The effect of arbuscular mycorrhizal fungi (AMF) on yield and quality was investigated on a set of seven bread wheat genotypes with varying years of release, including five old genotypes and two modern varieties. A two-year field trial was conducted in central Italy under rainfed conditions. The effect of AM fungal seed coating was proved by assessing the AM fungal root colonization and studied on agronomic and quality traits, and in particular on gluten-forming proteins and grain mineral composition. AMF seed coating led to a general yield improvement in old genotypes (+24%). Concerning the effects on grain quality, while modern genotypes showed an increase in protein content (+16%), in the old ones an improvement of gluten quality was observed, with an increased proportion of HMW-GS from +17% to +92%. The gluten index results were mostly influenced by HMW-GS allelic configuration and amount, showing a significant correlation with gliadin-to-glutenin ratio and HMW-GS to LMW-GS. Concerning mineral uptake, AM fungal treatment determined a general increase in P content, which was more marked in the modern group (+44%). Furthermore, AMF significantly increased mean Fe concentration in Verna (+53%) and Bologna (+45%). Finally, phytate content did not increase with AMF, without affecting mineral bioavailability.

Effect of Arbuscular Mycorrhizal Fungal Seed Coating on Grain Protein and Mineral Composition of Old and Modern Bread Wheat Genotypes

De Santis, MA;Giuliani, MM;Flagella, Z
;
2022-01-01

Abstract

The effect of arbuscular mycorrhizal fungi (AMF) on yield and quality was investigated on a set of seven bread wheat genotypes with varying years of release, including five old genotypes and two modern varieties. A two-year field trial was conducted in central Italy under rainfed conditions. The effect of AM fungal seed coating was proved by assessing the AM fungal root colonization and studied on agronomic and quality traits, and in particular on gluten-forming proteins and grain mineral composition. AMF seed coating led to a general yield improvement in old genotypes (+24%). Concerning the effects on grain quality, while modern genotypes showed an increase in protein content (+16%), in the old ones an improvement of gluten quality was observed, with an increased proportion of HMW-GS from +17% to +92%. The gluten index results were mostly influenced by HMW-GS allelic configuration and amount, showing a significant correlation with gliadin-to-glutenin ratio and HMW-GS to LMW-GS. Concerning mineral uptake, AM fungal treatment determined a general increase in P content, which was more marked in the modern group (+44%). Furthermore, AMF significantly increased mean Fe concentration in Verna (+53%) and Bologna (+45%). Finally, phytate content did not increase with AMF, without affecting mineral bioavailability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/423687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact