to evaluate banana peel browning during storage (Cho et al., 2016). The 

browning degree was estimated using the changes in RGB colour value and the changes in the 

CIE L* a* b* colour values (Table 2). The methodology demonstrated that the G and CIE L* 

a* b* values obtained by image analysis showed the highest correlation coefficient with a 

sensory test, while CIE L* a* b* values measured by the colorimeter also showed high 

correlation coefficients, but comparatively lower than those detected by image analysis (Table 

1). 

Additionally, CVS-CI was also used to study the physical properties of persimmon fruits 

(Mohammadi et al., 2015). The authors developed a sorting algorithm to categorize fruits into 

3 commercially maturity stages (Table 1) on the base of external colour able to eliminate the 

noise and binarize the acquired image, remove the black stains and finally extract 4 standard 

colour features (Table S1). The best results for grading persimmon fruits were reached by the 

quadratic discriminant analysis (QDA) classifier with an overall accuracy of 90.24 % (Table 

1). 

Maturity indices are also important for trade regulation and marketing strategy. In order to 

provide marketing flexibility and to guarantee the consumers’ acceptance of plums, an 

implementation of image processing techniques, based on JPEG images, was developed to 
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classify fruits into 4 categories related to different maturity stages (Kaur et al., 2018). The multi-

attribute decision making (MADM) theory was used for making decisions on the base of colour 

and textural features to achieve the highest accuracy (Table 1). As relevant result, colour was 

the dominant factor for grading plums according to maturity stage and the error percentage 

between the manual and the calculated values of length and width was lower than 2.4 %, as 

reported in Table 1. 

CVS-CI was recently applied to implement a method to classify pomegranate arils on the base 

of colour and size using image processing and artificial intelligence (Fashi et al., 2019). These 

features represent the most important elements to consider for grading pomegranate especially 

when consumed as a ready-to-eat product. In this study, the arils were graded by experts based 

on size and appearance into 3 categories and the ANN, adaptive neuro fuzzy inference system 

(ANFIS) and response surface methodology (RSM) classifiers were compared (Table 1 and 

S1). The ANN model showed a higher accuracy than that obtained for the ANFIS and RSM 

model (Table 1), representing a valid method to assess the quality of arils through image 

analysis. 

The image processing and machine learning techniques may be combined to reduce the human 

intervention for the configuration and setting of algorithms with the purpose of increasing their 

final performances. A simplified CVS-CI was applied to two white table grape cultivars 

(Victoria and Italia) during cold storage (at 5 and 10 ◦C) for the assessment of 5 different quality 

levels (QL) (Table 1) (Cavallo et al., 2019). In the proposed approach, a random forest classifier 

was trained and tested and a large set of potential features were fed into the system, leaving to 

the machine learning tool the task of selecting how many and which attributes were best suitable 

for the classification task (Table S1). The system was able to separate the highest QL5 and QL4 

from the others with high accuracies on cultivar Italia and Victoria, without significant 

differences between the compared storage temperatures (Table 1), providing to be suitable for 

a real context where often temperature regimes are not constant. Moreover, the obtained results 

demonstrated the possibility to develop classification models specific for single cultivars by the 

use of CVS-CI for continuous monitoring of the quality along the supply chain. 

 

4.2. Vegetables and fruit vegetables 

In a recent work, a low-cost tomato grading machine vision system based on RGB images and 

machine learning technology was introduced to develop an efficient and accurate calyx 

detection algorithm and classification approach to sort tomatoes into four different grading 

categories (Table 1) (Ireri et al., 2019). Colour features, grey level texture features (gray-level 
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co-occurrence matrices, GLCM) and shape features were analysed comparing three recognition 

models: support vector machine - radial basis function (SVM-RBF), ANN and random forest 

(Table 1). Calyx detection was performed with an accuracy of 95 % by histogram thresholding 

based on the mean red and green values of the regions of interest. Defected regions were 

detected by an SVM-RBF classifier based on L*a*b* colour features, achieving a very high 

overall accuracy. The SVM-RBF outperformed all the compared models with the highest 

accuracy in grading 4 tomato categories based on colour and texture features (Table 1). The 

proposed machine vision system can be used for quality inspection, marketing, and packaging 

of tomatoes and to detect defects along the supply chain of tomato management. 

Recently, an innovative CVS-CI was used to automatically select the relevant features for the 

classification of rocket leaves with reduced human intervention applying a random forest model 

(Palumbo et al., 2021). In detail, three colour correction models (white balance, linear 

correction, and polynomial correction) were evaluated and compared to identify the best 

solution for consistent colour measurement in terms of classification performance. The 

proposed CVS-CI was applied to fresh rocket leaves produced with two different cultural 

practices, with the aim to (i) objectively attribute 5 quality levels (QL) during storage at 10 ◦C 

and (ii) non-destructively discriminate the cultivation approach, using the colour information 

extracted from the digital images. The CVS-CI achieved an accuracy of about 95 % in QL 

attribution and of about 65–70 % in the discrimination of the cultivation approach (Table 1). 

Finally, image analysis could represent an effective way to measure colour changes on the 

external surface of products characterized by a not uniform colour. An image analysis technique 

was applied to study colour changes and the visual appearance of “Borlotto” beans, commonly 

used in ready-to-use soup ingredients (Amodio et al., 2011a). These beans are characterized by 

bright tiny red spots on the surface that, since may undergo severe discolouration depending on 

the atmosphere composition within the package, represent a good indicator of packaging 

performance. Given the small and irregular dimensions of these spots, the traditional 

measurement approach may not be helpful. A new algorithm was defined and was able to 

objectively measure both spots and background colours in order to study the degradation 

kinetics over time, reporting positive and negative regressions between the appearance scores 

evaluated sensorially and the a* and hue angle values, respectively (Table 1). 

 

4.3. Fresh-cut fruit and vegetables 

As for fresh-cut produce, an algorithm for rapid colour detection by image analysis based on 

RGB scale from the whole surface and the browned areas of fresh-cut artichokes was developed 
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in order to objectively compare the efficacy of anti-browning agents, in addition to a sensory 

evaluation through a subjective scale (from 5, excellent, to 1, inedible) (Amodio et al., 2011b). 

For all colour parameters (L*, a*, b*) obtained by CVS-CI a standard regression was performed 

to find possible correlations with sensory evaluation (Table S1). Significant correlations 

between all colour features were observed and L* measured on the whole surfaces showed the 

highest correlation coefficients, while L* and b* measured on the brown areas showed lower, 

but still significant, correlations (Table 1). On the other hand, the a* value was the least 

correlated parameter with an appearance score (showing negative correlation values). 

An implementation of the image analysis through CVS-CI was proposed to obtain a global 

evaluation of colour of fresh-cut nectarine from a standard RGB image acquired by a 3 CCD 

digital camera (Pace et al., 2011). A novelty was the development of a polynomial colour 

transformation to correct the images before any further processing (Table S1). The correlation 

between the visual appearance, scored by a 5–1 sensory scale, and the colour parameters b* and 

Chroma measured by the computer vision system was higher than that obtained using a 

colorimeter (Table 1), demonstrating how CVS-CI was more effective than the standard 

colorimetric method and how it can be suitable for real-time application in the processing 

industry. 

As additional task, CVS-CI can automatically set parameters which were normally identified 

by operators and completely automate some of the image processing steps, adapting itself to a 

specific analysed product (Pace et al., 2015). For this purpose, an innovative CVS-CI, 

characterized by an automatic procedure for the extraction of colour features, was developed to 

evaluate the quality levels (QLs) changes occurring on two varieties of fresh-cut radicchio 

(Correlli and Botticelli) during the cold storage in air or in modified atmosphere packaging 

(Pace et al., 2015). Brightness and white colour of fresh-cut radicchio are considered freshness 

indicators and, among these, colour changes after processing and during storage occur on the 

white parts that tend to become brown. Results of this research proved that the average of the 

component a* over the white pixels and the percentage of light white pixels over the whole 

visible surface allowed the best discrimination of the QL in three quality classes whose true 

value was verified on the base of sensory evaluation (Table 1). 

The CVS-CI, for image acquisition of fresh-cut apples, was used to non-destructively study 

browning through colour and textural features (Subhashree et al., 2017). Colour and textural 

features selected by images acquired through a CVS-CI (Table 2) showed good results to detect 

browning on apple slices by image analysis (Table 1), although further research is needed to 

better understand the colour kinetics in this fresh-cut fruit. 
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Moreover, colour changes occurring on fresh-cut potatoes during cold storage were examined 

by the use of CVS-CI to perform quantitative analysis at different stages of browning 

(Hongyang et al., 2021). Several methods were built to classify and predict the browning 

features of fresh-cut potatoes (Table S1). The SVM was able to predict the storage life of the 

product with an accuracy of 96 %, while the partial least squares regression (PLSR) model 

showed an accuracy of 86 %, 96 % and 99 % for L*, a* and b*, respectively (Table 1). 

Regarding the use of image analysis by CVS-CI for the quality assessment of fresh-cut products 

through plastic bags, an automatic CVS-CI applied to fresh-cut iceberg lettuce was recently 

developed (Cavallo et al., 2018). The main purpose was to achieve a careful selection of the 

bag area that was meaningful to have similar performances of the analysis for both packaged 

and unpackaged products. In detail, during cold storage, fresh-cut lettuce leaves were placed in 

polypropylene bags and sensory evaluated according to a 5-point rating scale. Images were then 

acquired by a CVS-CI for each fresh-cut lettuce sample both with and without the bag. All 

acquired images were subsequently segmented using a convolutional neural network (CNN), 

identifying and selecting only pixels belonging to the fresh-cut lettuce and unaffected by 

artifacts induced by the illumination. The classification was made by a 3-nearest neighbours 

classifier applied on a two-dimensional colour histogram on the a* and b* components in the 

CIE L*a*b* space (Table 2). The performance loss due to the presence of packaging was not 

relevant (Table 1) and the proposed model was also successfully tested on commercial bags of 

lamb’s lettuce. The CNN segmentation method was able to separate the opaque and affected 

regions from the product inside the commercial bag, showing its flexibility for the potential 

application along the supply chain. 

 

5. CVS-CI TO ESTIMATE CHEMICAL-PHYSICAL ATTRIBUTES IN FRESH AND 

PACKAGED FRUIT AND VEGETABLES 

Besides external attributes, CVSs-CI have already been used also for the assessment of inner 

quality, providing a valid contribution to the evaluation of fruit and vegetables. The retention 

of green colour is closely related to the total chlorophyll content, which degrades with the 

postharvest senescence, inducing a yellowing of the visible surface of the leaves. Besides total 

chlorophyll, ammonia content is also considered an indicator of freshness, when is detected in 

low amounts in the vegetal tissues (Tudela et al., 2013) and high concentrations of this 

component may cause tissue damage with visible effects on the overall quality of the product 

(darkening and browning of leaves) (Mastrandrea et al., 2016; Amodio et al., 2018). So, the 

possibility to predict these internal traits by CVS-CI on the base of colour changes occurring 
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during storage allows us to use them as markers and objective parameters for quality level 

assessment of leafy vegetables. 

The development of fruit colour during ripening is considered a maturity index and when its 

intensity increases, the ripening attributes also improve. Total soluble solids mainly contribute 

to the sweetness of fruits during ripening. It has been demonstrated that as the fruit colour 

development enhances, the total soluble solids content increases proportionately (Kaur et al., 

2018). On the contrary, the trend of the fruit acidity is reversed: it decreases with the 

enhancement of the colour of the fruit during ripening. 

During the storage period, enzymatic browning generally occurs on the cut surfaces of fresh-

cut products for the interaction of phenolic components with polyphenol oxidase and 

peroxidase, resulting in brown pigments. The notable effect of this physiological disorder on 

the visual appearance of fruits could allow to predict the enzymatic activity responsible for the 

browning by the use of image analysis (Cho et al., 2016). 

Antioxidant activity and total phenols content are two other chemical parameters closely related 

to the nutritional quality of fruit and vegetables. It has been demonstrated that total phenols 

may be the main contributor to the antioxidant activity of many fruits and vegetables (Li et al., 

2012). Among the phenolic components, flavonoids are potent antioxidants and include pink, 

red, blue and purple pigments known as anthocyanins. During the ripening of some fruit and 

vegetables, a colour change in the superficial tissue from green to purple is due to an alteration 

of pigment concentration (i.e. accumulation of anthocyanins). This colour modification 

suggests the use of colour analysis to detect the antioxidant activity and the total phenols 

content, of these fruit and vegetables (Lou et al., 2012). 

Many applications were reported in recent research works about the use of CVS-CI to estimate 

inner quality parameters of fruit and vegetables. 

 

6. EVALUATION OF CHEMICAL-PHYSICAL ATTRIBUTES 

6.1. Fruit 

An experimental study was carried out to establish quantitative models between features 

measured by the CVS-CI and soluble solids content and pH of Kyoto grapes (Xia et al., 2016). 

Several colour features were extracted from the mean and standard deviation of the pixel values 

considering each RGB channel (Table 2). The root mean square error of cross-validation 

(RMSECV) was calculated on the base of all the prediction residuals. Furthermore, the models 

were also evaluated by the root mean square error of calibration (RMSEC) (Table 1). As result, 

RMSEC values were 0.097 and 0.773 on average for the SSC and pH prediction, respectively, 
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while the RMSECV values were from 0.099 to 0.100 for pH and from 0.788 to 0.808 for the 

SSC prediction (Table 1). In a previously reported study, the CVS-CI applied on plums also 

showed a good correlation between fruit acidity (expressed as total soluble solids content) and 

the mean intensity of the green colour (R2 = 0.997) and the R/G ratio (R2 = 0.846) (Table 1) 

(Kaur et al., 2018). 

The possibility of predicting polyphenol oxidase (PPO) and peroxidase (POD) enzyme activity 

on the banana peel browning during storage using the image analysis by CVS-CI was recently 

demonstrated (Nadafzadeh et al., 2018). Several colour features were extracted from the images 

acquired, as detailed in Table 2, and two equations were obtained by the use of a genetic 

programming modelling in order to predict PPO and POD activities during the browning 

process of banana peel. As a result, there were no significant differences between predicted and 

measured PPO and POD enzymatic activity, demonstrating the high performance of the image 

analysis and of the derived models (Table 1). 

The integration of CVS-CI and colorimetric sensor array (CSA) may be used for a non-

destructive methodology for a rapid and accurate evaluation of mango quality, hardness and 

total soluble solids (TSS) (Huang et al., 2018). In detail, three grades were defined by experts 

by sensory evaluation while hardness and TSS of mango samples were detected by both 

conventional and non-destructive methods. All data were elaborated using PCA to reduce 

dimensionality, support vector classification (SVC) model for qualitative grading of fruits, and 

support vector regression (SVR) model to elaborate the relationship between the conventional 

and CVS-CI data (Table S1). The SVC model showed high accuracy for the training and 

prediction sets, respectively, to classify mango fruits into 3 grades, while the SVR allowed good 

prediction of hardness and TSS (Table 1). 

Additionally, the CVS-CI was proposed to estimate the maturity index of Kinnow mandarins 

which was strictly related to internal physiology and external peel colour changes (Hadimani 

and Mittal, 2019). Mandarins are usually graded from homogeneous deep green to typical deep 

orange/red colour by a numerical value called citrus colour index (CCI). In this work, a 

polynomial transformation based on camera characterization method was proposed to reduce 

the complexity of colour space transformation from RGB to L*a*b*. Physicochemical 

parameters of TSS and pH of mandarins were measured and correlated with the changes in peel 

colour detected by CVS-CI (Table S1). Measured physicochemical properties had a good 

correlation with the change in peel colour (Table 1) and a high R2 = 0.97 was achieved with 

partial least square regression (PLSR), showing confidence in the developed CVS-CI based 

method. 
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On oranges, an automatic CVS-CI able to assess the pH value from external visible-range peel 

images was presented (Sabzi et al., 2020). The proposed system was applied to 3 varieties of 

orange (Bam, Blood and Thomson): after image acquisition, 6 colour and texture discriminant 

features for each orange sample were selected among the extracted ones through the use of the 

hybrid artificial neural network - particle swarm optimization (ANN-PSO) and, finally, 

estimated orange pH regression values were provided by the multilayer perceptron (MLP) 

neural network architecture (Table 1). Results showed that the proposed method was able to 

predict the orange pH value from the external peel images with high accuracy (Table 1). The 

average time spent to estimate pH with the proposed non-destructive method was 0.42 s, which 

might be reasonable for in-line industrial applications. 

Discrimination of the ripening stage (half-red or red) of strawberries (cv. Candonga) harvested 

at three different times by CVS-CI image analysis was satisfying (Palumbo et al., 2022a). After 

several subsequent steps of segmentation (Table S1), the pixel count of red and green area of 

images was performed to calculate their relative percentage area. Among the chemical 

indicators of ripening, titratable acidity was well correlated to image analysis (Pearson 

correlation coefficient of about 1), providing a suitable indicator for fast and non-destructive 

evaluation of the ripening stage in strawberries (Table 1). 

A CVS-CI was developed also to evaluate the application of image processing technique for 

total soluble solids and pH prediction on strawberries (Basak et al., 2022). The channels of 

RGB, HSV and HSL colour spaces were used as input variables for developing MLR and 

support vector machine regression (SVM-R) models (Table 1). The SVM-R model, working on 

features in the HSV colour space, performed better than MLR model for total soluble solids and 

pH prediction (Table 1). 

Finally, a very interesting application of image analysis provides an innovative and smart 

technology to predict the shelf life and the quality of kiwifruit during cold storage by acquiring 

and calculating RGB value extracted from photos taken by a smartphone camera (Table 2) (Li 

et al., 2022). Results reported that the R to B ratio values (Central R/B) was negatively 

correlated with titratable acidity and vitamin C contents and firmness and positively correlated 

with soluble solids content, total soluble sugars and total plate counts (Table 1). The study 

demonstrated how the extracted the RGB values with mobile phones may provide a rapid and 

consistent evaluation of postharvest quality of kiwifruit, which can be more suitable for 

distributors and consumers to rapidly assess the quality and storage time of the product. 

 

6.2. Vegetables and fruit vegetables 
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The relationships between antioxidant activity (AA) and total phenols (TP) with colour features 

of a local landrace of pigmented carrot, characterised by different colours (from yellow to 

purple), were explored by a CVS-CI able to predict the AA or TP contents (Pace et al., 2013). 

The obtained regression models were able to successfully estimate the AA and the TP contents 

as their predicted levels showed a very good correlation with the measured AA and TP content 

when both internal and external parts of carrots were considered. When data included only the 

internal part (with a not uniform pigmentation) lower determination coefficients were obtained 

(i.e. R2 = 0.93 for AA and R2 = 0.86 for TP) (Table 1). 

Moreover, a new contactless and non-invasive approach was proposed for the prediction of total 

chlorophyll content of fresh rocket leaves through the use of CVS-CI in order to replace the 

common non-destructive SPAD-meter, a commercially available device that detects the 

chlorophyll content in local small areas by touching the leaf, providing the information related 

to few square millimetres of leaf surface (Cavallo et al., 2017). The classification was 

performed by random forest regression, a machine learning technique suitable to model the 

correlation between total chlorophyll content of fresh-cut rocket leaves and colour values in the 

RGB and L*a*b* colour spaces (Table 2) with a better performance compared to the SPAD-

meter (i.e. R2 = 0.90 vs. R2 = 0.79) (Table 1). 

 

6.3. Fresh-cut fruit and vegetables 

Recently, the combination of image processing by CVS-CI and the random forests model was 

proposed to solve the classification problem (visual quality level assessment) and the regression 

problem (prediction of senescence indicators as chlorophyll and ammonia content) on 

unpackaged and packaged rocket leaves (Table 2 and S1) (Palumbo et al., 2022b). The 

experiment showed a not significant performance loss on packaged products with respect to 

unpackaged ones (Table 1). The same CVS-CI, exploiting the machine learning components, 

was able to build effective models for both the problems just by changing the training data. 

Moreover, three partial least square models were built to predict the visual quality level of fresh-

cut rocket leaves using as predictors the total chlorophyll and the ammonia contents obtained 

by destructive methods, CVS-CI through packaging and CVS-CI without packaging. The 

predictors obtained by CVS on samples with and without package provide better performances 

compared to the ones estimated by destructive analysis (R2 in validation of 0.70, 0.77 and 0.80, 

respectively) (Table 1). 
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These latter results confirm the ability of the CVS-CI to evaluate the product also through the 

packaging, even working only on the regions of the image that provide meaningful colour 

information about the product’s surface. 

 

7. CONCLUSIONS AND FUTURE PERSPECTIVES 

High demands and attention of modern consumers on the quality of their purchases require 

detailed information about external and internal quality of fresh products. Research is working 

on rapid, precise and low-cost techniques for food analysis. Among the innovative techniques 

qualified for this task, image analysis by computer vision systems (CVS) have proved to be 

effective and suitable for application at industrial level. Different types of CVS have been 

developed for quality inspection of fruit and vegetables, based on conventional (visible), 

multispectral and hyperspectral imaging. The solutions based on conventional imaging (CVS-

CI) use RGB colour cameras that are sensible to the visible wavelengths of the electromagnetic 

spectrum. They are already widely used to measure colour, size, shape, and to detect some 

external defects. Moreover, their potentiality in determining internal characteristics related to 

the product nutritional quality have been proved, providing added value to any actor of the 

supply chain of fruit and vegetables. Unfortunately, as limitation, the only internal quality traits 

that this technology is able to evaluate are strictly related to external visible changes in terms 

of physical alteration or colour modification. 

This review has presented the most recent and significant developments in computer vision 

technology for the quality evaluation of fresh fruit and vegetables. A large part of the presented 

studies used CVS-CI to sort and grade fruit and vegetables on the basis of external defects and 

colour changes, improving the productivity at industrial level and providing products with high 

and homogeneous quality to consumers. 

Online sorting systems along the whole supply chain could allow the inspection of large 

quantities of fruit and vegetables in a short time and could provide a good prediction of the 

external and internal quality of the batch of inspected products. Moreover, the continuous and 

pervasive monitoring of quality products in addition of their physiological state during 

postharvest, can enable longer transportation times in order to reduce food losses along the 

entire supply chain. There are still many open challenges to realize quality assessment in a faster 

and accurate way in industrial line and during postharvest phase: stem-end calyx recognition, 

accounting for the distribution of lightness on curve surfaces, whole surface inspection, new 

and simpler statistical methodologies for algorithms construction, etc. Another big challenge is 

to weaken the requirements about the environment at acquisition time: current technologies are 
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suitable for industrial lines where the environment can be controlled, but their transfer to less 

structured environment (logistic, great distribution, customers, …) often still requires custom 

adaptation that can require significative work. Advanced solutions in which smarter algorithms 

can cope with the variations induced by environment conditions could simplify a wide spread 

of these technologies wherever quality control can be helpful. A promising contribution can 

come from the convergence between computer vision systems and machine learning 

methodologies, especially in the two most critical steps of computer vision systems: features 

extraction/ selection and classification/regression on the base of the identified features. Proper 

learning paradigms can empower and simplify both these tasks: learning from properly built 

sets of examples both the relevant features and the free parameters of models for classification 

and regression can reduce the effort for moving a CVS to different products or to the estimation 

of different parameters. Several researches have proved that a properly designed architecture of 

CVS-CI can be applied to different products and to the evaluation of different characteristics 

without changing its architecture but just by changing the samples used for the training phase. 

Even if machine learning techniques may have significant computational costs and often 

produce models that are not easily understandable by humans, this convergence promises a 

strong simplification in the design of applications of CVS-CI to different contexts. It can also 

decrease the level of expertise required to develop new applications, hopefully up to enabling 

final users to setup, configure and manage the systems. 

Results of the reported literature could have a significant impact on advanced applications of 

the present vision systems. Portable diagnostic systems can be used also on field, for a complete 

and non-destructive analysis of the physiological state of the crop and to identify the correct 

maturity stage at harvest and postharvest during storage and distribution. Integrated systems 

installable inside supermarkets and household refrigerators can help to reduce food losses and 

preserving the safety of consumers. Finally, tools at smartphone level could support consumers 

in the verification of fresh and packaged fruit and vegetables at purchase time. 
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OBJECTIVES 
The major objective of this doctoral thesis is to develop and validate predictive models based 

on the use of CVS to determine the quality level and the main quality parameters of fresh rocket 

leaves (Diplotaxis tenuifolia L.). The proposed vision system is able to automatically select, 

without the intervention of an operator, the relevant quality traits of the product for the 

classification using the Random Forest as a machine learning model. 

During first experiments, CVS was applied to fresh-cut rocket leaves, obtained by low-impact 

agricultural practices, to objectively assess its quality levels (QL) during the storage at 10 °C 

according to a 5 to 1 rating scale and to discriminate the fertilization levels and irrigation 

managements applied during the cultivation. 

Subsequently, five experiments were conducted to validate the CVS in estimating internal 

quality traits (chlorophyll and ammonia content) related to the shelf-life loss of rocket leaves, 

even through the package. The performances of the CVS data on packed and unpacked samples 

were compared to verify its applicability along the whole supply chain, regardless the presence 

of packaging. 

Finally, a clustering approach to identify relevant and representative colour traits and to 

construct simpler algorithms to predict marker parameters of the quality of rocket leaves was 

studied and developed. 
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Chapter 3 
 

SELF-CONFIGURING CVS TO DISCRIMINATE ROCKET LEAVES 

ACCORDING TO CULTIVATION PRACTICES AND TO 

CORRECTLY ATTRIBUTE VISUAL QUALITY LEVEL 
Michela Palumbo1,2, Bernardo Pace1, Maria Cefola1, Francesco Fabiano 

Montesano3, Francesco Serio3, Giancarlo Colelli2, Giovanni Attolico4 
 
1 Institute of Sciences of Food Production, CNR, c/o CS-DAT, Via Michele Protano, 71121 Foggia  
2 Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 

Via Napoli 25, 71122 Foggia  
3 Institute of Sciences of Food Production, CNR, Via G. Amendola, 122/O, 70126 Bari,  
4 Institute on Intelligent Industrial Systems and Technologies for Advanced Manufacturing, CNR, Via 

G. Amendola, 122/O, 70126 Bari  
 

ABSTRACT 

Computer Vision Systems (CVS) represent a contactless and non-destructive tool to evaluate 

and monitor the quality of fruits and vegetables. This research paper proposes an innovative 

CVS, using a Random Forest model to automatically select the relevant features for 

classification, thereby avoiding their choice through a cumbersome and error-prone work of 

human designers. Moreover, three color correction techniques were evaluated and compared, 

in terms of classification performance to identify the best solution to provide consistent color 

measurements. The proposed CVS was applied to fresh-cut rocket, produced under greenhouse 

soilless cultivation conditions differing for the irrigation management strategy and the 

fertilization level. The first aim of this study was to objectively estimate the quality levels (QL) 

occurring during storage. The second aim was to non-destructively, and in a contactless manner, 

identify the cultivation approach using the digital images of the obtained product. The proposed 

CVS achieved an accuracy of about 95 % in QL assessment and about 65–70 % in the 

discrimination of the cultivation approach. 

 

Keywords: Diplotaxis tenuifolia L.; automatic configuration of the CVS; color correction 

models; non-destructive contactless quality evaluation; fertilization and irrigation recognition 

fromdigital images.  
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1. INTRODUCTION 

Recently, there has been growing interest in contactless, non-destructive, rapid and accurate 

techniques for the evaluation of the quality of fruits and vegetables to replace the traditional 

sensory and conventional destructive methods. These methods are generally time-consuming, 

expensive, polluting and are not suitable for the application in an industrial line (Bhargava and 

Bansal, 2018; Narendra et al., 2019). Moreover, it has been observed that more than in other 

agri-food sectors, consumers are particularly attentive to the sustainability of the vegetable 

production process as an important issue influencing their perception of quality (Verain et al., 

2016). Furthermore, the increasing sensibility of modern consumers toward the environmental 

impact of production processes has been the impetus for many researchers to develop non-

destructive tools for the discrimination of production origin and agricultural practices, in order 

to better support the added value of the products. 

Nowadays, the emerging non-destructive methods in food technology, include near infrared 

spectroscopy (NIR), hyperspectral imaging (HSI) and computer vision system (CVS). In 

relation to vegetables, most of the research have applied hyperspectral or multispectral 

techniques (Amodio et al., 2017; Chaudhry et al., 2018; Chaudhry et al., 2020; Løkke et al., 

2013; Sánchez et al., 2013). The complexity of spectroscopy and hyperspectral imaging, both 

in terms of time and costs required for the acquisition and for the following processing, makes 

the application of these techniques more difficult in a pervasive way along the supply chain to 

enable a continuous monitoring of the parameters of interest. On the contrary, CVS is simpler 

and can hopefully exploit cameras that are already available along the path from harvest to final 

consumers. 

Increasing interest has been observed in the last few years in CVSs to automatically evaluate 

several properties of different products: They involve optical instrumentation, electromagnetic 

sensing, and digital image processing technologies (Patel et al., 2012). This technology mimics 

human visual evaluation of quality, acquiring images of the whole visible surface of products. 

These digital images are analyzed by extracting the most discriminative colors among the large 

set of possible visual characteristics (such as shape, color, and defects) and processing the data 

through suitable regression or classification models and algorithms (Bhargava and Bansal, 

2018). 

Normally, human designers exploit previous experiences and use a trial-and-error process to 

select the features used by the classification/regression methods or a vocabulary of features out 

of which algorithms can extract the most effective subset. In many recent researches, CVS have 

been used to evaluate the quality level (QL) of fresh and fresh-cut fruits, such as table grape 
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(Cavallo et al., 2019), fresh-cut nectarines (Pace et al., 2011) and apples (Arivu et al., 2012). 

As reported by many authors, CVS have also been used to evaluate the QL, chlorophyll and 

ammonium content of leafy vegetables. The authors in Pace et al. (2014) demonstrated that two 

color features detected by the CVS were able to evaluate the QL and the ammonium content 

(considered an indicator of senescence) in iceberg lettuce. Moreover, an innovative and 

automatic procedure, applied for the quality evaluation of fresh-cut radicchio allows a self-

configuration of the CVS by optimizing its performance and limiting the subjective human 

intervention, was reported by Pace et al. (2015). The authors in Cavallo et al. (2017) proposed 

a procedure to predict total chlorophyll content of rocket leaves using CVS and a machine 

learning model (Random Forest Regression) applied to manually selected features, obtaining 

higher performance (R2 = 0.90) than the SPAD-meter (R2 = 0.79). This work supports the 

relevance of the color information. The consistency of color information must be enforced using 

color correction methods based on the color reference provided by a color-chart inserted in the 

scene. 

In machine learning, random forests represent an ensemble (a set) of tree predictors that can be 

used for both classification and regression. They exploit the principle that a group of weak 

learners can globally provide better results than a strong learner (Breiman, 2001) and can reduce 

the risk of overfitting. Therefore, several instances of the selected models (trees) are trained, 

and the final predictions are made by combining the outputs of the models by voting 

(classification) or mean (regression). Specifically, random forest consists of an extension of 

bagging (bootstrap aggregating) ensemble (Breiman, 1996), whereby each model is trained on 

a different set of training examples randomly sampled with repetition from the available data. 

Moreover, this method builds each tree using a randomly selected subset of the available 

features. This makes possible to use a quite large vocabulary of features without seriously 

impact on the efficiency of the method and without requiring the critical and often subjective 

choice of the most relevant features. The final performance of the random forest depends on 

the strength of the individual classifiers and on their independence from each other (Breiman, 

2001). 

To the best of our knowledge, there is no general agreement regarding the best method to correct 

the colors and make them consistent among different acquisitions: This paper compares three 

different color correction methods, with different power and complexity. Their performance 

was measured, in terms of their effects on the classification accuracy. The simplest method 

(white balance) provided poor performance. The two other methods (linear correction and 

polynomial correction) provided similar performance with the second having a greater 
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computational complexity. The linear correction is proposed as the best trade-off between 

efficacy and efficiency. 

Moreover, the paper proposes the complete color histogram in the CIEL*a*b* color space as 

the vocabulary of features for the machine learning Random Forest model. This represents a 

relevant simplification of the CVS design that do not require the designer to select the features 

through a cumbersome and error-prone trial and error process. 

Finally, the paper proposes to apply the same innovative approach to CVS design to different 

tasks: to obtain a non-destructive contactless and objective evaluation of the QL of rocket leaves 

during storage and to identify different fertilization levels (sustainable or not) using two 

irrigation management approaches applied during the cultivation. To the best of our knowledge, 

there are no previous application of CVS to the latter task. It is relevant that the same framework 

can be used to solve these two different tasks without changes in the architecture of the CVS: 

The only difference is in the final Random Forest classification: this final phase uses the same 

model for the two tasks but learns proper parameters for each of them by providing different 

expected values as input data. 

 

2. MATERIALS AND METHODS 

2.1. Plant Material, Growing System, Water and Fertilizers Use Efficiency 

Rocket (Diplotaxis tenuifolia L. cv Dallas) was cultivated under soilless cultivation growing 

system in the autumn-winter (2019–2020) period in an unheated greenhouse at the experimental 

farm ‘La Noria’ of the Institute of Sciences of Food Production (CNR-ISPA), located in Mola 

di Bari (Puglia, South of Italy). A randomized blocks experimental design was adopted with 3 

replications; each block consisted of 4 sub-blocks, each one hosting one of the four cultivation 

treatments under comparison. Plastic pots, 20 per each sub-block, were filled with a 3:1 (v:v) 

peat (Brill 3 Special, Brill Substrate GmbH & Co., Georgsdorf, Germany): perlite (Agrilit 3, 

Perlite Italiana, Corsico, MI, Italy) mixture as a substrate. 

Two irrigation management strategies (Timer and Sensor) and two fertilization levels (FL_1 

and FL_2) were applied, following a factorial combination resulting in four agronomic 

treatments (Timer–FL_1; Timer–FL_2; Sensor–FL_1; Sensor–FL_2). In detail, in Timer the 

irrigation was empirically managed with a timer providing a fixed irrigation schedule, 

periodically adjusted on the basis of the amount of the drainage fraction (about 35 % according 

to the common practice). Whereas, in Sensor the irrigation was automatically applied through 

dielectric sensors (GS3, Decagon Devices, Pullman, WA, USA) based on real time 

measurement of the substrate volumetric water content variations, thus reflecting plant water 
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consumption and needs and resulting in a more sustainable use of irrigation water. A 0.35 m3 

m-3 volumetric water content irrigation set-point was adopted, corresponding to a moisture level 

slightly lower than substrate maximum water holding capacity. The sensor-controlled automatic 

irrigation system, composed by a CR1000 datalogger and a SDM16AC/DC relay driver 

(Campbell Scientific, Logan, UT, USA), turned on irrigation valves based on real-time sensor 

readings and maintained substrate volumetric water content close to the irrigation set-point. 

Tensiometers (one per experimental unit) were used to monitor the substrate matric potential, 

which showed a mean value of -25 hPa over the growing cycle with similar values in all the 

experimental units. In relation to fertilization, a mix of Osmocote Exact and Osmocote CalMag, 

(ICL Specialty Fertilizers, Treviso, Italy) was used in the substrate in a dose of 3.75 and 1 g L-

1, respectively, for FL_1, while a 40 % reduced dose was provided in FL_2. 

The doses of fertilizers (FL_1 and FL_2) were selected according to the standard 

recommendations provided in the label of the fertilizer products used in the experiment, 

reporting indications for “high dosage” or “low dosage”, respectively. Water Use Efficiency 

(WUE) was calculated at crop level as yield (expressed as grams of product marketable fresh 

weight) per liter of applied irrigation water (De Pascale et al., 2011). Similarly, Fertilizers Use 

Efficiency (FUE) was calculated as grams of product fresh weight per grams of applied 

fertilizer. 

Three harvests were carried out at 62 (H1), 104 (H2) and 132 (H3) days after sowing, 

respectively. 

After each harvest time the fresh-cut rocket leaves were immediately transported in refrigerate 

conditions to the Postharvest laboratory. 

 

2.2. Sensory Classification of Rocket Leaves Visual Quality Level during Storage 

Rocket leaves at each harvest time, separated for each treatment, were selected in order to avoid 

damaged samples and put in 50 × 30 cm open polyethylene bags (Orved, Musile di Piave (VE), 

Italy) containing each one about 350 g of product. In total, 12 bags (3 replicates × 4 agronomic 

treatments) were prepared after each harvest and stored at 10 °C (as commonly occur in the 

market) for 12 days for the H1 and for 18 days for the H2 and the H3. The length of storage 

was defined by the number of days required to reach the lowest QL, as reported in Cavallo et 

al. (2019). Therefore, at a proper time during storage, the amount (about 70 g) of sample to 

analyze was taken from each bag and subjected to a sensory evaluation by a group of 6 panelists 

using the following 5 to 1 QL scale (Figure 1): 5 = very good (very fresh, no signs of yellowing, 

bright, dark and uniform green, no defects), 4 = good (fresh, slight signs of yellowing, light 
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green, slight loss of texture), 3 = fair (slight wilting, moderate signs of yellowing, slight 

discoloration, minor defects, loss of texture), 2 = poor (wilting, evident yellowing, 

discoloration, severe loss of texture), 1 = very poor (unacceptable quality due to decay, severe 

wilting and yellowing, complete loss of texture and other evident defects). A score of 3 was 

considered to be the limit of marketability, while a score of 2 represented the limit of edibility. 

Images of rocket leaves at each QL were acquired and processed by CVS and the same samples 

were subjected to postharvest quality evaluation. 

 

 
Figure 1. The figure shows the quality level (QL) scale used for the sensory evaluation of rocket 

leaves. 

 

2.3. Computer Vision System Color Analysis 

For the H1 and the H2, images of the samples of products were taken at 0, 4, 7 and 12 days, 

corresponding to QL from 5 to 2. For the H3, images of the samples were taken at 0, 4, 7, 12 

and 18, corresponding to QLs from 5 to 1. At each acquisition, a sample of about 60 g of product 

was taken from each of the 12 bags prepared for that harvest (3 replications for each agronomic 

treatment). The 12 samples were analyzed by the CVS. Two images were acquired for each 

sample, by stacking randomly the leaves before each acquisition to maximize the surface seen 

by the CVS as reported in Figure 2. Therefore, 24 images were available at each time (2 images 

for each of the 3 replications for each of the four agronomic treatments). 

 

Very good
(very fresh, no
signs of yellowing,
bright, dark and
uniform green, no
defects, firm)

Fair
(slight wilting,
moderate signs of
yellowing, slight
discoloration, minor
defects, loss of
firmness)

Poor
(wilting, evident
yellowing,
discoloration, severe
loss of firmness)

Very poor
(unacceptable quality
due to decay, severe
wilting and yellowing,
complete loss of
firmness and other
evident defects)

Good
(fresh, slight signs of
yellowing, light green,
slight loss of
firmness)

QL5 QL4 QL3 QL2 QL1

LIMIT OF 
MARKETABILITY

LIMIT OF 
EDIBILITY
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Figure 2. The figure shows the flow chart of the processing done on the images. It is possible 

to appreciate the effects of each step on the input image and the results provided to the following 

steps. Data extracted from the patches of the color chart have been used to evaluate the 

parameters of the three different correction models compared. For each of them, a histogram 

was evaluated, such as the one shown for the linear model, which provides the best trade-off 

between efficacy and computational complexity. 

 

The final dataset was composed by 96 images for each of the H1 and H2, and by 120 images 

for the H3. The complete collection was composed by 312 images. We did not distinguish the 

images coming from different harvests. Therefore, the final image dataset was composed by 72 

images for each quality from 5 to 2 and 24 images for quality 1. In relation to the irrigation and 

fertilization management, the image dataset was composed by 78 images for each combination 

of IS and FL. These data are reported in the Table 1. 
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Table 1. Composition of the training set of images with respect to harvests (H1, H2 and H3), 

irrigation management strategies (Timer, Sensor) and doses of fertilizers (FL_1, FL_2). 

 
 

The following paragraphs will describe all the processing steps used by the CVS. All the 

software was developed using Matlab 2019a (Mathworks Inc., Natick, Massachusetts, United 

States). A flowchart of these processing steps, along with examples of their effects, is shown in 

Figure 2. 

 

2.3.1. Acquisition of Calibrated Color Images 

To acquire calibrated color images, color changes due to environment conditions (lighting, 

geometry, sensor instability) were evaluated and reduced to the minimum. Images were 

acquired using the set-up reported in Cavallo et al. (2017, 2018), Pace et al. (2015, 2017), using 

a 3CCD (with a dedicated Charged Coupled Device for each color channel) digital camera (JAI 

CV-M9GE) having a resolution of 1024 × 768 pixels. The imaged area is about 32 × 24 cm. A 

3CCD sensor has been used to avoid the artifacts introduced by the demosaicing methods 

required to record color information using a single CCD. The optical axis of the LinosMeVis 

12 mm lens system was perpendicular to the black background. Two DC power suppliers 

delivered current to eight halogen lamps, placed along two rows at the two sides of the imaged 

VQ5 VQ4 VQ3 VQ2 VQ1

H1
Timer-FL_1 3 6 6 6 6 24
Timer-FL_2 3 6 6 6 6 24
Sensor-FL_1 3 6 6 6 6 24
Sensor-FL_2 3 6 6 6 6 24
Total H1 12 24 24 24 24 96

H2
Timer-FL_1 3 6 6 6 6 24
Timer-FL_2 3 6 6 6 6 24
Sensor-FL_1 3 6 6 6 6 24
Sensor-FL_2 3 6 6 6 6 24
Total H2 12 24 24 24 24 96

H3
Timer-FL_1 3 6 6 6 6 6 30
Timer-FL_2 3 6 6 6 6 6 30
Sensor-FL_1 3 6 6 6 6 6 30
Sensor-FL_2 3 6 6 6 6 6 30
Total H3 12 24 24 24 24 24 120

Total 
H1+H2+H3

36 72 72 72 72 24 312

Number of images
ReplicationHarvest Total
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area and oriented at a 45 angle with respect to the optical axis. All the images were saved using 

the uncompressed TIFF format to avoid the artifacts introduced by compression algorithms. 

 

2.3.2. Color Chart Processing and Foreground Segmentation 

A small X-Rite color-chart with 24 patches of known colors was placed into the scene to 

measure color variations due to environmental conditions and sensor characteristics by 

comparing the expected numerical values released by the manufacturer with the ones acquired 

by the camera. The color-chart was automatically detected regardless of its position and 

orientation (Cavallo et al., 2017). Its white patch was used by the white-balance algorithm. All 

the colors in the color-chart were used to estimate the linear and polynomial transformations 

used for color correction. 

Image processing worked only on the part of each image belonging to the product at hand 

(foreground). The background was discarded. The CVS automatically separated foreground and 

background without any human intervention: Two thresholds were derived from the analysis of 

the whole image in the HSV color space, as described in Cavallo et al. (2017). The segmentation 

was identified the region belonging to the product as a whole and did not separate its different 

parts, and neither discarded any region of the leaves. It was designed to be conservative, that is 

to discard all the background pixels even at the cost of removing some marginal borders of the 

product. It removed also background area inside the stack of leaves as long as part of the leaves 

are too dark (for example for self-shadowing of the product) to provide meaningful color 

information. 

 

2.3.3. Color Correction 

Color correction needs to be effective (to provide consistent color measurements) and efficient 

(computationally simple enough to be suitable for real applications along the supply chain). 

Three different color correction models, with increasing level of complexity, were compared to 

compensate the change in color rendering due to acquisition environment. Let it be !𝑟!" 	𝑔!" 	𝑏!" &
# 

and !𝑟$" 	𝑔$" 	𝑏$" &
# 	 the expected and the measured RGB values respectively for the i-th patch i = 

1,…,24. Let it be [𝑟%! 	𝑔%! 	𝑏%!]# and [𝑟%$	𝑔%$	𝑏%$]# the expected and measured whites 

respectively. The simplest model was white balance (WB). Using the white patch in the color 

chart, a different correction coefficient was evaluated for each channel, as reported below (1): 
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𝑐& =
𝑟%!
𝑟%$

					𝑐' =
𝑔%!
𝑔%$

					𝑐( =
𝑏%!
𝑏%$

 (1) 

 

The three correction coefficients were used to correct the corresponding channel by multiplying 

the corresponding color component of each foreground pixel. A linear correction (LC) (a 3 × 3 

matrix) was evaluated to reduce the distance between the expected and the measured values on 

the color chart (2): 

 

+
𝑟)
𝑔)
𝑏)
, = 	-

𝑚** 𝑚*+ 𝑚*,
𝑚+* 𝑚++ 𝑚+,
𝑚,* 𝑚,+ 𝑚,,

/ +
𝑟$
𝑔$
𝑏$
, (2) 

 

where +
𝑟)
𝑔)
𝑏)
,	 are the colors corrected using the matrix whose elements were evaluated using a 

least-square approach applied on all the patches of the color-chart. The same matrix was 

therefore used to correct all the foreground pixels of the image. 

The last transformation was a polynomial correction (PC) (with degree 2) where all the linear 

and quadratic elements were considered (r, g, b, rg, rb, gb, r2, g2, b2). The coefficients of such 

transformation were again evaluated using a least-square approach (3). 

 

+
𝑟)
𝑔)
𝑏)
, = 	-

𝑚** 𝑚*+ 𝑚*,			
𝑚+* 𝑚++ 𝑚+,
𝑚,* 𝑚,+ 𝑚,,	

		
𝑚*- 𝑚*. 𝑚*/				
		𝑚+- 𝑚+. 𝑚+/			
	𝑚,- 𝑚,. 𝑚,/			

𝑚*1 𝑚*2 𝑚*3
𝑚+1 𝑚+2 𝑚+3
𝑚,1 𝑚,2 𝑚,3

/

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑟$
𝑔$
𝑏$
𝑟$𝑔$
𝑟$𝑏$
𝑔$𝑏$
𝑟$+

𝑔$+

𝑏$+ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3) 

 

All the foreground pixels were corrected using the same matrix. 

The transformations provided by the three methods were different for each image (they were 

evaluated from the color-chart appearance in each specific image) to adapt to the specific 

conditions of each acquisition. 

The time required by the three-color correction methods is different. Using the MATLAB code 

used in the experiments, without specific optimization or the use of special hardware, the 

application of the white balance to an image takes 70 ms. The linear correction requires 73 ms 
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while the polynomial correction requires 89 ms. In an industrial application of the system, the 

difference between linear and polynomial corrections can negatively affect the maximum speed 

achievable by the production. Therefore, it is important to evaluate if the performance gain 

justifies the loss of productivity. 

 

2.3.4. Features Extraction 

On the base of previous experiences, the device independent and perceptually uniform CIE 

L*a*b* color space was chosen to accomplish color analysis. Given that the L* component is 

fragile, being too sensible to not uniform illumination levels across the scene, the complete 

histogram in the a* b* plane of the foreground pixels was used as feature set for the 

classification. The color histogram represents the number of occurrences of each color, that is 

of each (a*, b*) pair, in all the foreground pixels. It represents the property of the whole 

observed product. The continuous (a*, b*) plane has been discretized using 30 bins for each 

axis (a* and b*): therefore, the complete histogram was a matrix with 900 elements. This 

representation is more detailed than statistical measures, such as mean, median or standard 

deviation: it describes completely the palette of colors present in the scene and their relative 

relevance. The hypotheses were that such information was able to represent the appearance of 

new colors due to senescence as far as the effects of the cultivation management on product 

appearance, if any. To achieve the goal of avoiding any human intervention in the identification 

of proper color features, the complete matrix containing all the values of the bins of this 

histogram was reshaped as a vector and passed to the classification phase. The use of a quite 

large vector (900 elements in our case) was feasible as the ensemble method used for 

classification can sample for each tree a subset of features from even a quite large set. This 

approach automatically identifies their best use, while keeping reasonable the computational 

complexity. Even if it is not possible to identify few specific colors suitable to discriminate 

product quality or cultivation management, the ensemble of trees exploits a quite large subset 

of the provided features, that is (a*, b*) pairs, which globally achieve the desired classification.  

 

2.3.5. Classification 

Random Forest models were trained to assign the QL to the product and to identify the treatment 

used. The values of the cells of the histogram in the a* b* plane (of the CIEL*a*b* color space) 

of each image provided the vocabulary of features used for training the models. The approach 

for training each tree involved randomly sampling the available training data (to select the 

training examples) and then randomly selecting a set of features (in this case randomly selecting 
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which values of the histogram to use to build the tree at hand). Each tree of the forest allows a 

maximum of 10 branches. Due to the limited number of samples, a 10-fold cross validation 

approach was used. The available data were divided into 10 groups (folds), each having 

approximately the same number of elements. The partition was made with stratification. 

Therefore, each group approximated the same distribution of classes of the whole training set. 

According to the 10-folds validation strategy, the training was done 10 times. At each round, a 

different fold was separated for testing the results while the other nine folds were used for 

training. The average of the results obtained in the ten rounds estimated the performance of the 

method. Accuracy is used as a quick indication of the performance of classification in the 

results’ section but, to provide a complete description of the obtained results, the confusion 

matrices are provided. In fact, they provide all the information needed to describe the behavior 

of the method. To increase the robustness of performance measures, the 10-fold cross-validation 

process was repeated 20 times. The confusion matrices and accuracy values represent the 

average of the values over these 20 different repetitions. At each repetition, a new stratified 

partition of training data into 10 folds was randomly generated. That increases the significance 

of the obtained results by making less relevant the effects of chance in sampling training data 

and features. In spite of the significative number of trees in the resulting forest (200 trees were 

allowed for each forest) the increase in accuracy provided by their combination does not require 

high computational costs. The code, written in Matlab without any specific optimization, 

requires about 25 s for building the Random Forest model and about 0.13 s to apply the model 

to a new sample and to classify it. 

 

2.4. Postharvest Quality Parameters 

2.4.1. Color Analysis by Colorimeter 

Color parameters (L*, a* and b*) were measured, for each replicate, on 3 random points on the 

surface of 10 rocket leaves using a colorimeter (CR400, Konica Minolta, Osaka, Japan) in the 

reflectance mode and in the CIEL* a* b* color scale. Colorimeter was calibrated with a standard 

reference having values of L*, a* and b* corresponding to 97.44, 0.10 and 2.04, respectively. 

To measure color variations on each sensory evaluation, ΔE* was calculated according to the 

following equation (4) (Martínez-Sánchez et al., 2011): 

 

ΔE* = 6(𝐿4∗ − 𝐿∗)+ + (𝑎4∗ − 𝑎∗)+ + (𝑏4∗ − 𝑏∗)+ (4) 
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where L*0, a*0 and b*0 represents color parameters detected on fresh samples. Yellowness index 

(YI) was calculated from primary L*, a* and b* readings, while the degreening index (DI) was 

obtained by the Hunter L a b values (obtained converting the CIEL* a* b* readings), according 

to the following equations (5,6) (Pathare et al., 2013; Jiménez-Cuesta et al., 1981): 

 

YI = (*-+.2/×(∗)
:∗

 

 
(5) 

DI = (*444×;)
(:×()

 (6) 

 

2.4.2. Respiration Rate, Electrolyte Leakage and Total Chlorophyll Content 

The respiration rate of rocket leaves was determined at 10 °C initially and at each sampling 

time using a closed system as reported by (Kader, 2002). In particular, about 50 g of product 

for each replicate were put into 3.6 L sealed plastic jar (one jar for each replicate) where CO2 

was allowed to accumulate up to 0.1 % as the concentration of the CO2 standard. The time taken 

to reach this value was detected by taking CO2 measurements at regular time intervals. The CO2 

analysis was conducted by taking 1 mL of gas sample from the head space of the plastic jars 

through a rubber septum and injecting it into a gas chromatograph (p200 micro GC-Agilent, 

Santa Clara, CA, USA) equipped with dual columns and a thermal conductivity detector. 

Carbon dioxide (CO2) was analyzed with a retention time of 16 s and a total run time of 120 s 

on a 10-m porous polymer (PPU) column (Agilent, Santa Clara, CA, USA) at a constant 

temperature of 70 °C. The respiration rate was expressed as µmol CO2 kg−1 s−1. 

To determine electrolyte leakage, the method reported by Kim et al. (2005) was used with slight 

modifications. About 2.5 g of disks obtained using a cork borer (ø 8 mm) were placed in plastic 

tubes and immersed in 25 mL of distilled water. After 30 min of storage at 10 °C, the 

conductivity of the solution was measured using a conductivity meter (Cond. 51+-XS 

Instruments, Carpi, Italy). Then, the tubes with samples and solution were frozen at -20 °C and, 

after 48 h, the conductivity was detected after thawing and considered as total conductivity. 

Electrolyte leakage was calculated as the percentage ratio of initial over total conductivity. 

The total chlorophyll content was detected according to the spectrophotometric method reported 

by Cefola and Pace (2015). In detail, 5 g of chopped rocket leaves was extracted in 

acetone/water (80:20 v/v) with a homogenizer (T-25 digital ULTRA-TURRAX®-IKA, 

Staufen, Germany) and then centrifuged at 15,000 rpm for 5 min. To remove all pigments, the 

extraction was repeated 5 times and extracts were combined. The absorbance was read 
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immediately after the extraction procedure on extracts proper diluted using a spectrophotometer 

(UV-1800, Shimadzu, Kyoto, Japan) at three wavelengths, at 663.2 nm, 646.8 nm, and 470 nm. 

The total chlorophyll content was expressed as mg per 100 g of fresh weight using the equation 

reported by Wellburn (1994). 

 

2.5. Statistical Analysis 

The relationship among QLs and the postharvest quality parameters (color, respiration rate, 

electrolyte leakage and total chlorophyll content of rocket leaves) was tested by performing a 

one-way ANOVA. Then, a multifactor ANOVA was performed with the aim to evaluate the 

effects of fertilization levels (FL_1 or FL_2) and irrigation management approach (Timer or 

Sensor) on WUE, FUE, visual quality, color parameters, respiration rate, electrolyte leakage 

and total chlorophyll content. 

The mean values were separated using the Student-Newman-Keuls (SNK) test and Statgraphics 

Centurion (version 18.1.12, Warrenton, Virginia, USA) was used for statistical analyses. 

 

3. RESULTS AND DISCUSSION 

3.1. Effects of Agronomic Treatments on Water and Fertilizers Use Efficiency and 

Postharvest Quality Parameters 

Treatments resulted in a substantial differentiation of the sustainability of the production 

process expressed in terms of resources (water and fertilizers) use efficiency. Mean values of 

WUE were 21.4 and 34.4 g L−1, on average, in Timer-based and Sensor-based irrigation 

treatments respectively, with no effects of the fertilization level. On the other hand, treatments 

showed a significant interaction on FUE, as reported in Figure 3. 

 



95 
 

 
Figure 3. Fertilizer use efficiency (FUE), of greenhouse soilless rocket (Diplotaxis tenuifolia 

L.) subjected to different irrigation strategies (timer-based or sensor-based) and two fertilization 

levels (FL_1, high fertilization level; FL_2 low fertilization level). “Irrigation management 

strategy × Fertilization level” interaction significant at p < 0.001. Different letters above the 

columns indicate significant difference between the treatments (p < 0.05, means separation 

performed with SNK test). 

 

Greenhouse soilless production can boost intensive cropping systems with impressive 

efficiency on water and nutrients use, and very high product yield and quality (Massa et al., 

2020). Both sensor-based irrigation management (Montesano et al., 2015, 2016, 2018) and the 

rational application of fertilizers (Montesano et al., 2010; Santamaria et al., 2002) have been 

identified as promising approaches in combining high product quality with sustainable use of 

resources in greenhouse soilless vegetables production. 

In relation to the effects of fertilization levels (FL_1 or FL_2) using the Timer or Sensor 

irrigation management approach, results obtained from the multifactor ANOVA showed that 

all factors (irrigation management strategies, fertilization levels and their interaction) did not 

influence the visual quality, the respiration rate, the color parameters and the total chlorophyll 

content of rocket leaves While, the electrolyte leakage was affected only by the irrigation 

management strategies (Table 2). In detail, fresh-cut rocket irrigated with the Sensor approach 

showed a mean value slightly higher (23.3 ± 5.2 %, on average) than that reported in samples 

irrigated with the Timer strategy (19.7 ± 6.2 %, on average), probably as a result of the lower 

water availability (Kirnak et al., 2003).  
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Table 2. Effects of irrigation management strategies (Timer or Sensor), fertilization levels 

(FL_1 or FL_2) and their interaction on visual quality, physical and chemical parameters of 

rocket leaves stored at 10 °C. 

Parameters 
VQ 

Physical Parameters Chemical 
Parameters 

Respiration Rate 
ΔE* Yellowness 

Index 
Degreening 

Index 

Electrolyte 
Leakage 

Total Chlorophyll 
Content 

(5-1) (µmol CO2 kg−1 s−1) % (mg 100 g−1) 

Irrigation 
management 
strategies (A) 

ns ns ns ns ns **** ns 

Timer 3.25 30.43 7.19 80.19 −20.69 19.66 b 46.96 

Sensor 3.27 29.68 5.78 78.02 −21.24 23.35 a 48.52 

Fertilization 
levels (B) ns ns ns ns ns ns ns 

FL_1 3.25 29.81 6.90 79.61 −20.69 22.16 47.80 

FL_2 3.26 30.29 6.07 78.60 −21.24 20.85 47.67 

A × B ns ns ns ns ns ns ns 

ns: not significant; **** significant for p ≤ 0.0001. 

A 5 to 1 rating scale was used for visual quality, where 5 = very good (very fresh, no signs of yellowing, bright, dark and 

uniform green, no defects), 4 = good (fresh, slight signs of yellowing, light green, slight loss of texture), 3 = fair, limit of 

marketability (slight wilting, moderate signs of yellowing, slight discoloration, minor defects, loss of texture), 2 = poor, limit 

of edibility (wilting, evident yellowing, discoloration, severe loss of texture), 1 = very poor (unacceptable quality due to decay, 

severe wilting and yellowing, complete loss of texture and other evident defects). The results are provided as the mean values 

of 6 samples for irrigation management strategies and fertilization levels (3 replicates × 2 irrigation management strategies or 

2 fertilization levels). The mean values followed by different letters (a, b) are significantly different (p ≤ 0.05), according to 

Student-Newman-Keuls test. 

 

3.2. Relationship among Rocket Visual Quality Levels and Postharvest Quality Parameters 

The color parameters (YI and DI), obtained by the colorimeter, were able to discriminate four 

QL: leaves very good (QL5) and good (QL4) from fair (QL3), poor (QL2) and very poor (QL1) 

(Table 3). As for YI, that indicates the degree of yellowness, rocket leaves on QL1 showed 

values 31 % higher (YI = 94.1 ± 6.5) than samples on QL5 (YI = 71.9 ± 9.7) and the same 

statistical differences between levels were observed for DI. In QL1 samples DI parameter 

resulted about 40% higher (DI = −14.7 ± 2.4) than rocket leaves belonging to QL5 (DI = −24.2 

± 2.0), indicating a gradual decrease of green color from QL5 to QL1. In the case of ΔE*, three 

class were separated, QL 5-4-3 (mean value 1.6 ± 1.4) from QL2 (11.3 ± 5.1) and QL1 (20.1 ± 

8.1). Similar results were reported by Pace te al. (2014), in which ΔE* discriminated the 80 % 

of the QLs in fresh-cut lettuce, separating the QL5 from QL4-3, QL2 and QL1. 
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In the present study, the respiration rate of rocket leaves at harvest (QL5) was 35.52 ± 5.7 µmol 

CO2 kg−1 s−1 and it remained rather low in all QLs, showing a slight decrease from QL5 to QL2 

and increasing in QL1 rocket leaves, discriminating only the QL5 from the other levels (Table 

3). The authors in Martínez-Sánchez et al. (2006) reported values of respiration rate in 

Diplotaxis tenuifolia L. stored at 4 °C of about 8.5 µmol CO2 kg−1 s−1, while in Kenigsbuch et 

al. (2014) the respiration rate in wild rocket stored at 17 °C was about 32.8 µmol CO2 kg−1 s−1. 

According to Luca et al. (2017), the differences on this parameter in rocket are related to the 

storage temperature and to the maturity of the leaves at harvest: they reported that young wild 

rocket leaves at 10 °C had higher (79.8 µmol CO2 kg−1 s−1) respiration rate than the old ones 

(47.7 µmol CO2 kg−1 s−1). 

In the present research, electrolyte leakage was able to discriminate the marketable samples 

(QL5 and QL4) from the QL3 and the waste (QL2 or QL1) ones. Furthermore, these two classes 

of waste were well discriminated by electrolyte leakage (Table 3). 

The same discrimination was observed in the case of total chlorophyll content, that showed a 

decrease of about 37 % from the QL5 to QL1 (Table 3). In particular, this parameter well 

separated the marketable samples (QL5 and QL4) from the QL3 and QL2; moreover, the waste 

samples (QL1) were well discriminated from the edible ones. The authors in Koukounaras et 

al. (2006) reported that the chlorophyll degradation, which causes yellowing leaves, is related 

to the quality loss of the product. Indeed, the total chlorophyll content is considered a good 

objective parameter for the QL assessment. 

 

Table 3. Respiration rate, color parameters, electrolyte leakage and total chlorophyll content in 

rocket leaves stored at 10 °C, at each quality level (QL). 

Parameters 
QL 

5 4 3 2 1 p-Value 

Respiration rate 
(µmol CO2 kg−1 s−1) 

35.5 a 30.2 bc 27.0 bc 25.9 c 31.5 b **** 

ΔE* 0 d 2.0 cd 2.8 c 11.3 b 20.1 a **** 

Yellowness Index 71.9 d 70.0 d 77.4 c 86.6 b 94.1 a **** 

Degreening Index −24.2 d −24.0 d −22.2 c −17.7 b −14.7 a **** 

Electrolyte leakage (%) 19.3 c 18.4 c 22.2 b 22.5 b 25.9 a **** 

Total chlorophyll content 
(mg 100 g−1) 

54.1 a 53.1 a 48.4 b 45.9 b 34.0 c **** 

For each parameter the mean values followed by different letters (a, b, c, d) are significantly different (p-value < 0.05) according 

to Student-Newman-Keuls (SNK) test. Significance: **** = significant at p-value ≤ 0.0001. 
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3.3. Application of Self-Configuring CVS to Objectively Attribute the Visual Quality Level of 

Rocket Leaves and to Discriminate Them according to Preharvest Practices 

The goal of the CVS was to reproduce the QL sensory evaluation of rocket leaves and to identify 

agronomic treatments in an objective, non-destructive and contactless way by simply imaging 

the product in proper conditions. Since color is the key information aspect used by the CVS, it 

was necessary to make its measurement as consistent as possible. 

The color-chart, introduced in the scene, provided a reference that was used to measure, and 

then minimize the effects of any uncontrolled change in the acquisition environment. This was 

carried out by correlating the 24 expected color values provided by the manufacturer with the 

values measured in each image. This correlation was used to determine the parameters of the 

model that was used for correcting all the colors of the image. The three previously presented 

color correction models were applied and quantitatively compared to point out the best model 

for such kind of application. Two metrics to measure the effectiveness of color corrections 

models were considered. The first one evaluated their ability to reduce the distance between 

expected and measured color on the 24 patches of the color chart. The second one measured 

their effects on final classification accuracy, keeping unchanged all the following processing 

on images. The former method evaluated the correction on the same data used to estimate the 

parameters of the model: this made the response weaker and less reliable. 

This paper proposes the latter method to achieve a better evaluation using the accuracy of the 

classification process applied to the images corrected using the three different color correction 

models. In this way, the data (the colors of the product) on which the models are compared are 

different from the ones used during the model construction. Moreover, the effectiveness of color 

correction is evaluated on the task of interest. The experiments pointed out that the two metrics 

do not provide always the same answer. As shown in Figure 4, the global distance between the 

expected and the measured values on the color chart patches was still large for WB, much 

smaller for LC and minimum for the PC. This was a natural result of the higher degrees of 

freedom of the PC that made easier to correct the 24 colors of the color-chart. When applied to 

the evaluation of QL of rocket leaves and to the identification of the Timer and Sensor 

approaches, the differences between LC and PC were small and could be considered negligible. 
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Figure 4. Average difference (Euclidean distance) between the expected colors and the 

measured values over the dataset of images corrected using White Balance (blue), Linear 

Correction (orange), Polynomial Correction (yellow). In abscissa there are the different color 

patches of the color chart. 

 

In the experiments, all the images were corrected using all the three exposed models. Three 

different image datasets were generated, each associated to a different color correction model. 

The same subsequent processing and classification process, which was based on a Random 

Forest approach, was applied to the histograms associated with the three datasets. The 

corresponding performances were then measured. The classification was accomplished using 

two different resolutions of practical relevance. In the first case, the product completely 

marketable (QL5-QL4-QL3) was separated from the product just below the marketable limit 

(QL2) and from the not edible items. This may be useful because the leaves belonging to QL2 

might be reusable to reduce waste. In the second case, the marketable product (QL5-QL4-QL3) 

was separated from unmarketable leaves (QL2-QL1): this might be a valid solution for 

commercial applications where it is important only to recognize the unmarketable product to 

remove it from the shelves. 

Moreover, the classification was tried on the task of recognizing leaves from the Timer vs 

Sensor and those from FL_1 vs FL_2 treatments. The Table 4 shows the Confusion Matrices 

obtained by the Random Forest applied to the problem of distinguishing the marketable product 
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(QLs 5-4-3) from the edible one (QL 2) and from the waste (QL 1). The accuracy obtained by 

applying WB was 93 %, by applying LC was 96 %, by applying the PC was 95%. In this case 

the PC behaved slightly worse than LC even if on the color-chart the results were opposite. 

 

Table 4. Confusion Matrices obtained by the classification working on the datasets coming 

from the three different color correction models and with the task of separating marketable 

product (QL 5-4-3) from the edible (QL 2) and from the waste (QL 1) ones. 

 White Balance Linear Correction Polynomial Correction 

  Predicted QL Predicted QL Predicted QL 

Real QL 1 2 3-4-5 1 2 3-4-5 1 2 3-4-5 

1 24 0 0 23 1 0 22 2 0 

2 0 58 14 0 62 10 3 60 9 

3-4-5 0 8 208 0 2 214 0 1 215 

 

The Table 5 shows the Confusion Matrices obtained by applying the classification to the task 

of separating marketable product (QL5-4-3) from non-marketable product (QL 2-1). The 

accuracy obtained by applying WB was 93 %, by applying LC was 96 %, by applying the PC 

was 97 %. 

 

Table 5. Confusion Matrices obtained by the classification working on the datasets coming 

from the three different color correction models and with the task of separating marketable 

product (QL 5-4-3) from non-marketable product (QL 2-1). 

 

There was a light improvement in the accuracy of LC and PC while the difference between 

them was still negligible. In this case, PC slightly outperformed LC in accord with the results 

on the color-chart but with a much smaller difference. The experiments pointed out that the two 

models produce mostly the same effects on the task. Therefore, is natural to use the LC model, 

which exhibits a lower computational complexity. The proposed self-configuring CVS used for 

 White Balance Linear Correction Polynomial Correction 

  Predicted QL Predicted QL Predicted QL 

Real QL 1-2 3–4-5 1-2 3-4-5 1-2 3-4-5 

1-2 80 16 87 9 87 9 

3-4-5 7 209 2 214 1 215 
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the QL classification of rocket leaves allowed an objective system to be obtained, that can 

reproduce the human sensory evaluation, that consider a set of descriptors (such as color, defects 

and texture) as reference (Figure 1). Therefore, the proposed system, based on the extraction of 

color features, classified rocket leaves miming the end users involved in the visual QL 

assessment (Bhargava and Bansal, 2018). 

Tables 6 and 7 show the Confusion Matrices associated to the tasks of recognizing the 

fertilization levels (FL_1 vs FL_2) using the irrigation management approach Timer and 

Sensor, respectively. The accuracies were quite low; approximately 70 % using Timer and 66 

% using Sensor. LC and PC behaved similarly on irrigation management approach while LC 

outperformed PC on FL. 

 

Table 6. The table shows the Confusion Matrices obtained by the classification working on 

distinguishing the different fertilization levels (FL_1 vs FL_2) using the timer-based irrigation 

management from datasets provided by the three different color correction methods. 

 White Balance Linear Correction Polynomial Correction 

  Predicted FL Predicted FL Predicted FL 

Real FL FL_1 FL_2 FL_1 FL_2 FL_1 FL_2 

FL_1 107 49 109 47 100 56 

FL_2 54 102 46 110 44 112 

 

 

Table 7. The table shows the Confusion Matrices obtained by the classification working on 

distinguishing the different fertilization levels (FL_1 vs FL_2) using the sensor-based irrigation 

management from datasets provided by the three different color correction methods. 

 

The results obtained by recognizing the differences in the fertilization treatments (sustainable 

or conventional) were weaker. Nonetheless, these results were in accord with the indications 

provided by the statistical analysis of the measures supplied by the colorimeter and by the 

 White Balance Linear Correction Polynomial Correction 

  Predicted FL Predicted FL Predicted FL 

Real FL FL_1 FL_2 FL_1 FL_2 FL_1 FL_2 

FL_1 102 54 105 51 106 50 

FL_2 46 110 52 104 50 106 
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destructive tests made in laboratory. The performance is due to the small differences between 

products obtained by different treatments. This substantially uniform product quality confirmed 

that reducing water and fertilizer supply to exactly match real plant needs, without excesses, 

provides adequate growing conditions. 

 

4. CONCLUSIONS 

The experiments proved that the adopted agronomic treatments significantly improved the 

sustainability of the production process. This is demonstrated by the high values of WUE and 

FUE, obtained using sensors and reducing fertilizer inputs, while guaranteeing high product 

quality in all treatment conditions. 

The proposed CVS was based on calibrated color images: Linear color correction proved to 

represent the best trade-off between efficacy and efficiency in making consistent color 

measurements. The proposed new form of integration of the Random Forest model in the color 

analysis was able to define and select color features suitable for classification without any 

human intervention. This new CVS achieved a high accuracy (about 95 %) in evaluating the 

rocket quality levels during storage. The same system was used to recognize traits related to the 

sustainability of the cultivation management with specific reference to water and nutrients use. 

In this second task, performance was lower and not relevant for practical application. However, 

it was fully in accord with the results provided by the standard methods currently used 

(colorimeter and destructive analytical tests in laboratory). Therefore, the different cultivation 

approaches did not significantly affect the characteristics of the product. For this last task, 

further investigations are needed. 

The proposed computer vision system is cheap, fast and can be easily moved to an industrial 

production line. Given that the system is non-destructive and contactless, it enables an extended 

monitoring of products along the whole supply chain, thereby providing the opportunity for 

timely detection quality change and a reduction in economic losses and production waste. 
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ABSTRACT 
 
Computer Vision Systems (CVS) offer a non-destructive and contactless tool to assign visual 

quality level to fruit and vegetables and to estimate some of their internal characteristics. The 

innovative CVS described in this paper exploits the combination of image processing 

techniques and machine learning models (Random Forests) to assess the visual quality and 

predict the internal traits on unpackaged and packaged rocket leaves. Its performance did not 

depend on the cultivation system (traditional soil or soilless). The same CVS, exploiting its 

machine learning components, was able to build effective models for either the classification 

problem (visual quality level assignment) and the regression problems (estimation of 

senescence indicators such as chlorophyll and ammonia contents) just by changing the training 

data. The experiments showed a negligible performance loss on packaged products (Pearson’s 

linear correlation coefficient of 0.84 for chlorophyll and 0.91 for ammonia) with respect to 

unpackaged ones (0.86 for chlorophyll and 0.92 for ammonia). Thus, the non-destructive and 

contactless CVS represents a valid alternative to destructive, expensive and time-consuming 

analyses in the lab and can be effectively and extensively used along the whole supply chain, 

even on packaged products that cannot be analyzed using traditional tools. 
 

Keywords: contactless quality level assessment, Diplotaxis tenuifolia L., image analysis, 

packaged vegetables, senescence indicators prediction.  
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1. INTRODUCTION 

Rocket is a green leafy vegetable usually marketed and consumed as fresh-cut salad, alone or 

mixed to other leafy vegetables. It is well known and appreciated for its pleasant bitter taste and 

for its high content in bioactive compounds, such as vitamins, minerals and antioxidants. The 

two species commonly sold on the market are Eruca sativa and Diplotaxis tenuifolia or wild 

rocket that is known to have longer shelf life (Mastrandrea et al., 2016). 

The quality loss during the postharvest storage is mainly due to senescence, strictly related to 

chlorophyll degradation that, therefore, is the most common index used to evaluate quality and 

freshness of this product (Limantara et al., 2015; Cavallo et al., 2017). Generally, as reported 

by Pace et al. (2019), a 30 % loss of total chlorophyll content is considered the shelf life limit 

in rocket leaves stored for about 16 days at temperature between 5 and 20 °C. Another important 

indicator of leaves senescence in fresh-cut rocket is ammonia accumulation in plant tissues. It 

is reported that ammonia is a product of protein catabolism, thus it is considered an indicator 

of freshness, when is detected in low amount in the vegetal tissues (Chandra et al., 2006; Cefola 

et al., 2010). Moreover, since chlorophyll degradation, responsible for rocket yellowness during 

storage, causes protein catabolism, it may contribute to ammonia accumulation and a 

relationship with discoloration or yellowing process may be expected (Amodio et al., 2018). 

High concentrations of this component may cause tissue damages with visible effects that 

impact the overall quality of the product (darkening and browning of detached leaves) 

(Chibnall, 1939; Mastrandrea et al., 2016; Amodio et al., 2018). 

Traditional approaches for chlorophyll and ammonia content measurements in leafy vegetables 

include destructive methods, based on spectrophotometric assays. If these approaches have 

been considered the standard used methods for these determinations for a long time, they 

require specific laboratory equipment and destructive sampling and they are expensive and time 

consuming. While for the ammonia analysis the destructive method is widely applied, for 

chlorophyll evaluation, modern, handheld sensors have received a considerable attention in the 

last decades because of their high accuracy and real time measurement in a non-destructive way 

directly on field or on minimally processed products. So, many researchers developed various 

types of chlorophyll metres (Novichonok et al., 2016), e.g. multispectral and hyperspectral 

sensors (Chen et al., 2010; Li et al., 2014) that measures the spectral reflectance of leaves to 

assess the total chlorophyll content. Many of these techniques are costly and complex and 

require the presence of specialised personnel. Most widely used for chlorophyll content 

measurement are fluorimeters (Ferrante and Maggiore, 2007) and SPAD metre or similar 

devices (e.g. the atLEAF Chlorophyll metre, FT Green LLC, Wilmington, DE, USA (Ling et 
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al., 2011; Liu et al., 2012; Yue et al., 2015; Yuan et al., 2016; Baresel et al., 2017). Although 

such instruments are simpler, faster and cheaper than chemical analysis, they need to touch the 

leaf to measure the chlorophyll content of a limited area of the leaf surface. Therefore, their use 

in industrial lines is limited, also because the estimation of the chlorophyll content depends on 

the quality of sampling (Cavallo et al., 2017). 

Recently, image analysis based on common digital RGB cameras has proved to be a promising 

approach for the assessment of chlorophyll content of leafy vegetables in smart agriculture 

(Mohan and Gupta, 2019) and postharvest quality assessment (Pace et al., 2014, 2015; Cavallo 

et al., 2017). 

Imaging systems proved to be more robust than area-based instruments as they work at pixel 

level considering the entire visible surface of the product. Meanwhile, many studies evaluated 

the use of digital images to analyse the total chlorophyll content of leaves of rice (Wang et al., 

2013, 2014), soybean (Rigon et al., 2016), corn (Vesali et al., 2017), spinach (Agarwal and 

Gupta, 2018) and rocket leaves (Cavallo et al., 2017; Pace et al., 2019), both during production 

and postharvest. Currently, they also exploit the use of common smartphone cameras that are 

often equipped with high-speed processor (Mohan and Gupta, 2019). The success of Computer 

Vision Systems (CVS) is due to the possibility of establishing relationships between spectral 

reflectance indices and chlorophyll absorbance, and RGB (red, green and blue) components of 

an image (Santos do Amaral et al., 2019). Recently, Cavallo et al. (2018) indicated that to assess 

the quality of fresh-cut iceberg lettuce by CVS was possible also on packaged samples with 

minimal performance loss with respect to unpackaged samples. These authors recorded a 

performance loss of only about 3 % due to the presence of packaging (accuracy of 83 % on 

packed product instead of 86 % on unpacked one), showing the power of image analysis in 

monitoring the quality of fresh-cut vegetables. The Convolutional Neural Network (CNN) 

segmentation method was able to separate the graphical elements and the regions affected by 

lighting artefacts from the product inside the commercial bag. This enable a pervasive use of 

the system along the whole supply chain, regardless the presence of the packaging. Further 

investigations are needed to confirm and implement this emerging technology for a continuous 

check of the quality of fresh-cut products along the whole supply chain. 

Few applications regarding the use of CVS for the detection of ammonia content in leafy 

vegetables, are reported. Pace et al. (2014), applied CVS on whole and fresh-cut lettuce for the 

non-destructive evaluation of this parameter often used as a senescence indicator in leafy 

vegetables (Tudela et al., 2013; Cefola and Pace, 2015). Starting from these considerations, the 

aims of the present investigation was to verify and assess the capability of the non-invasive 
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contactless CVS in assessing the visual quality changes during postharvest storage of packaged 

fresh-cut rocket leaves and in estimating some of their internal characteristics (chlorophyll and 

ammonia contents): experiments have been made on samples coming from soil and soilless 

growing systems. 

 

2. MATERIALS AND METHODS 

2.1. Plant material and experimental setup 

Rocket leaves (Diplotaxis tenuifolia L. ‘Dallas’) were cultivated at the same time in soil or 

soilless cultivation systems at the CNR-ISPA experimental farm La Noria (CNR-ISPA) located 

in Mola di Bari (in the South of Italy). Harvests were performed at 55, 70 and 110 d and at 60, 

110 and 145 d after sowing for soilless and soil system, respectively. At each harvest time, 

fresh-cut rocket leaves, separated per cultivation system were provided to the laboratory for 

image analysis by CVS and postharvest quality determinations. Then, fresh-cut leaves were 

selected to avoid samples with defects and mechanical damages and packed in open PP bags 

(dimensions 50 ×30 cm, Orved, Musile di Piave, Italy) of about 600 g each one. In detail, 13 

bags (replicates) were prepared for samples cultivated on soil system, while 10 bags for rocket 

leaves cultivated on soilless system. Then, all samples were stored at 10 °C for 16 and 18 d for 

soilless and soil system, respectively. 

 

2.2. Sensory visual quality attribution during cold storage of rocket leaves 

During storage, samples were taken and observed to attribute the visual quality level (QL) 

according to the scale reported by Palumbo et al. (2021). In detail, at each sampling day, an 

amount of sample was taken from each PP bag and evaluated by a group of 5 researchers using 

the 5–1 rating scale cited above, where 5 = very good (very fresh, no signs of yellowing, bright, 

dark and uniform green, no defects), 4 = good (fresh, slight signs of yellowing, light green, 

slight loss of texture), 3 = fair (slight wilting, moderate signs of yellowing, slight discoloration, 

minor defects, loss of texture), 2 = poor (wilting, evident yellowing, discoloration, severe loss 

of texture), 1 = very poor (unacceptable quality due to decay, severe wilting and yellowing, 

complete loss of texture and other evident defects). A score of 3 was considered to be the limit 

of marketability, while a score of 2 represented the limit of edibility. Then, images of packaged 

and unpackaged fresh-cut rocket leaves were acquired by CVS and the quality of the same 

samples was evaluated through destructive conventional methods as detailed below. 
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2.3. Colour analysis by colorimeter, total chlorophyll content, ammonia content, and 

electrolyte leakage 

The CIELAB colour parameters (L*, a* and b*) were detected, for each replicate, on 3 random 

points on the surface of 10 rocket leaves using a colorimeter (CR400, Konica Minolta, Osaka, 

Japan). The instrument was calibrated with a standard reference having values of L*, a* and b* 

corresponding to 97.44, 0.10 and 2.04, respectively. Then, the colour parameter of Hue angle 

(h°) was calculated from primary L*, a* and b* readings according the equation below: 

 

h° = tan<* (∗
;∗

      (1) 

 

The total chlorophyll content was measured according to the spectrophotometric method 

reported by Cefola and Pace (2015). Five grams of rocket leaves were chopped and extracted 

in acetone/water (80:20 v/v) with a homogenizer (T-25 digital ULTRA-TURRAX® - IKA, 

Staufen, Germany) and then centrifuged at 6440 g for 5 min (C2500-R Prism R, Labnet, Edison, 

US). To remove all pigments, the extraction was repeated 5 times (10 mL per times) and extracts 

were combined. The absorbance was read immediately after the extraction procedure on 

extracts proper diluted using a spectrophotometer (UV-1800, Shimadzu, Kyoto, Japan) at three 

wavelengths, at 663.2 nm, 646.8 nm, and 470 nm. Total chlorophyll content was expressed as 

mg g-1 of fresh mass using the equation reported by Wellburn (1994). 

Ammonia content was evaluated according to Fadda et al. (2016). Chopped rocket leaves (5 g) 

were homogenized for 2 min in 20 mL of distilled water on an ice bath, and then centrifuged 

for 5 min at 6440 g at 4 °C. Then, the supernatant (0.5 mL) was mixed with 5 mL of 

nitroprusside reagent (phenol and hypochlorite in alkali reaction mixture) and heated at 37 °C 

for 20 min. The colour development after incubation, was determined with the 

spectrophotometer (reading the absorbance at 635 nm). The content of NH4+ was expressed as 

µg NH4+ g-1 of fresh mass, using ammonium sulfate as standard (0–10 µg mL-1, R2 = 0.99). 

The electrolyte leakage was determined following the method reported by Palumbo et al. 

(2021). In detail, about 2.5 g of rocket leaves disks obtained using a cork borer (ø 8 mm) were 

placed in plastic tubes and immersed in 25 mL of distilled water. After 30 min of storage at 10 

°C, the conductivity of the solution was measured using a conductivity meter (Cond. 51+ - XS 

Instruments, Carpi, Italy). Then, the tubes with samples and solution were frozen at – 20 °C 

and, after 48 h, the conductivity was detected after thawing and considered as total conductivity. 

Electrolyte leakage was calculated as the percentage ratio of initial over total conductivity. 
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2.4. Image analysis by computer vision system 

At each sampling day, a sample of about 60 g of product was taken from each replicate and was 

placed inside a 20 × 25 cm polypropylene (PP) bags (Carton Pack S.p.A., Rutigliano, Italy). 

Three images of the packaged product were acquired by randomly shuffling the rocket in the 

bag before each acquisition: this procedure generated three different images from each 

packaged sample to increase the amount of observed surface and the variability of visual 

appearance considered by the CVS. Then, the same product was extracted from the bag and 

three images were acquired by randomly shuffling and stacking the leaves before each 

acquisition. In this way, for each replicate the CVS acquired six images: three of the packaged 

product and three of the unpackaged product. Therefore, 78 images were available at each time 

for samples coming from soil system (6 images for each of the 13 replicates) and 60 images for 

samples coming from the soilless system (6 images for each of the 10 replicates). The final 

dataset was composed by 429 and 450 image from soil and soilless cultivation respectively after 

all three harvest dates (Table 1). Therefore, the final image dataset, including images from all 

the harvests, was composed by 207 images for the quality level 5 and by 168 images for each 

quality level from 4 to 1 of packaged and unpackaged rockets (Table 1). 

 

Table 1. Composition of the dataset of images with respect to harvests (H1, H2 and H3), and 

quality levels (QL). 

H1, H2 and H3 were performed at 55, 70 and 110 d and at 60, 110 and 145 d after sowing for soilless and soil system, 
respectively. 

  Soil   Soilless 

  
Replicates 

  QL 
Total 

  
Replicates 

  QL Total 

    5 4 3 2 1     5 4 3 2 1  

H 1 13 

  15 15 15 15 15 75   

10 

  15 15 15 15 15 75 

  15 15 15 15 15 75     15 15 15 15 15 75 

  9 9 9 9 9 45     - - - - - - 

H 2 13 

  15 15 15 15 15 75   

10 

  15 15 15 15 15 75 

  15 15 15 15 15 75     15 15 15 15 15 75 

  9 9 9 9 9 45     - - - - - - 

H 3 13 

  15 - - - - 15   

10 

  15 15 15 15 15 75 

  15 - - - - 15     15 15 15 15 15 75 

  9 - - - - 9     - - - - - - 

      117 78 78 78 78 429       90 90 90 90 90 450 
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2.5.  Image processing steps by Computer Vision System 

2.5.1. Acquisition of calibrated colour images 

A flowchart of the processing steps (whose sequence is slightly different for packaged and 

unpackaged products) along with their effects on the images, is shown in Figure 1. All the 

software was developed using Matlab 2019a (Mathworks Inc., Massachussets, USA). To 

acquire calibrated colour images, colour changes due to environment conditions (lighting, 

geometry, sensor instability) were evaluated and reduced to the minimum. Images were 

acquired using the set-up reported earlier (Pace et al., 2015, 2017; Cavallo et al., 2017, 2018) 

using a 3CCD (with a dedicated Charged Coupled Device for each colour channel) digital 

camera M9GE (Jai Ltd., Yokohama, Japan) having a resolution of 1024 × 768 pixels. The 

imaged area is about 32 × 24 cm. A 3CCD sensor has been used to avoid the artefacts introduced 

by the demosaicing methods required to record colour information using a single CCD. The 

optical axis of the Linos MeVis (Linos Photonics Ltd, Edinburgh, UK) 12 mm lens system was 

perpendicular to the black background. Two DC power suppliers delivered current to eight 

halogen lamps, placed along two rows at the two sides of the imaged area and oriented at a 45° 

angle with respect to the optical axis. All the images were saved using the uncompressed TIFF 

format to avoid the artifacts introduced by compression algorithms. 

 

2.5.2. Colour-chart processing and foreground segmentation 

A small X-Rite colour-chart (X-rite Italy srl, Prato, Italy) with 24 patches of known colours was 

placed into the scene to measure colour variations due to environmental conditions and sensor 

characteristics by comparing the expected numerical values released by the manufacturer with 

the ones acquired by the camera. The colour-chart was automatically detected regardless of its 

position and orientation (Cavallo et al., 2017). All the colours in the colour-chart were used to 

estimate the linear transformation used for colour correction. Image processing worked only on 

the part of each image belonging to the product at hand (foreground), while the background 

was discarded. The CVS automatically separated foreground and background without any 

human intervention: two thresholds were derived from the analysis of the whole image in the 

HSV colour space as described in Cavallo et al. (2017). This segmentation identified the region 

belonging to the product as a whole and did not separate its different parts neither discarded 

any region of leaves. It was designed to be conservative, that is to discard all the background 

pixels even at the cost of removing some marginal borders of the product. It removed also 

background area inside the stack of leaves as long as part of leaves too dark (for example for 

self-shadowing of the product) to provide meaningful colour information. 
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Figure 1. The flowcharts of the processing done on the images of unpackaged products (on the 

left) and on packaged products (on the right). They differ for the artefact elimination step 

applied to packaged products that selects the pixels where the camera measures meaningful 

colours. 
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2.5.3. Colour correction  

The linear correction model proved to be the best trade-off between effectiveness and 

computational complexity, and it was used in the experiments (Palumbo et al. 2021). Let it be 

!r=> 	g=> 	b=> &
? and !r@> 	g@> 	b@> &

?	the expected and the measured RGB values respectively for the i-

th patch i=1, …, 24. A linear correction (LC) model, a 3 x 3 matrix, was evaluated to reduce 

the distance between the expected and the measured values on the colour chart: 

 

!
r!
g!
b!
% = 	(

m"" m"# m"$
m#" m## m#$
m$" m$# m$$

* !
r%
g%
b%
% 

 

where +
rA
gA
bA
,	are the colours corrected using the matrix whose elements were evaluated using a 

least-square approach and all the patches of the colour-chart. The same matrix was therefore 

used to correct all the foreground pixels of the image. The linear transformation was different 

for each image (it was evaluated from the colour-chart appearance in each specific image) to 

adapt to the specific conditions of each acquisition. The linear correction requires 73 ms. 

 

2.5.4. Artefact elimination from packaging 

The unpredictable orientation bag’s surface with respect to light can generate artefacts such as 

reflections. In those regions, the camera cannot measure meaningful colours from the product 

at hand. Before feature extraction, those areas must be removed from each image. The flowchart 

in the Figure 1 shows the placement of the artefact elimination step inside the processing chain 

and its effects on the image. Each image was converted in the HSV (Hue-Saturation-Value) 

colour space. Artefacts that are colourless and much brighter than the product were removed 

using two data driven thresholds automatically extracted on the Hue (threshh) and on the Value 

(threshv) components of the image using the Otsu algorithm. Pixels with hue greater than threshh 

and value lower than threshv were considered as product and maintained in the following 

processing. This conservative choice significantly reduced the risk of keeping saturated pixels 

in the image while leaving a resulting area large enough to accomplish the tasks of interest. 

 

2.5.5. Features extraction 

The device independent and perceptually uniform CIE L*a*b* colour space was chosen to 

accomplish colour analysis. The L* component was discarded being too sensible to not uniform 

illumination levels across the scene. The complete histogram of the foreground pixels 



118 
 

(expressing the number of occurrences of each colour in the a* b* plane) was used as feature 

set for both classification and regression. The continuous (a*, b*) plane was discretized using 

30 bins for each axis. The histogram was reshaped as a vector and passed to the supervised 

learning module. The ensemble method used for classification and regression can sample for 

each tree a subset of this quite large set of features and figure out their best use, keeping 

acceptable the computational complexity.  

 

2.5.6. Image analysis 

To assign to a sample a value out of a finite set of quality levels is a classification problem. To 

estimate the values of chlorophyll and ammonia contents is a regression problem. In both cases, 

the same model was used, and its parameters were set applying a supervised learning approach 

to the available samples. Each sample was composed by the features (the histogram described 

in the previous paragraph), an integer value for the expected visual quality and two real values 

for chlorophyll and ammonia contents measured in the lab. The same Random Forest approach 

was used to accomplish both classification and regression (Breiman, 1996, 2001). In case of 

classification, the model was trained to assign the QL to the product. In case of regression, two 

different models were trained to estimate the chlorophyll content and the ammonia content of 

the product. All the models shared the same architecture whose free parameters were fixed for 

each specific task. The values of the cells of the histogram in the a* b* plane (of the CIE L*a*b* 

colour space) of each image provided the vocabulary of features used for training the models. 

The approach, for training each tree, randomly selected the training examples from the available 

training data and randomly selected which values of the histogram to use as features to build 

the tree at hand. Each tree of the forest was allowed to have a maximum of 10 branches. Due 

to the limited number of samples, a 10-fold cross validation approach was used: that means to 

divide the available data into 10 groups (folds), each having approximately the same number 

of elements. The partitions were made with stratification; therefore, each fold approximated the 

same distribution of the whole training set. According to the 10-folds validation strategy, the 

training was done 10 times. At each round, a different fold was separated for testing the results 

while the other nine folds were used for training. The average of the results obtained in the ten 

rounds estimated the performance of the method for a single iteration. To increase the stability 

of results, 10 iterations were run for each task (classification for visual quality, regression for 

chlorophyll estimation, regression for ammonia estimation): the best value and the average of 

their results were stored. The best value was very similar to the average, proving that the 
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randomness of the choice of training samples and of features for each tree did not affect 

significantly the performance of the resulting model. 

 

2.6. Statistical analysis 

A one-way ANOVA was performed to study the relationship between the most important 

quality parameters (total chlorophyll content, ammonia content, hue angle and electrolyte 

leakage) and the QLs during the rocket leaves cold storage (10 °C) with the aim of identifying 

the physical and chemical parameters able to classify in an objective and consistent way the 

QLs of rocket leaves. 

The mean values were separated using the Student-Newman-Keuls (SNK) test and Statgraphics 

Centurion (version 18.1.12, Warrenton, Virginia, USA) was used for statistical analyses.  

Partial least squares regression (PLSR) was run using the software The Unscrambler X (CAMO 

AS, Oslo, Norway). 

 

3. RESULTS AND DISCUSSION  

3.1. Changes in quality parameters during storage of fresh-cut rocket leaves  

During storage the change in the sensory QL was mainly due to the reduction of green colour 

of rocket leaves from the score 5 to 1 in both cultivation system, as showed in Figure 2. 

Considering the quality parameters determined during the rocket leaves storage, a significant 

separation of the visual QL was obtained by colour analysis (Table 2). 

 

 

storage at
10 °C QL5 QL4 QL3 QL2 QL1

SOIL 
SYSTEM

SOILLESS 
SYSTEM
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Figure 2. Changes in the sensory quality level (QL) of fresh-cut rocket leaves cultivated in soil 

or soilless system during the storage at 10 ◦C. QL5 = very good; QL4 = good; QL3 = fair; QL2 

= poor; QL1 = very poor.	 

 

Table 2. Hue angle, total chlorophyll content, ammonia content and electrolyte leakage in fresh-

cut rocket leaves cultivated on different systems (soil, soilless or all samples) and stored at 10 

°C at each quality level. 

Parameter 

Quality Level 

5 4 3* 2 1 
P-value 

very good good fair poor  very poor 

Soil system                       

Hue angle (h°) 125.6 a 124.7 a 121.3 b 118.1 c 114.4 d **** 

Total chlorophyll content (mg g-1) 0.9 a 0.7 b 0.6 c 0.5 d 0.4 e **** 

Ammonia content (µg NH4+ g-1) 7.3 c 3.1 c 6.8 c 89.7 b 184.3 a **** 

Electrolyte leakage (%) 12.7 e 21.0 d 26.2 c 30.8 b 40.7 a **** 

Soilless system                       

Hue angle (h°) 126.8 a 125.5 b 123 c 119.6 d 116.8 e **** 

Total chlorophyll content (mg g-1) 0.7 a 0.7 a 0.5 b 0.4 c 0.4 c **** 

Ammonia content (µg NH4+ g-1) 4.3 c 2.9 c 9.9 c 38.5 b 80.1 a **** 

Electrolyte leakage (%) 18.9 c 20.3 c 23.5 b 27.2 a 28.0 a **** 

All samples (soil and soilless)                       

Hue angle (h°) 126.1 a 125.2 b 122.2 c 118.8 d 115.6 e **** 

Total chlorophyll content (mg g-1) 0.8 a 0.7 b 0.6 c 0.5 d 0.4 e **** 

Ammonia content (µg NH4+ g-1) 3.0 c 6.0 c 8.4 c 67.8 b 133.7 a **** 

Electrolyte leakage (%) 15.9 e 20.6 d 24.6 c 28.8 b 34.1 a **** 

*: limit of marketability. 

For each parameter the mean values followed by different letters are significantly different (P-value < 0.05) according to Student-Newman-

Keuls (SNK) test. 

Significance: **** = significant at P-value ≤ 0.0001. 

 

In detail, for samples cultivated on soil system the h° separated the leaves very good (QL5) and 

good (QL4) from fair (QL3), poor (QL2) and very poor (QL1) ones, showing a decrease of 

about 8.9 % from QL5 to QL1. In soilless cultivation system, all the QLs of rocket leaves were 

well separated by h°. Its value had a decrease of 7.8 % from QL5 (very good leaves) to QL1 
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(waste samples). The same QL separation was obtained by h° value when all samples (soilless 

and soil) were considered (Table 2). Similar results were reported by Mastrandrea et al. (2016) 

in which h° values decreased of 7.2 % in rocket leaves stored at 10 °C. Since, higher h° 

represents a greener product (Pathare et al. 2013), in the present study the reduction in h° values 

during the storage (from QL5 to QL1), means a gradual degreening of rocket leaves. 

The electrolyte leakage was closely related to the quality and shelf life of fresh-cut produce and 

it is a physical parameter commonly used to measure the intensity of oxidative damages to cell 

membranes due to reactive oxygen species development in fresh-cut tissues (Kou et al. 2014). 

So, higher values in electrolytic leakage indicate higher physiological stress of leaves tissues. 

In this research, electrolyte leakage significantly increased in rocket leaves obtained by soil 

system well discriminating all the five QLs (Table 2). The same QL separation was observed 

considering all samples, with a significant increase of electrolyte leakage from the QL5 to QL1. 

On the contrary, this parameter in rocket leaves cultivated on soilless system proved to 

significantly discriminate QL5) and QL4 from QL3, recording an increase of 24.3 %. Moreover, 

in this cultivation system, the QL3 samples were well separated from QL2 and QL1 (Table 2). 

Similar results were reported by Palumbo et al. (2021) on rocket leaves cultivated under soilless 

cultivation system and stored at 10 °C, in which this parameter was able to discriminate QL5 

and QL4 from the QL3 and the QL2 and QL1. In the present research work, the percentage 

increase of electrolyte leakage along the different QLs in rocket leaves grown on soil system 

was higher (220.5 %) than that detected on samples cultivated under soilless system (48.1 %) 

(Table 2), pointing out that the last cultivation system was probably more efficient in terms of 

reduction of induced oxidative stresses on cell membranes (Bonasia et al. 2017). 

Moreover, a significant relationship was also found between decreasing visual QL and total 

chlorophyll and ammonia content, which can be considered objective markers of quality loss 

for rocket leaves (Table 2). The chlorophyll content allowed to have the same QL 

discrimination when the samples from soil and soilless system were joined (Table 2). For 

samples cultivated on soilless system, the chlorophyll content at harvest (QL5) was 24.6 % 

lower than that measured in samples cultivated on soil system, showing a reduction of the green 

colour intensity of leaves. Many research works proved the influence of pre-harvest factors on 

the postharvest quality of vegetables and the cultivation system is one of them (Elia and Colelli, 

2009; Frezza et al. 2010). On the contrary, at the end of storage (QL1), the samples cultivated 

on the two different systems, showed similar values (about 0.4 mg g-1) with a reduction of about 

50 % for the samples from soil system. As for the samples grown on soilless system, the 

chlorophyll content proved to discriminate the very good (QL5) and good (QL4) rocket leaves 
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from fair (QL3), in which a decrease of 16.3 % was recorded. Furthermore, marketable samples 

(QL3) were also well discriminated from edible (QL2) and waste (QL1) ones. The chlorophyll 

degradation during the postharvest storage is strictly related to the senescence of the product. 

At harvest, rocket leaves are dark or bright green in colour, but during senescence changes into 

yellow, with a general loss of visual quality (Watkins, 2006; Cefola et al. 2010). This process 

involves many enzymatic reactions in chloroplasts and vacuoles and, particularly, leaves 

yellowing is strictly related to the activity of chlorophyllase (Matile et al. 1999; Shi et al. 2016; 

Li et al. 2017). Chlorophyll breakdown take place also when a physiological stress occurs on 

the tissues, such as the mechanical stress induced by cutting (Toivonen and Brummel, 2008; 

Torales et al. 2020). Many authors suggested that ethylene production in damaged tissues (such 

as in fresh-cut products) is responsible for the chlorophyll loss because it causes an increase of 

the chlorophyllase activity (Yamauchi and Watada, 1991). In the present study, the chlorophyll 

decrease, resulting in yellowing of leaves at the end of storage at 10 °C, was probably due to 

the activity of the enzymes related to the chlorophyll degradation during postharvest, in 

accordance with the results observed by Torales et al. (2020) on fresh-cut rocket leaves during 

cold stored. 

The same QL discrimination was observed in the case of ammonia content for both cultivation 

systems and for all samples, recording a rapid increase from QL3 to QL1 (Table 2). In 

particular, this parameter well separated the marketable samples (QL5, QL4 and QL3) from the 

non-marketable ones (QL2 and QL1); moreover, even the waste samples (QL1) were well 

discriminated from the edible ones (QL2). At QL1 samples cultivated on soil system showed 

56.3 % higher ammonia content than that grown on soilless system. Similar results were 

reported by Pace et al. (2014) who identify in the ammonia content a good classifier for whole 

and fresh-cut iceberg lettuce, separating the acceptable product (ranged from QL5 to QL3) from 

the edible (QL2) and waste (QL1) ones. Ammonia accumulation in plant tissues as a 

consequence of protein catabolism is another aspect associated with the leaf senescence in leafy 

vegetables. High concentrations of this compound may cause tissue damages with visible 

senescence effects, that impact on the overall quality evaluation of the product Chibnall (1939) 

first reported that ammonia accumulation was the cause of darkening and browning of detached 

leaves during postharvest, also later demonstrated by Cantwell et al. (2010) on spinach leaves 

and Mastrandrea et al. (2016) on rocket leaves. Moreover, postharvest chlorophyll degradation 

may contribute to ammonia accumulation: chlorophyll catabolism consists of the protein-

pigment complexes breakage that release the chlorophyll; this causes the degradation of 

apoproteins by protease and remobilization of the nitrogen of the chlorophyll apoproteins 



123 
 

(Amodio et al. 2018). Mastrandrea et al. (2016) reported high correlations (R2 > 0.98) between 

changes in ammonia content and hue angle variations (that correspond to yellowing) in rocket 

leaves stored at 10 °C. Generally, leafy vegetables under stressful condition showed a reduction 

in the glutamine synthetase activity, an enzyme that leads to the ammonia reintegration during 

protein synthesis (Chandra et al. 2006). In addition, ammonia accumulation occurs very often 

in closed systems, such as a package, where may reach high levels. Indeed, in minimally 

processed products, deteriorative processes like proteolysis are enhanced by injuries occurred 

during handling steps, especially in highly active products (such as green leafy vegetables) 

(Wang et al. 2004; Cefola et al. 2010), and by the activity of PAL, that cause lignification of 

tissues, releasing ammonia (Joy, 1988). Moreover, Yang et al. 1982 demonstrated that also 

ethylene biosynthesis process from methionine produces little amount of ammonia. 

These results support the use of total chlorophyll and ammonia content as objective quality 

parameters for the assessment of QLs of fresh-cut rocket leaves (Pace et al., 2014; Cavallo et 

al., 2017). As consequence, their prediction by the CVS, though the package, may represent a 

valid tool for reducing subjectivity and time cost of manual operations along the whole supply 

chain, from industrial production lines to the final consumer. 

 

3.2. Non-destructive quality evaluation of packed and unpacked rocket leaves by CVS  

The Computer Vision System was applied to estimate the visual QL of packaged fresh-cut 

rocket and to predict the total chlorophyll and the ammonia content in packaged and 

unpackaged rocket leaves. 

Regarding the first task, table 3, 4, 5 and Figure S1 show the results obtained considering three 

different cases: i) to separate non-marketable product (QL 1 and 2) from marketable product 

(QL from 3 to 5); ii) to increase the resolution to separate edible but not marketable product 

(QL 2) from waste (QL 1); iii) to further increase the resolution to separate also the limit of 

marketable product (QL 3). In all these cases, the CVS was able to operate through the 

packaging with negligible loss of accuracy. Moreover, the increase in class separation (from 

Table 3 to Table 5 and Figure S1) showed a reduction in accuracy on soilless samples (and 

therefore when all the samples were considered). Instead, the accuracy remained at high level 

for samples coming from the soil system. 



124 
 

Table 3. Confusion matrix obtained separating 2 class (QL 1-2, QL 3-4-5).  

  

Quality Level 
(QL) 

 
Unpacked    Packed 

    QL   Accuracy 
(r) 

  QL   Accuracy 
(r) 

 
1-2   3-4-5     1-2   3-4-5   

All samples 
1-2   273   63   0.899   281   55   0.907 

3-4-5   26   517       27   516     

Soil 
1-2   152   4   0.981   141   15   0.947 

3-4-5   3   270       7   266     

Soilless 
1-2   147   33   0.893   146   34   0.891 

3-4-5   15   255       15   255     

*Quality level (QL): 5=very good; 4= good; 3=fair; 2=poor; 1=very poor.  

*QL3: limit of marketability 

 

Table 4. Confusion matrix obtained separating 3 class (QL 1, QL2, QL 3-4-5). 

  
Quality 
Level 
(QL) 

  Unpacked    Packed 

    QL   Accuracy 
(r) 

  QL   Accuracy 
(r)     1   2   3-4-5     1   2   3-4-5   

All samples 

1   116   34   18   0.831   122   37   9   0.826 

2   22   86   60       28   79   61     

3-4-5   1   13   528       0   18   525     

Soil 

1   72   6   0   0.954   69   9   0   0.905 

2   6   68   4       9   53   16     

3-4-5   0   4   269       0   6   267     

Soilless 

1   74   13   3   0.829   69   18   3   0.826 

2   14   40   36       10   43   37     

3-4-5   0   11   259       0   10   260     

*Quality level (QL): 5=very good; 4= good; 3=fair; 2=poor; 1=very poor.  

*QL3: limit of marketability. 
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Table 5. Confusion matrix obtained separating 4 class (QL 1, QL2, QL 3, QL 4-5). 

  
Quality 
Level 
(QL) 

  Unpacked    Packed 

    QL   Accuracy 
(r) 

  QL   Accuracy 
(r)     1   2   3   4-5     1   2   3   4-5   

All samples 

1   119   42   6   2   0.738   121   42   3   1   0.724 

2   24   99   16   29       28   101   11   27     

3   1   23   72   72       0   29   57   81     

4-5   0   1   14   360       0   7   12   356     

Soil 

1   71   7   0   0   0.909   68   10   0   0   0.86 

2   6   68   4   0       10   59   7   2     

3   0   4   62   12       0   9   55   14     

4-5   0   0   6   189       0   1   7   188     

Soilless 

1   74   15   1   0   0.703   70   20   0   0   0.673 

2   14   51   15   10       12   52   8   18     

3   0   19   22   49       1   16   15   58     

4-5   0   1   9   170       0   6   8   166     

*Quality level (QL): 5=very good; 4= good; 3=fair; 2=poor; 1=very poor.  

*QL3: limit of marketability 
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Figure S1. Confusion Matrix obtaining separating four (A), three (B) and two classes (C). 

 

The results (Pearson’s correlation coefficient and MSE) obtained by the CVS in estimating the 

chlorophyll and ammonia contents of all the samples and of packaged or unpackaged items 

cultivated on soil or soilless are reported in Table 6. For each value, the best result and the 

average of results obtained over 10 repetitions are reported. The negligible differences between 

the best values and the average ones show that the randomness used in the construction of the 

model does not affect significantly the performance of the method. The small differences 
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between the values related to unpackaged and packaged products confirm that the method is 

able to operate also through the bag. 

 

Table 6. Mean Squared Error (MSE) and Pearson’s correlation coefficient (r) measured to 

predict by CVS total chlorophyll and ammonia content of unpackaged and packaged fresh-cut 

rocket (p < 0.0001). 

 

Samples   

Total Chlorophyll   Ammonia Content 

Unpackaged   Packaged   Unpackaged   Packaged 

Best Average   Best Average   Best Average   Best Average 

Soil and 
Soilless 

MSE 77.62 78.65   90.23 91.41   575.1 588.7   643.0 656.3 

r 0.87 0.87   0.84 0.84   0.92 0.92   0.91 0.91 

Soil 
MSE 69.55 70.45   72.20 74.05   746.9 782.1   872.5 908.0 

r 0.90 0.90   0.90 0.89   0.94 0.94   0.93 0.92 

Soilless  
MSE 66.52 68.42   83.81 84.68   284.3 289.0   314.6 326.0 

r 0.83 0.83   0.78 0.78   0.87 0.86   0.85 0.84 

 

3.3. Estimation of visual quality level of packed fresh-cut rocket using as predictors total 

chlorophyll and ammonia measured by conventional methods or by CVS.  

Three PLS models were built to predict the visual QL using as predictors the total chlorophyll 

and the ammonia contents obtained by destructive methods (Model I), CVS trough packaging 

(Model II) and CVS without packaging (Model III) (Table 7). The predictors estimated non-

destructively and contactless by the CVS (Model II and Model III) provide better performances 

in terms of R2 in predicting the visual QL than the ones measured by the destructive analysis in 

the laboratory, in both calibration and validation (Table 7). This is probably due to the wider 

area of product observed by the CVS, larger than the amount of product used by the destructive 

methods. It is also evident that the difference between Model II (related to the CVS applied to 

packaged product) and Model III (related to the CVS applied to unpackaged product) is 

negligible (Table 7). These results further confirm the ability of the CVS to evaluate the product 

also through the bag, even working only on the regions of the image that provide meaningful 

colour information about the product’s surface. 
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Table 7. Root Mean Square Error (RMSE) and the coefficient of determination (R2) in 

calibration (c) or validation (v) of the Partial Least Square (PLS) Models predicting visual 

quality of rocket leaves. 

PLS Models Predictors    RMSEc R2c  RMSEv R2v 

I Total chlorophyll and ammonia 
obtained by destructive methods   

0.45 0.9 0.86 0.70 

II 
Total chlorophyll and ammonia 
obtained by CVS on packaged 
rocket leaves   

0.46 0.89 0.75 0.77 

III 
Total chlorophyll and ammonia 
obtained by CVS on unpackaged 
rocket leaves   

0.46 0.89 0.7 0.8 

 

 

4. CONCLUSION 

The quality parameters determined by destructive conventional methods during the fresh-cut 

rocket leaves storage significantly separated the visual quality levels (QL) and, among them, 

total chlorophyll and ammonia contents were very useful objective marker parameters in the 

assessment of all the considered QLs. 

The CVS was able to operate with not relevant differences on unpackaged and packaged 

products, enabling these controls at all the steps of the whole supply chain. The proposed CVS 

is based on the use of calibrated colour images and on the proper combination of image 

processing techniques and machine learning models. It was able to solve the classification 

problem (assigning the visual quality level) and the regression problems (estimating the 

chlorophyll and ammonia contents) using the same supervised learning methodology (Random 

Forest) applied to proper training data. The results proved that the system can be a valid 

alternative to conventional destructive measures, offering the advantage of being non-

destructive, contactless, fast and cheap. Moreover, experiments showed that the loss in 

performance due to the observation of product through the packaging is negligible. The PLS 

models built to predict the visual QL using as predictors total chlorophyll and ammonia content 

further confirmed the ability of the CVS to operate also through the packaging. The research 

was carried out using the polypropylene, widely used to store fresh-cut salad. Further 

experiments are needed to verify the performance of CVS on other type of plastic materials for 

packaging. 

The developed CVS represents a simple, cheap, fast, non-destructive and contactless tool for a 

continuous monitoring of the quality and of the level of freshness of packaged salad along the 
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whole supply chain, from harvest to final consumers, in an objective way and based on non-

destructive measurement of biological markers (such as chlorophyll and ammonia) which have 

been shown to be strongly related to leaf senescence. It might represent a valid tool for 

producers and consumers to standardize quality levels and to timely detect senescence enabling 

waste reduction, sales optimization and customer satisfaction. 
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ABSTRACT 
 

Computer Vision Systems (CVSs) have proved to be a powerful tool to evaluate the quality of 

agricultural products in a non-destructive, contactless and objective way. Machine learning 

techniques are increasingly relevant to simplify the development of CVS with better 

performance and greater flexibility in matching the requirements of different products and 

environmental characteristics. An interesting research field is to exploit the benefits of learning 

while keeping the resulting solutions simple, fast and interpretable by humans. One of these 

benefits would be to receive from learning techniques detailed hints about specific visual 

characteristics that correlate with relevant properties of products. By analysing a Random 

Forest model developed in previous experiments to classify visual quality and to estimate 

chlorophyll and ammonia contents in rocket leaves, the proposed method explicitly identifies 

specific informative colours, enabling interesting applications. First of all, the design of simpler 

and faster algorithms to extract relevant colour features related to significant visual 

characteristics of the product at hand. In addition, the objective identification of relevant colours 

can improve the objectivity and soundness of pictures and textual descriptions used to train 

human operators working in quality control. Finally, results obtained on real images of rocket 

leaves are shown, compared with previously obtained results, and discussed. 
 

Keywords: machine learning techniques, colour features identification, regression techniques, 

chlorophyll and ammonia prediction.  
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1. INTRODUCTION 

Recently, researchers have focused on the use of contactless, non-destructive, rapid, accurate 

and more sustainable techniques to objectively assess sensory and compositional quality of fruit 

and vegetables. Nevertheless, although these non-invasive methods offer significant advantages 

compared to analytical and destructive analysis, they cannot completely replace them. They are 

complementary, enabling time and cost saving, continuous and reliable monitoring and 

reduction of impact on environment along the supply chain (Chaudhry et al., 2020). Computer 

Vision Systems (CVSs) represent an innovative and contactless non-destructive technology 

suitable for in-line grading and quality assessment of fruit and vegetables (Fan et al., 2020). In 

a previous work (Palumbo et al., 2022), a machine learning model based on the Random Forest 

methodology was used to solve a classification problem (assessment of quality level of rocket 

leaves) and two regression problems (estimation of chlorophyll and ammonia content of rocket 

leaves). The system proved to be successful in working on packaged and unpackaged products. 

The Random Forest approach is based on the combination of several weak learners, each 

configured as a tree, to accomplish the classification and regression tasks of interest. Each weak 

learner is a single tree, trained to accomplish the same task of the complete forest using random 

subsets of the available training samples and of the considered features. For each tree, the 

training process selects the most relevant features, among the available ones, for achieving the 

required results (Breiman, 1984). The central hypothesis is that the combination of several weak 

learners can provide more powerful and robust results. The resulting Random Forest model is 

generally reasonably efficient and effective but exhibits a significant conceptual complexity 

that can prevent its application in some operational contexts. Moreover, it is hard to be read and 

interpreted by humans. 

This paper aims to overcome these limitations, starting from the results achieved on packaged 

and unpackaged rocket leaves by the CVS reported in Palumbo et al. (2022). In detail, an 

analysis of the features selected by the Random Forest methodology is used to identify compact 

yet efficient colour cues that can be used by simpler classifiers and regressors. Due to the nature 

of the original universe of features (frequencies of colour occurrence in the product), the subsets 

correspond to colour regions that are most informative about the nature of the product. These 

regions can be exploited in several way: each of them can provide a single measure as a feature 

for more simple and efficient classifiers or regressors; each region can be associated to a 

specific colour that can be correlated to specific characteristics of the products and whose 

change during the storage can be correlated to well-known chemical or physical processes; 
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moreover, they can provide a sound and objective base for the description of quality marker 

parameters of the product, making more robust their textual and iconographic descriptions. 

 

2. MATERIALS AND METHODS 

2.1. Identification and preliminary selection of clusters 

Images of packaged and unpackaged rocket leaves, acquired as reported in Palumbo et al. 

(2022), were used to extract specific informative colours using the methods reported below. 

The set of trees composing the Random Forest model described in Palumbo et al. (2022) was 

analysed. The vocabulary of features provided to the Random Forest was composed by the 

elements of the histogram of the images in the ab-plane of the CIELab colour space: each 

feature represented the percentage of presence of a specific colour. The importance of each 

colour feature was estimated on the base of its use to generate splits in the trees and of its 

association with other features (Loh, 1997, 2002). The features were then sorted by decreasing 

order of importance. The n most important features (with n empirically set to 36) were selected 

providing a set of 36 colours (Figure 1) representing the most relevant colours used to build the 

trees of the Random Forest model. In fact, each feature is associated to a point in the ab-plane 

of the CIELab colour space. Features purposely do not contain information about the L 

component: past experiments have shown that the L channel is too sensitive to illumination 

levels and also to uneven distribution of light across the scene. Therefore, L has been removed 

from colour description while building the vocabulary of features for the Random Forest model.  
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Figure 1. The 36 most important colours identified by the analysis of the Random Forest model. 

 

A hierarchical clustering approach was used to identify 11 clusters out of the 36 colours and 

reported in Figure 2 using both rectangular (A) and polar (B) representations (Hastie, 2009). 

Since most clusters were composed by single isolated colours therefore, they have been 

considered less important to identify colour regions of interest for our work. 
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Figure 2. The clusters of the relevant colours as identified by the analysis of the Random Forest 

model. In A, the abscissa and ordinate axes represents respectively the a and b components of 

the colours in the rectangular representation of the ab-plane in the CIELab colour space. In B, 

the same points are represented in polar coordinates, where the ordinate represents the distance 

of the point from the origin (which is an achromatic point) while the abscissa represents the 

angle with respect to the line having b equal to 0. In the latter representation, the elements of 

each cluster lie inside a narrow region of the x axis. 

 

Three clusters, whose colours are shown in Figure 3, collected a larger number of elements, 

namely the cluster 4 (C4) which contains 10 colours, the cluster 5 (C5) with 11 colours, and the 

cluster 9 (C9) with 6 colours. Moreover, the rectangles defined by the minimum and maximum 

values of the two components of the colours of each cluster in both rectangular and polar 

representations are shown in Figure 4. 

 

       
 

Figure 3. Colours belonging to the most relevant clusters 4, 5 and 9. Statistical analysis showed 

that the clusters 5 and 9 are more relevant for quality assignment and parameters estimation. 

A B 

Cluster 4 Cluster 5 Cluster 9 
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Please note that the black cells marked as void, are empty and purposely introduced in the image 

to simplify its construction. 

 

 

Figure 4. The figure shows the rectangular regions defined by the minimum and maximum 

values of the colours belonging to clusters 4, 5 and 9 in the rectangular (A) and polar 

representation (B). In both figures, the symbol of diamond represents the mean point of each 

region while the square represents the centroid of the same region. In the polar representation 

the regions related to different clusters have an empty intersection while they largely overlap in 

the rectangular representation. 

 

This approach tried to associate a region of the ab-plane to each of these cluster: the aim was 

to extract a single feature related to this region and to use this value for the following processing 

with the purpose of reducing the number of features and of simplifying the processing required 

to evaluate them. The most natural value was the percentage of pixels of the image whose 

colours lied in the region.  

 

2.2. Methodologies for the definition of the colour region corresponding to each cluster 

A first statistical analysis (data not shown), done using a one-way ANOVA, pointed out the 

greater relevance of C5 and C9 with respect to C4 which was therefore discarded in the 

following experiments in which only two features, associated to the frequencies of colours 

belonging to the C5 and C9 respectively, were evaluated. It needed to define the mechanism to 

compute these frequencies from each image. In particular, it was critical to decide the strategy 

used to assign the colour of each pixel in each image to the proper cluster. Several strategies 

could be used and were analyzed to identify the best performing model. Firstly, it was observed 

A B 
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that C5 was well separated by any other cluster both in the polar and rectangular representations 

of colours. On the contrary, C9 was very close to the C4 in both the representations. While to 

correctly assign colours to the C9 seemed feasible in the polar space, the same task appeared 

much more challenging in the rectangular space. Nevertheless, it was decided to analyze the 

behavior of each strategy in both representations to experimentally verify how much suitable 

was each of them for final tasks.  

The second critical choice for computing the feature associated to each cluster, was the strategy 

to identify the extension and the shape of the region associated to each cluster: this choice 

proved to affect the efficiency both in terms of computational complexity and flexibility. Few 

approaches were compared. Let it define as (ai, bi) with i = 1, …, 36, the rectangular coordinates 

of the selected colours in the ab-plane. Every point in the plane can be represented also using 

the polar representation: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒" =	I𝑎"+ + 𝑏"+					𝑎𝑛𝑔𝑙𝑒" = 𝑎𝑟𝑐𝑡𝑔	(
𝑏"
𝑎"
) 

For simplicity, all the formulas in the rest of the paper will be written only once using the 

symbols x and y but they remain valid and can be applied to both the representations, providing 

results that just need to be interpreted according to the used representation. For the rectangular 

representation x stands for a and y for b while for the polar representation x stands for angle 

and y for distance. In fact, every method has been applied into both the coordinates systems to 

compare their ability to characterize the colour regions of interest. Let it denote:  

𝑚𝑖𝑛BC = min 	{𝑥"|𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘}												𝑚𝑎𝑥BC = max 	{𝑥"|𝑖 ∈ 	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘} 

𝑚𝑖𝑛DC = min 	{𝑦"|𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘}												𝑚𝑎𝑥DC = max 	{𝑦"|𝑖 ∈ 	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘} 

The method 1 (M1) associates to each cluster a rectangular region in the ab-plane whose limits 

are the minimum and maximum values of the two components of the colours, out of the 36, 

belonging to that cluster. The upper-left and bottom-right corners of the region have 

respectively coordinates: 

(𝑚𝑖𝑛BC , 𝑚𝑎𝑥DCW							and					(𝑚𝑎𝑥BC , 𝑚𝑖𝑛DCW 

It can easily be seen that this method can separate the clusters in the polar representation, but it 

does not work in the rectangular representation where the rectangular regions related to C4 and 

C9 largely overlap (Figure 4). 
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The method 2 (M2) represents each region using the central point, that is the point having as 

coordinates the mean values between the minimum and the maximum of x and y. The 

coordinates of the central point of the cluster k are: 

Y
𝑚𝑖𝑛BC +𝑚𝑎𝑥BC

2 ,
𝑚𝑖𝑛DC +𝑚𝑎𝑥DC

2 [ 

The method 3 (M3) represents each region using the centroid of the colours belonging to the 

cluster. The coordinates of the centroid of the cluster k are: 

Y
∑ 𝑥""

𝑛C
,
∑ 𝑦""

𝑛C
[ 

where 𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘 and 𝑛C is the number of colours, out of the 36, associated to the cluster k. 

For the M3, two different variants have been used. In the first one (M3a), only the centroid 

points of C5 and C9 have been considered when looking for the proper cluster for a colour in 

the image: each pixel was assigned to the cluster (out of these two) whose representative point 

(centroid) was closest to the colour of the pixel. In the second one (M3b), all the centroid points 

of all the clusters have been considered when looking for the proper cluster for a colour in the 

image: each pixel was assigned to the cluster (out of all the 11 clusters) whose representative 

point (centroid) was closest to the colour of the pixel. Even in this last case, only the values 

corresponding to C5 and C9 were considered for further processing. The difference between 

the two variants is that in the first variant (a) all the pixels are assigned either to C5 or to C9, 

according to which one is the closest. In the second case (b), a significative number of pixels 

were assigned to other clusters (different from C5 or C9) and were not considered in further 

processing. In geometrical terms, variant (b) reduces the size and modifies the shape of the 

regions of the ab-plane assigned to each of the two clusters of interest (C5 and C9). 

The method 4 (M4) assigns each pixel to the colour, out of the 36, which is the closest in the 

ab-plane. Then, all the pixels associated to colours belonging to the same cluster are cumulated 

to evaluate the number of pixels belonging to that cluster. This last method enables a finer 

definition of the colour region associated to each cluster. 

For each method, two different versions, using the polar and the rectangular representations 

respectively, have been compared. All the methods reported above were applied on the images 

of unpackaged and packaged samples of rocket leaves acquired by the CVS in Palumbo et al. 

(2022). The features corresponding to the different clusters were normalized: they were divided 

by the total number of foreground pixels in the image.  
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2.3.Statistical analysis 

The values corresponding to the most relevant clusters (C5 and C9) were subjected to a one-

way ANOVA analysis to find significant relationships with the quality level (QL) scores of 

rocket leaves reported in Palumbo et al. (2022). 

The mean values were separated using the Student-Newman-Keuls (SNK) test and Statgraphics 

Centurion (version 18.1.12, Warrenton, Virginia, USA) was used for statistical analyses. 

Principal component analysis (PCA) was performed by the software Statistica (version 6.0, 

StatSoft, Inc., Tulsa, OK, USA), using as variables the values of the C5 and C9 obtained by all 

the methods described above, in both the polar or rectangular versions (Method 1, Method 2, 

Method 3a, Method 3b, Method 4) and the chemical data of total chlorophyll and ammonia 

content previously reported (Palumbo et al., 2022). While, as the case, data were mediated in 

two visual quality group: 5-4-3 (marketable) and 2-1 (unmarketable).  

Significant correlations were highlighted between each method and the chemical data (total 

chlorophyll or ammonia content) reported in Palumbo et al., (2022). In particular, the 

correlation matrices based on the Pearson correlation coefficient were explored by an heatmap 

and the level p = 0.05 was assumed significant for the correlation coefficients. Data analysis 

was carried out using the software Statistica (version 6.0, StatSoft, Inc., Tulsa, OK, USA). 

Moreover, a partial least square regression (PLSR) analysis was carried out to predict the total 

chlorophyll or ammonia content using The Unscrambler X software (CAMO AS, Oslo, 

Norway). 

 

3. RESULTS AND DISCUSSIONS 

3.1. Selection of methods associated to rocket leaves marketability 

Significant relationships among the values of C5 and C9 achieved by the 4 methods and the QL 

scores attributed to rocket leaves during the cold storage (Palumbo et al. 2021) are reported in 

Table 1.  
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Results from the one-way ANOVA highlights that a separation of marketable samples (QL5, 

QL4 and QL3) from non-marketable ones (QL2 and QL1) is achieved by all the compared 

methods. This information is normally sufficient needed in most commercial applications 

where the QL3 represents the limit of marketability. It is interesting to note that M2, when 

applied in the polar representation, is able to separate all the QLs. The methods have different 

computational complexities and requires different times to assign a quality level to a sample: 

they offers a wide variety of possibilities to the designer of a Computer Vision System. The 

Random Forest model that has been analysed to identify the 36 most relevant colours required 

around 25 ms to assign a class to a sample. The methods derived by exploiting these colours 

reach this time only in the most complex version, allowing a significant reduction of 

computation time in the simpler versions. The method M1 takes only 1 ms to evaluate a sample. 

The method M2 requires 3 ms for assigning the class to a sample. The methods M3, in both its 

versions, takes 11 ms to achieve their results. M3a, applied in the polar representation, is able 

to separate all the QLs but not the QL5 and QL4 (corresponding to very good and good product, 

respectively). The method M4 involves a computation time of 22 ms.   

Anyway, from QL5 to QL1, a general reduction in the C9, associated to green nuances, and an 

increase in the presence of yellow pigments (C5) was showed in all the 4 methods adopted. In 

rocket leaves, the reduction of green pigments and the simultaneous increase of yellow ones 

during the cold storage is due to biological degradation of chlorophyll (Cefola and Pace, 2015; 

Cefola et al. 2010; Watkins, 2006), as also described by Palumbo at al. (2022). Indeed, in Figure 

5A, data of total chlorophyll and ammonia content reported in Palumbo et al. (2022) are 

presented. The total chlorophyll content of rocket leaves showed a significant reduction (42.4 

%) during the storage. 
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Figure 5. Changes in chlorophyll (A) and ammonia (B) contents of rocket leaves during 18 

days of storage at 10 °C. Each data is the mean value of 60 samples ± standard deviation. 

 

Additionally, postharvest chlorophyll breakdown may contribute to ammonia accumulation in 

vegetable tissues (Amodio et al. 2018) which is highly correlated to hue angle variations 

(related to leaves yellowing) in rocket leaves stored at 10 °C, already demonstrated by Palumbo 

et al. (2022) and Mastrandrea et al. (2016). As for ammonia content, at harvest samples showed 

very low values (6.11 ± 2.42 µg NH4+/g of fresh weight), but a significant increase was recorded 

at the end of storage (132.51 ± 8.67 µg NH4+/g of fresh weight) (Figure 5B). High levels of 

ammonia may cause tissue damage with visible senescence effects, influencing the overall 

quality of the product. 

Because of their strict relation to the senescence of the product, both chlorophyll and ammonia 

content may be considered objective markers for quality loss of rocket leaves (Palumbo et al. 

2022). 
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These results are clearly visible also by looking at the scoreS plot obtained by PCA analysis, 

that uses as variables the values of the C5 and C9 obtained by the 4 methods and the chlorophyll 

and ammonia data (Figure 6). 

The first and the second components accounted for 66.2 % and 20.4 % of the total variance 

respectively, displaying a different distribution of marketable and non-marketable samples in 

the PCA quadrants (Figure 6A): the formers were mostly clustered at the left side, while the 

non-marketable ones at the right side along the first component. 
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Figure 6. PCA loadingS plot (A) and scoreS plot (B) carried out on the values of clusters 5 

(C5) and 9 (C9) in the polar (P) or rectangular (R) representation obtained by the 4 methods 

adopted (M1, M2, M3a, M3b, M4). 

 

In the PCA scoreS plot, all the methods in the higher-left and lower-left quadrants showed a 

significant correlation with the chlorophyll content of rocket leaves which presented negative 

component 1 and 2 and was found in the lower-left quadrant of the scoreS plot; on the other 
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hand, the ammonia content, that is placed in the lower-right quadrant of the scoreS plot, was 

correlated significantly to the methods placed in the same quadrant (Figure 6B). 

The relationships between clusters values of the 4 methods and the chemical attributes 

(chlorophyll and ammonia content) were explored by the heatmap reported in Table 2: the 

methods M2-C9-P, M2-C9-R and M3a-C9-R, in the higher-left quadrants, and M3a-C9-P and 

M3b-C9-P, in the lower-left quadrant, showed higher correlations with the chlorophyll content 

than the others in the same quadrants, while the ammonia content was highly correlated to the 

methods M1-C5-R, M4-C5-R and M4-C9-R. Even for what concern the correlation with 

chlorophyll content, M2 e M3 exhibit a high correlation at a very low computational cost (3 

ms). The differences between C5 and C9 do not appear to be relevant. Instead, for what concern 

ammonia, the two clusters provide very different performances. C9 seems to poorly correlate 

with ammonia while C5 is much more effective in estimating this property of the product. In 

particular, the presence of C5 evaluated using the M1, applied to the rectangular representation, 

exhibits a very high correlation with ammonia content. The C5 is characterized by a strong 

separation from the other ones in the ab-plane of the CIELab colour space. The corresponding 

colour region defined by the M1 and the rectangular representation remains well separated and 

have a relevant extension in the colour plane that could explain this high correlation. 
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Table 2. The heatmap shows the correlations between values of clusters 5 (C5) and 9 (C9) in 

the polar (P) or rectangular (R) representation obtained with the 4 different methods (M1, M2, 

M3a, M3b, M4) and chlorophyll and ammonia contents in rocket leaves. A different colour 

code is used to represent the strong of correlations; r is the Pearson’s correlation coefficient. 

Method-Cluster-
Representation 

Chlorophyll content 
(mg/100g fresh weight) 

Ammonia content 
(µg NH4+/g fresh weight) 

r P-value r P-value 

M1-C5-P 0.1644 ns 0.3584 ns 

M1- C9-P -0.1460 ns 0.1905 ns 

M1-C5-R -0.4051 ns 0.9015 **** 

M1-C9-R 0.5509 * -0.2107 ns 

M2-C5-P -0.7004 ** 0.5708 * 

M2-C9-P 0.7458 *** -0.5431 * 

M2-C5-R -0.7316 *** 0.6222 ** 

M2-C9-R 0.7838 **** -0.5991 * 

M3a-C5-P -0.7578 *** 0.5489 * 

M3a-C9-P 0.7578 *** -0.5489 * 

M3a-C5-R -0.7388 *** 0.6061 * 

M3a-C9-R 0.7912 **** -0.5713 * 

M3b-C5-P -0.7633 *** 0.5300 * 

M3b-C9-P 0.8648 **** -0.3701 ns 

M3b-C5-R -0.7445 *** 0.6313 ** 

M3b-C9-R 0.3585 ns 0.3041 ns 

M4-C5-P -0.7069 ** 0.5633 * 

M4-C9-P 0.4480 ns -0.0754 ns 

M4-C5-R -0.7118 ** 0.7622 *** 

M4-C9-R -0.1898 ns 0.6831 ** 
Significance: ns= not significant; * significant for P ≤ 0.05; ** significant for P ≤ 0.01; *** significant for P ≤ 
0.001; **** significant for P ≤ 0.0001. 

r

-1

-0.5
0

0.5
1
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3.2. Chlorophyll and ammonia content prediction 

The methods that reported the highest correlations with chlorophyll and ammonia contents were 

used to build two PLS models to predict these two quality markers of rocket leaves (Table 3). 

Results showed good prediction of chlorophyll (Model 1) and ammonia (Model 2) content by 

using as predictors the values of the methods M3b-C9-P and M1-C5-R, respectively. In detail, 

the Model 1 with R2 of 74 % in calibration and 70 % in validation was obtained for chlorophyll 

content. Higher performances were obtained with the Model 2 to predict the ammonia content 

(R2 of 0.83 and 0.72 in calibration and validation, respectively). Similar performances were 

achieved by the prediction reported in Palumbo et al. (2022), in which random forest model 

was used. In this work, M3b-C9-P provides lower performances for chlorophyll prediction than 

Palumbo et al. (2022), but the methodology adopted provided simpler algorithms, easily 

interpretable by humans, and a lower computational speed (about 3 ms against the more than 

20 ms of the random forest model). Additionally, while no relevant correlation was identified 

in Palumbo et al. (2022) for ammonia content, often used as another senescence indicator in 

leafy vegetables, the novel approach allowed to obtain a significant prediction of this parameter 

by M1-C5-R, the simplest model that has a computational time of 1 ms. 

 

Table 3. Root Mean Square Error (RMSE) and the coefficient of determination (R2) in 

calibration (c) or validation (v) of the partial least square regression (PLSR) models predicting 

chlorophyll and ammonia contents of rocket leaves. 

PLSR 
models Predictors RMSEc R2 RMSEv R2 

Model 1 
(chlorophyll content prediction) M3b-C9-P  6.23 0.74 7.04 0.70 
Model 2 
(ammonia content prediction) M1-C5-R 20.27 0.83 27.58 0.72 

 

 

4. CONCLUSIONS 

The present research paper explores the possibility of using the information hidden into 

machine learning models developed to classify visual quality and to estimate internal properties 

of rocket leaves to develop methods that have lower computational costs but also that are more 

understandable by humans. In particular, a Random Forest model already used in previous 

experiments to classify visual quality and to estimate chlorophyll and ammonia contents in 

rocket leaves has been analysed. New methodologies are proposed to identify specific relevant 
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and representative colours in the ab-plane of the CIELab colour space for the evaluation of 

significant traits of the product at hand and to identify colours whose changes induced by 

senescence are strictly related to chemical and physical properties. This set of relevant colours 

has been used to construct several methods, with increasing levels of computational complexity, 

for accomplishing the same tasks done by the Random Forest model. 

Simple algorithms proved able to (i) identify relevant clusters of colours that are informative 

about the properties of the product at hand, (ii) further to select the clusters more significant to 

estimate the desired properties, (iii) to describe shape and size of regions of the ab-plane in the 

CIELab colour representation corresponding to the clusters of interest. 

These results provided objective and sound bases for the design of different computational 

schemes with different execution times enabling the best trade-off between efficacy and 

efficiency, depending on the application constraints. In particular, two of the considered 

methods, M3b-C9-P and M1-C5-R, provided good prediction of chlorophyll and ammonia 

contents, that are able to assess the state of product in an objective and robust way. The two 

methods have computational time of 3 ms (M3b-C9-P) and of 1 ms (M1-C5-R) that favourably 

compare with the computational time of the Random Forest model (not less than 20 ms). The 

easily readable results of the experiments provided suggestion about their interpretation in terms 

of known processes occurring during the senescence of the product. Moreover, the 

identification of well-grounded objective colour cues could also be used to improve the 

significance of indications provided to human operators during their training on the quality 

evaluation task.  
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FINAL CONSIDERATIONS 

The production of high quality foods is considered a key factor in horticultural sector even 

though the concept of quality has evolved significantly over the past few decades. Despite the 

traditional sensory attributes represent the main focus of most quality standards and regulations, 

more recently other important aspects are becoming increasingly relevant: high demands and 

attention of modern consumers towards nutritional value of fresh horticultural products and 

their growing sensibility toward the sustainability of production processes. Recent researches 

are working on rapid, precise and low-cost techniques for food analysis along the entire supply 

chain. Online sorting systems along the industrial lines may allow the inspection of large 

quantities of fruit and vegetables in a short time, may provide a good prediction of the external 

and internal quality traits of products, and may monitor the physiological postharvest state, thus 

reducing losses and wastes, with evident social advantages. Among the innovative techniques 

qualified for this task, image analysis by conventional computer vision systems (CVS), based 

on RGB imaging, represents a contactless and non-destructive tool to evaluate and monitor the 

quality of fruit and vegetables. They are non-expensive, fast, and effectively and extensively 

usable along the whole supply chain, even on packaged products which cannot be analysed 

using conventional tools. 

The research activity carried out during this doctoral program  proposed a CVS for a continuous 

monitoring of the freshness level and the quality of fresh rocket leaves from harvest to final 

consumers even when enclosed in plastic packaging. This technology worked in an objective 

and consistent way basing on non-destructive measurement of biological markers (such as 

chlorophyll and ammonia) which are strongly related to leaf senescence. The proposed CVS 

was able to automatically select, without human intervention, the most relevant colour traits 

using the Random Forest as machine learning model. 

In the first study, the CVS achieved a high accuracy in the quality level assessment of rocket 

leaves during the cold storage. Moreover, the same system was used to identify traits related to 

the sustainability of the cultivation approach, discriminating among different water and 

fertilization management protocols. Even if performances were lower for this second objective 

and less relevant for practical applications, results were fully in accordance with the outcomes 

obtained by the conventional destructive methods, according to which the different cultivation 

approaches did not significantly affect the quality of the product. For this last task, further 

investigations are needed. 
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In the second study, the developed CVS was able to work on unpackaged and packaged rocket 

leaves without significant differences, properly combining the image processing techniques and 

the random forest model. In detail, it solved both the classification (i.e. assessment of the visual 

quality level) and the regression (i.e. estimation of the chlorophyll and ammonia contents) 

problems using the same methodology on the same training data. As results, experiments 

proved that the performance loss due to the presence of the packaging material was irrelevant 

in the chlorophyll and ammonia prediction by CVS. Additionally, the PLS models, built to 

predict the quality level using total chlorophyll and ammonia content as predictors, further 

confirmed the ability of the CVS to operate also through the packaging. 

Finally, in the third study, new methodologies are proposed to identify specific relevant and 

representative colours in the ab-plane of the CIELab colour space for the evaluation of 

significant traits of the fresh rocket leaves and to identify colours whose changes induced by 

senescence are strictly related to chemical and physical properties. The results provided 

objective and good bases for the design of different computational schemes with shorter 

execution times, enabling the best trade-off between efficacy and efficiency and overcoming 

the performances of Random Forest models. 

Conclusively, results reported in this doctoral Thesis may have a significant impact on advanced 

applications of the traditional vision systems, commonly used for the inspection of fruit and 

vegetables. As practical examples, portable diagnostic systems can be used directly on field, 

for a complete and non-invasive analysis of the physiological state of the crop or for the 

identification of the correct maturity stage at harvest; moreover, integrated systems can be 

installed inside supermarkets and household refrigerators to reduce food losses and preserve 

the safety of consumers; smartphone-based tools can help customers in verifying the quality of 

food at the time of purchase. 

There are still many open challenges to perform the quality assessment in a faster and accurate 

way in industrial lines and during postharvest phase such as (i) the distribution of light on curve 

surfaces, (ii) the need for whole surface inspection, (iii) the need for new simpler statistical 

methodologies for algorithms construction, and, (iv) the requirements about the environment at 

acquisition time. Indeed, current technologies are adapted to industrial lines where the 

environment is controlled, but their transfer to less structured environments (logistic, retail 

facilities, households) might still require significative work in custom adaptation. Advanced 

solutions in which smarter algorithms may face the variations induced by environment 

conditions could simplify a widespread use of these technologies whenever quality control is 

required. 
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As for plastic packaged products, the identification of image regions affected by the interaction 

between light and the plastic material is a crucial issue for quality level assessment through the 

packaging. A valid and consistent segmentation approach which selects areas where colours 

can be measured correctly is required in order to obtain performances similar to those achieved 

on unpackaged samples. 

Other future research perspectives in the field of non-destructive analysis by CVS should be 

focused on simplifying the existing models to support the industry for online implementation 

of sorting systems as it has been proposed in Chapter 5. 
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