: An impairment in mitochondrial homeostasis plays a crucial role in the process of aging and contributes to the incidence of age-related diseases, including sarcopenia, which is defined as an age-dependent loss of muscle mass and strength. Mitochondrial dysfunction exerts a negative impact on several cellular activities, including bioenergetics, metabolism, and apoptosis. In sarcopenia, mitochondria homeostasis is disrupted because of reduced oxidative phosphorylation and ATP generation, the enhanced production of reactive species, and impaired antioxidant defense. This review re-establishes the most recent evidence on mitochondrial defects that are thought to be relevant in the pathogenesis of sarcopenia and that may represent promising therapeutic targets for its prevention/treatment. Furthermore, we describe mechanisms of action and translational potential of promising mitochondria-targeted drug delivery systems, including molecules able to boost the metabolism and bioenergetics, counteract apoptosis, antioxidants to scavenge reactive species and decrease oxidative stress, and target mitophagy. Even though these mitochondria-delivered strategies demonstrate to be promising in preclinical models, their use needs to be promoted for clinical studies. Therefore, there is a compelling demand to further understand the mechanisms modulating mitochondrial homeostasis, to characterize powerful compounds that target muscle mitochondria to prevent sarcopenia in aged people.

Muscle Delivery of Mitochondria-Targeted Drugs for the Treatment of Sarcopenia: Rationale and Perspectives

Bellanti, Francesco
Writing – Original Draft Preparation
;
Lo Buglio, Aurelio
Writing – Original Draft Preparation
;
Vendemiale, Gianluigi
Writing – Review & Editing
2022-01-01

Abstract

: An impairment in mitochondrial homeostasis plays a crucial role in the process of aging and contributes to the incidence of age-related diseases, including sarcopenia, which is defined as an age-dependent loss of muscle mass and strength. Mitochondrial dysfunction exerts a negative impact on several cellular activities, including bioenergetics, metabolism, and apoptosis. In sarcopenia, mitochondria homeostasis is disrupted because of reduced oxidative phosphorylation and ATP generation, the enhanced production of reactive species, and impaired antioxidant defense. This review re-establishes the most recent evidence on mitochondrial defects that are thought to be relevant in the pathogenesis of sarcopenia and that may represent promising therapeutic targets for its prevention/treatment. Furthermore, we describe mechanisms of action and translational potential of promising mitochondria-targeted drug delivery systems, including molecules able to boost the metabolism and bioenergetics, counteract apoptosis, antioxidants to scavenge reactive species and decrease oxidative stress, and target mitophagy. Even though these mitochondria-delivered strategies demonstrate to be promising in preclinical models, their use needs to be promoted for clinical studies. Therefore, there is a compelling demand to further understand the mechanisms modulating mitochondrial homeostasis, to characterize powerful compounds that target muscle mitochondria to prevent sarcopenia in aged people.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/451350
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact