We discuss the results of a proton irradiation campaign of a GAGG:Ce (Cerium-doped Gadolinium Aluminum Gallium Garnet) scintillation crystal, carried out in the framework of the HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites — Technological and Scientific Pathfinder) mission. A scintillator sample was irradiated with 70 MeV protons, at levels equivalent to those expected in equatorial and sun-synchronous low-Earth orbits over orbital periods spanning 6 months to 10 years. The data we acquired are used to introduce an original model of GAGG:Ce afterglow emission. Results from this model are applied to the HERMES-TP/SP scenario, aiming at an upper-bound estimate of the detector performance degradation resulting from afterglow emission.
Space Applications of GAGG:Ce Scintillators: A Study of Afterglow Emission by Proton Irradiation
Di Ruzza B.;
2022-01-01
Abstract
We discuss the results of a proton irradiation campaign of a GAGG:Ce (Cerium-doped Gadolinium Aluminum Gallium Garnet) scintillation crystal, carried out in the framework of the HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites — Technological and Scientific Pathfinder) mission. A scintillator sample was irradiated with 70 MeV protons, at levels equivalent to those expected in equatorial and sun-synchronous low-Earth orbits over orbital periods spanning 6 months to 10 years. The data we acquired are used to introduce an original model of GAGG:Ce afterglow emission. Results from this model are applied to the HERMES-TP/SP scenario, aiming at an upper-bound estimate of the detector performance degradation resulting from afterglow emission.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.