The significance of considering vertical layers in studying soil organic carbon (SOC) dynamics within wetlands arises from the interplay of hydrological and ecological factors across various soil depths, where anaerobic conditions prevail in the deeper layers. This anaerobic environment significantly influences microbial processes, leading to methane production rather than carbon dioxide. Factors such as the accumulation of organic material, temperature gradients, and fluctuations in the water table contribute to diverse SOC dynamics across different vertical strata. Understanding these variations in vertical layers is crucial for accurate assessments of carbon stocks, greenhouse gas emissions, and the overall role of wetlands in the global carbon cycle. Such understanding is essential for devising effective conservation and management strategies, particularly in the face of climate change and land-use modifications impacting wetlands. To model these dynamics, a vertical extension of the Rothamsted Carbon (RothC) model can be successfully employed in conjunction with the Richardson equation. This combined approach simulates the influence of soil moisture flux on the transport of carbon throughout the soil column. The specific scenario examined is focused on the growth of rice in the Ebro Delta lands and on the carbon flux emissions in the Ria de Aveiro Coastal lagoon, both sites being part of the Long-Term Ecological Research (LTER) network and the eLTER RI community. This work contributes to the research activities carried out by the authors within the projects H2020 eLTER PLUS, HE RESTORE4Cs, and PNRR - “National Biodiversity Future Centre”, funded by the European Union – NextGenerationEU.
A vertical RothC model for simulating the Soil Organic Carbon dynamics in coastal wetland environments
Carmela Marangi;Angela Martiradonna;
2024-01-01
Abstract
The significance of considering vertical layers in studying soil organic carbon (SOC) dynamics within wetlands arises from the interplay of hydrological and ecological factors across various soil depths, where anaerobic conditions prevail in the deeper layers. This anaerobic environment significantly influences microbial processes, leading to methane production rather than carbon dioxide. Factors such as the accumulation of organic material, temperature gradients, and fluctuations in the water table contribute to diverse SOC dynamics across different vertical strata. Understanding these variations in vertical layers is crucial for accurate assessments of carbon stocks, greenhouse gas emissions, and the overall role of wetlands in the global carbon cycle. Such understanding is essential for devising effective conservation and management strategies, particularly in the face of climate change and land-use modifications impacting wetlands. To model these dynamics, a vertical extension of the Rothamsted Carbon (RothC) model can be successfully employed in conjunction with the Richardson equation. This combined approach simulates the influence of soil moisture flux on the transport of carbon throughout the soil column. The specific scenario examined is focused on the growth of rice in the Ebro Delta lands and on the carbon flux emissions in the Ria de Aveiro Coastal lagoon, both sites being part of the Long-Term Ecological Research (LTER) network and the eLTER RI community. This work contributes to the research activities carried out by the authors within the projects H2020 eLTER PLUS, HE RESTORE4Cs, and PNRR - “National Biodiversity Future Centre”, funded by the European Union – NextGenerationEU.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.