Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of “off-target” effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.

Phenothiazines: Nrf2 activation and antioxidant effects

Tucci P.;
2024-01-01

Abstract

Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of “off-target” effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/447909
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact