The prevalence of depression has dramatically increased, and it has been estimated that over 300 million people suffer from depression all over the world. Depression is highly comorbid with many central and peripheral disorders. In this regard, depressive states have been associated with the development of neurological disorders such as Alzheimer's disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology is common in pre-clinical AD, representing an early manifestation of this disease. Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving from neurobiological changes in specific cerebral regions; thus, the search for common biological substrates is becoming an imperative and intriguing field of research. Soluble forms of beta amyloid peptide (A beta) have been implicated both in the development of early memory deficits and neuropsychiatric symptoms. Indeed, soluble A beta species have been shown to induce a depressive-like phenotype in AD animal models. Alterations in monoamine content are a common feature of these neuropathologies. Interestingly, serotonergic system modulation has been implicated in alteration of A beta production. In addition, noradrenaline is considered crucially involved in compensatory mechanisms, leading to increased A beta degradation via several mechanisms, including microglia modulation. In further agreement, antidepressant drugs have also been shown to potentially modulate cognitive symptoms in AD and depression. Thus, the present review summarizes the main knowledge about biological and pathological substrates, such as monoamine and related molecules, commonly involved in AD and depression pathology, thus shading light on new therapeutic approaches.

Monoaminergic system modulation in depression and Alzheimer's disease: A new standpoint?

Morgese M. G.;Trabace L.
2019-01-01

Abstract

The prevalence of depression has dramatically increased, and it has been estimated that over 300 million people suffer from depression all over the world. Depression is highly comorbid with many central and peripheral disorders. In this regard, depressive states have been associated with the development of neurological disorders such as Alzheimer's disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology is common in pre-clinical AD, representing an early manifestation of this disease. Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving from neurobiological changes in specific cerebral regions; thus, the search for common biological substrates is becoming an imperative and intriguing field of research. Soluble forms of beta amyloid peptide (A beta) have been implicated both in the development of early memory deficits and neuropsychiatric symptoms. Indeed, soluble A beta species have been shown to induce a depressive-like phenotype in AD animal models. Alterations in monoamine content are a common feature of these neuropathologies. Interestingly, serotonergic system modulation has been implicated in alteration of A beta production. In addition, noradrenaline is considered crucially involved in compensatory mechanisms, leading to increased A beta degradation via several mechanisms, including microglia modulation. In further agreement, antidepressant drugs have also been shown to potentially modulate cognitive symptoms in AD and depression. Thus, the present review summarizes the main knowledge about biological and pathological substrates, such as monoamine and related molecules, commonly involved in AD and depression pathology, thus shading light on new therapeutic approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/382680
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact