A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6ngg−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.

Determination of aflatoxins in cereal flours by solid-phase microextraction coupled with liquid chromatography and post-column photochemical derivatization-fluorescence detection

QUINTO, MAURIZIO;SPADACCINO, GIUSEPPINA;PALERMO, CARMEN;CENTONZE, DIEGO
2009

Abstract

A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6ngg−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/15882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 70
social impact