Abstract: Selected segments of the nucleotide sequences of the human 18S rRNA and the human formyl peptide receptor 1 mRNA exhibit structural similarities that are unlikely to be due simply to chance. Herein we analyze the structural similarities between the human 18S rRNA gene and the vertebrate chemokine CXC receptor 4 (CXCR4) gene that encodes a class A (rhodopsin-like) seven-transmembrane G-protein coupled receptor belonging to the same superfamily of formyl peptide receptors. The method of study was based on the recording of the positions of the 7-or-more-base oligonucleotide identities encountered in the 18S and CXCR4 genes and the construction of scatter-plots (abscissa-18S; ordinate-CXCR4) displaying the identity points positions. Analysis of the distribution of distances between identity points (abscissa-ordinate in the scatter-plot) demonstrated distinct peaks of frequency around 1200. Series of identities arranged near diagonal lines at 45 degrees in the scatter-plot (quasialignments) were evaluated for their probabilistic level of random occurrence. Results of this analysis demonstrated nonrandom quasialignments between (i) a 900-nt ca. section of the human CXCR4 intron that immediately precedes almost the whole of the coding sequence and the 18S gene from nt 125 to 1025 ca.; and (ii) a 425-nt ca. section of the CXCR4 vertebrate genes, corresponding to nt 137-560 of the coding sequence, and the 18S gene from nt 1300 to 1730 ca. In both instances significant quasialignments are evidenced when CXCR4 nt sequences are shifted to the right by about 1200 nt with respect to the 18S nt sequence, as confirmed by analysis of the abscissa - ordinate differences. Taken together, these results indicate that, at least in humans, a continuous nonrandom quasialignment extends for some 1600 nt, from the second part of the (single) intron to the first part of the coding sequence. We hypothesize that the relatively more recent CXCR4 vertebrate gene might be evolutionarily related to the more ancient and highly conserved 18S gene.

Chemokine CXC receptor 4: an evolutionary approach.

MAFFIONE, ANGELA BRUNA
2006-01-01

Abstract

Abstract: Selected segments of the nucleotide sequences of the human 18S rRNA and the human formyl peptide receptor 1 mRNA exhibit structural similarities that are unlikely to be due simply to chance. Herein we analyze the structural similarities between the human 18S rRNA gene and the vertebrate chemokine CXC receptor 4 (CXCR4) gene that encodes a class A (rhodopsin-like) seven-transmembrane G-protein coupled receptor belonging to the same superfamily of formyl peptide receptors. The method of study was based on the recording of the positions of the 7-or-more-base oligonucleotide identities encountered in the 18S and CXCR4 genes and the construction of scatter-plots (abscissa-18S; ordinate-CXCR4) displaying the identity points positions. Analysis of the distribution of distances between identity points (abscissa-ordinate in the scatter-plot) demonstrated distinct peaks of frequency around 1200. Series of identities arranged near diagonal lines at 45 degrees in the scatter-plot (quasialignments) were evaluated for their probabilistic level of random occurrence. Results of this analysis demonstrated nonrandom quasialignments between (i) a 900-nt ca. section of the human CXCR4 intron that immediately precedes almost the whole of the coding sequence and the 18S gene from nt 125 to 1025 ca.; and (ii) a 425-nt ca. section of the CXCR4 vertebrate genes, corresponding to nt 137-560 of the coding sequence, and the 18S gene from nt 1300 to 1730 ca. In both instances significant quasialignments are evidenced when CXCR4 nt sequences are shifted to the right by about 1200 nt with respect to the 18S nt sequence, as confirmed by analysis of the abscissa - ordinate differences. Taken together, these results indicate that, at least in humans, a continuous nonrandom quasialignment extends for some 1600 nt, from the second part of the (single) intron to the first part of the coding sequence. We hypothesize that the relatively more recent CXCR4 vertebrate gene might be evolutionarily related to the more ancient and highly conserved 18S gene.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/49087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact