This review examines the molecular mechanisms driving structural damage in Spondyloarthritis (SpA), a chronic inflammatory condition characterized by new bone formation that can lead to partial or complete spinal ankylosis. We explore the complex interplay between inflammation, mechanical stress, and bone metabolism in SpA, focusing on key signaling pathways and cytokines that contribute to disease progression. The review analyzes both structural and inflammatory aspects, particularly the role of enthesis biology and the impact of mechanical factors. Additionally, we assess how current therapeutic approaches, including biologic treatments targeting specific inflammatory pathways such as tumor necrosis factor inhibitors, affect disease progression. While these treatments can reduce inflammation and manage clinical symptoms, their limited ability to completely prevent new bone formation highlights the complexity of the underlying pathological processes. We also evaluate emerging therapeutic strategies targeting specific molecular pathways involved in bone formation. Understanding these intricate molecular mechanisms and their interactions is crucial for developing more effective targeted therapies that could potentially not only manage symptoms but also prevent or reverse structural damage in SpA patients.

Mechanisms of ossification of the entheses in spondyloarthritis physiopathogenic aspects and possible therapeutic implication

Barile R.;Miletti M. N.;Rotondo C.;Rella V.;Cantatore F. P.;Corrado A.
2025-01-01

Abstract

This review examines the molecular mechanisms driving structural damage in Spondyloarthritis (SpA), a chronic inflammatory condition characterized by new bone formation that can lead to partial or complete spinal ankylosis. We explore the complex interplay between inflammation, mechanical stress, and bone metabolism in SpA, focusing on key signaling pathways and cytokines that contribute to disease progression. The review analyzes both structural and inflammatory aspects, particularly the role of enthesis biology and the impact of mechanical factors. Additionally, we assess how current therapeutic approaches, including biologic treatments targeting specific inflammatory pathways such as tumor necrosis factor inhibitors, affect disease progression. While these treatments can reduce inflammation and manage clinical symptoms, their limited ability to completely prevent new bone formation highlights the complexity of the underlying pathological processes. We also evaluate emerging therapeutic strategies targeting specific molecular pathways involved in bone formation. Understanding these intricate molecular mechanisms and their interactions is crucial for developing more effective targeted therapies that could potentially not only manage symptoms but also prevent or reverse structural damage in SpA patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/473515
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact