L-Glutamate (L-Glu) is a well-known flavour enhancer that is present in several foodstuffs. Although L-Glu is generally recognized as safe, the use in foodstuffs remains controversial and then its fast and accurate monitoring represents an important issue. In this work a sensitive and interference-free disposable amperometric biosensor for glutamate monitoring in foodstuffs was developed. The biosensor was prepared by immobilizing glutamate oxidase through co-crosslinking with bovine serum albumin and glutaraldehyde onto a screen printed disposable platinum electrode modified with a permselective overoxidized polypyrrole film. The enzyme immobilization was optimized by using different experimental procedures. The optimized glutamate biosensor was integrated in a flow injection system and characterized in terms of linearity (0.005–1.0 mM, r2 = 0.992), limits of detection (1.8 μM) and quantitation (5.4 μM), repeatability (RSD < 3%) and stability of response under operational conditions (up to 50 h, over 400 analysis). The biosensor showed also excellent anti-interference characteristics towards the main electroactive interferents present in food matrices, and this allowed the application to the accurate monitoring of glutamate in different foodstuffs.

Accurate glutamate monitoring in foodstuffs by a sensitive and interference-free glutamate oxidase based disposable amperometric biosensor

Mentana A.;Nardiello D.;Palermo C.;Centonze D.
2020-01-01

Abstract

L-Glutamate (L-Glu) is a well-known flavour enhancer that is present in several foodstuffs. Although L-Glu is generally recognized as safe, the use in foodstuffs remains controversial and then its fast and accurate monitoring represents an important issue. In this work a sensitive and interference-free disposable amperometric biosensor for glutamate monitoring in foodstuffs was developed. The biosensor was prepared by immobilizing glutamate oxidase through co-crosslinking with bovine serum albumin and glutaraldehyde onto a screen printed disposable platinum electrode modified with a permselective overoxidized polypyrrole film. The enzyme immobilization was optimized by using different experimental procedures. The optimized glutamate biosensor was integrated in a flow injection system and characterized in terms of linearity (0.005–1.0 mM, r2 = 0.992), limits of detection (1.8 μM) and quantitation (5.4 μM), repeatability (RSD < 3%) and stability of response under operational conditions (up to 50 h, over 400 analysis). The biosensor showed also excellent anti-interference characteristics towards the main electroactive interferents present in food matrices, and this allowed the application to the accurate monitoring of glutamate in different foodstuffs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/386390
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact