Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a redox-sensitive transcription factor that binds to the antioxidant response element consensus sequence, decreasing reactive oxygen species and regulating the transcription of a wide array of genes, including antioxidant and detoxifying enzymes, regulating genes involved in mitochondrial function and biogenesis. Moreover, NRF2 has been shown to directly regulate the expression of anti-inflammatory mediators reducing the expression of pro-inflammatory cytokines. In recent years, attention has turned to the role NRF2 plays in the brain in different diseases such Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and others. This review focused on the evidence, derived in vitro, in vivo and from clinical trials, supporting a role for NRF2 activation in maintaining and improving cognitive function and how its activation can be used to elicit neuroprotection and lead to cognitive enhancement. The review also brings a critical discussion concerning the possible prophylactic and/or therapeutic use of NRF2 activators in treating cognitive impairment-related conditions.

The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function

Tucci P.;
2022-01-01

Abstract

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a redox-sensitive transcription factor that binds to the antioxidant response element consensus sequence, decreasing reactive oxygen species and regulating the transcription of a wide array of genes, including antioxidant and detoxifying enzymes, regulating genes involved in mitochondrial function and biogenesis. Moreover, NRF2 has been shown to directly regulate the expression of anti-inflammatory mediators reducing the expression of pro-inflammatory cytokines. In recent years, attention has turned to the role NRF2 plays in the brain in different diseases such Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and others. This review focused on the evidence, derived in vitro, in vivo and from clinical trials, supporting a role for NRF2 activation in maintaining and improving cognitive function and how its activation can be used to elicit neuroprotection and lead to cognitive enhancement. The review also brings a critical discussion concerning the possible prophylactic and/or therapeutic use of NRF2 activators in treating cognitive impairment-related conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/421707
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact