L’ocratossina (OTA) è una delle più abbondanti micotossine contaminanti gli alimenti prodotta da specie fungine appartenenti ai generi Aspergillus e Penicillium. Il vino è considerato la seconda fonte di contaminazione da OTA dopo i cereali. OTA è una potente nefrotossina, classificata come possibile cancerogeno per l’uomo (Gruppo 2B). Aspergillus carbonarius, appartenente alla sezione Nigri, è considerato il maggiore responsabile della contaminazione da OTA nell’uva. A seconda dello stadio fenologico della pianta, della zona geografica, delle condizioni metereologiche, la contaminazione può variare da un anno all’altro. Infatti, la colonizzazione fungina e la produzione di micotossine negli ecosistemi agricoli è influenzata dalle condizioni climatiche. Sulla base delle informazioni esistenti relativamente al cambiamento climatico, si stima che le coltivazioni potrebbero essere soggette a variazioni climatiche caratterizzate dall’ aumento della concentrazione di CO2 (da 400 a 800-1200 ppm) e delle temperature (+2-5°C). Nello scenario di tali cambiamenti, la sicurezza alimentare potrebbe essere compromessa e le micotossine rappresentare un crescente pericolo per la salute umana. Gli effetti del cambiamento climatico (CC) sono già evidenti risultando, ad esempio, nell’ampliamento dell’area esposta al rischio di contaminazione da aflatossine nei paesi del sud Est Europeo. Inoltre, in stagioni favorenti la contaminazione di OTA il limite legislativo stabilito per la sua presenza in uva e prodotti da essa derivati (2 μg∙L-1) potrebbe essere superato. Al riguardo, sono state proposte numerose strategie per la decontaminazione del vino da OTA sebbene l’uso di adsorbenti, tra cui il carbone attivo associato ad una diminuzione dei parametri organolettici e nutritivi del prodotto finale, ad oggi sia l’unico sistema impiegato nell’industria alimentare. Una soluzione migliore, potenzialmente sicura ed ecosostenibile, potrebbe essere rappresentata dalla biodegradazione attraverso microorganismi ed enzimi. Tuttavia, questa strategia non è comunemente usata. Con il presente progetto di dottorato, abbiamo studiato l’effetto combinato di fattori del CC (ad es. l’aumento di temperatura, stress idrico e incremento della concentrazione di CO2) sull’ecofisiologia, l’espressione di geni correlati alla biosintesi di OTA e la produzione fenotipica della stessa in ceppi di A. carbonarius. Per lo svolgimento delle seguenti attività è stato utilizzato un sistema in vitro preparando un substrato a base di succo d’uva e simulando condizioni climatiche tipiche della regione Puglia, un’area particolarmente suscettibile al problema della contaminazione da OTA. Inoltre, la già nota capacità di A. carbonarius di degradare la tossina, è stata considerata come possibile strategia di riduzione di OTA. Lo scopo finale è stato quello di identificare e caratterizzare proteasi responsabili della degradazione dell’ocratossina in OTα, un suo derivato meno tossico. iv Gli interessanti risultati ottenuti evidenziano che il preannunciato aumento delle temperature sia diurne che notturne potrebbe non determinare un aumento del rischio ocratossigeno nell’areale del Sud della Puglia. D’altro canto, i risultati sperimentali in riferimento all’incremento della CO2, indicano un possibile aumento della contaminazione da OTA. Inoltre, a causa dei cambiamenti climatici molte specie fungine potrebbero risultare resilienti oppure trovare condizioni più idonee al loro sviluppo in zone diverse da quelle già note. Una rinnovata valutazione e definizione delle aree di rischio potrebbero risultare necessarie. La riduzione dei livelli di OTA e il concomitante aumento di OTα, hanno confermato la capacità di A. carbonarius di degradare OTA. Infatti, l’aumento dell’espressione di alcuni geni esaminati codificanti per proteasi, ha suggerito che queste potrebbero svolgere un ruolo chiave nella degradazione della micotossina. Un’aspartil proteasi (proteasi acida) è stata selezionata per ulteriori studi e per il suo possibile impiego come decontaminante di prodotti derivanti dall’uva.
Ochratoxin A (OTA) is one of the most-abundant food-contaminating mycotoxins produced by species belonging to Aspergillus and Penicillium genera. Wine is reported to be the second major source of OTA intake after cereals. OTA is a potent nephrotoxin, classified as a group 2B, possible human carcinogen. Aspergillus carbonarius, which belong to the Aspergillus section Nigri, has been identified as the major cause of OTA contamination in grape-berries. OTA contamination of grapes is strongly related to plant phenology, geographical area and meteorological conditions and varies from season to season. Indeed, climate represents the key-factor in the agro-ecosystem that influences fungal colonization and mycotoxin production in crops. Climate change (CC) is expected to have a profound effect on our landscape worldwide, and also to have an important impact on sustainable food production system. Based on existing information on climate change, it is estimated that the environment in which crops will be grown in the next 25-50 years may change markedly with atmospheric CO2 concentration expected to double or triple (from 400 to 800-1200) and temperature to increase (+2-5°C). These projected changes in climate conditions are likely to have a detrimental effect on food safety, with mycotoxins representing one of the major hazards. In fact, CC effects are already evident for the widening of area exposed to aflatoxins risks, like south east of Europe. In addition, it is reported that in high risk years OTA contamination could exceed the legislative limit (2 μg∙L-1) in wine and other grape-derived products. In this respect, various strategies for decontamination of wine from OTA have been studied in the last decade but no reliable technique/system is available except the use of activated charcoal by reducing also wine quality. A better solution, potentially safe and environmentally friendly, to decontaminate grape derived products by OTA could be biodegradation, using microorganisms or their enzymes. Nevertheless, this technology is not commonly used in food processing. With the present PhD project, we studied the impact of combined CC factors (i.e. increasing temperature, water stress and elevated CO2 concentrations) on the ecophysiology, expression of OTA related genes and phenotypic OTA production in A. carbonarius strains. Such activities were carried out in vitro by using a grape-based medium and simulating climate conditions typical of Apulia region, which is an area in South Italy susceptible to OTA contamination. Moreover, it has been evaluated the possibility to develop a new strategy to reduce the risk of OTA contamination by exploiting the already known capability of A. carbonarius to degrade the toxin. The ii ultimate aim was to identify and characterize proteases responsible of OTA degradation into the less toxic compound OTα. Interesting results has been obtained evidencing as the expected raise of day/night temperature may not be associated to an increase of OTA risk in the area studied. On the other hand, experiments with 2.5x higher CO2 concentrations showed that the probability of OTA contamination may enhance and may lead to redefine the distribution of the ochratoxigenic risk areas. Reduced levels of OTA and the concomitant slight increase of OTα, confirmed the A. carbonarius ability to degrade OTA. Interestingly, increased levels of some proteases encoding genes, suggested that these might have played a key role in degrading OTA excluding that the reduction observed was due to the also known capability of the fungus to retain the toxin. An aspartyl protease (acid protease) was selected for further studies as a possible de-contamination application in grape by-products.
Aspergillus from grapes: ochratoxin A risk in relation to climate change and new strategies for reducing contamination / Cervini, CARLA FRANCESCA. - (2020). [10.14274/cervini-carla-francesca_phd2020]
Aspergillus from grapes: ochratoxin A risk in relation to climate change and new strategies for reducing contamination
CERVINI, CARLA FRANCESCA
2020-01-01
Abstract
Ochratoxin A (OTA) is one of the most-abundant food-contaminating mycotoxins produced by species belonging to Aspergillus and Penicillium genera. Wine is reported to be the second major source of OTA intake after cereals. OTA is a potent nephrotoxin, classified as a group 2B, possible human carcinogen. Aspergillus carbonarius, which belong to the Aspergillus section Nigri, has been identified as the major cause of OTA contamination in grape-berries. OTA contamination of grapes is strongly related to plant phenology, geographical area and meteorological conditions and varies from season to season. Indeed, climate represents the key-factor in the agro-ecosystem that influences fungal colonization and mycotoxin production in crops. Climate change (CC) is expected to have a profound effect on our landscape worldwide, and also to have an important impact on sustainable food production system. Based on existing information on climate change, it is estimated that the environment in which crops will be grown in the next 25-50 years may change markedly with atmospheric CO2 concentration expected to double or triple (from 400 to 800-1200) and temperature to increase (+2-5°C). These projected changes in climate conditions are likely to have a detrimental effect on food safety, with mycotoxins representing one of the major hazards. In fact, CC effects are already evident for the widening of area exposed to aflatoxins risks, like south east of Europe. In addition, it is reported that in high risk years OTA contamination could exceed the legislative limit (2 μg∙L-1) in wine and other grape-derived products. In this respect, various strategies for decontamination of wine from OTA have been studied in the last decade but no reliable technique/system is available except the use of activated charcoal by reducing also wine quality. A better solution, potentially safe and environmentally friendly, to decontaminate grape derived products by OTA could be biodegradation, using microorganisms or their enzymes. Nevertheless, this technology is not commonly used in food processing. With the present PhD project, we studied the impact of combined CC factors (i.e. increasing temperature, water stress and elevated CO2 concentrations) on the ecophysiology, expression of OTA related genes and phenotypic OTA production in A. carbonarius strains. Such activities were carried out in vitro by using a grape-based medium and simulating climate conditions typical of Apulia region, which is an area in South Italy susceptible to OTA contamination. Moreover, it has been evaluated the possibility to develop a new strategy to reduce the risk of OTA contamination by exploiting the already known capability of A. carbonarius to degrade the toxin. The ii ultimate aim was to identify and characterize proteases responsible of OTA degradation into the less toxic compound OTα. Interesting results has been obtained evidencing as the expected raise of day/night temperature may not be associated to an increase of OTA risk in the area studied. On the other hand, experiments with 2.5x higher CO2 concentrations showed that the probability of OTA contamination may enhance and may lead to redefine the distribution of the ochratoxigenic risk areas. Reduced levels of OTA and the concomitant slight increase of OTα, confirmed the A. carbonarius ability to degrade OTA. Interestingly, increased levels of some proteases encoding genes, suggested that these might have played a key role in degrading OTA excluding that the reduction observed was due to the also known capability of the fungus to retain the toxin. An aspartyl protease (acid protease) was selected for further studies as a possible de-contamination application in grape by-products.File | Dimensione | Formato | |
---|---|---|---|
TESI_Cervini.pdf
Open Access dal 31/01/2021
Tipologia:
PDF Editoriale
Licenza:
Dominio pubblico
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.