Large numbers of human hepatocytes were obtained from split and whole livers by using an adaptive form of the collagenase perfusion technique employed in rodent and human biopsies. In order to guarantee a homogenous distribution of the perfusate within the whole specimen, major hepatic veins were cannulated with large bore catheters. This technique allowed for the isolation of human hepatocytes on a large scale (up to 18.5 x 10(9) in one case) from normal and diseased liver specimens. The yield of isolated normal viable hepatocytes is inversely proportional to the donor age. In addition, it was noted that a short time between declared death and organ harvest (cross clamp time) results in higher viability of hepatocytes. In contrast, the time of cold organ preservation did not correlate with the viability or the yield of isolated hepatocytes. We conclude that the technique presented here allows isolation of large numbers of human hepatocytes from specimens unsuitable for transplantation but very valuable for biomedical research.
A NEW TECHNIQUE FOR ISOLATING AND CULTURING HUMAN HEPATOCYTES FROM WHOLE OR SPLIT LIVERS NOT USED FOR TRANSPLANTATION
BARTOLI, F;
1994-01-01
Abstract
Large numbers of human hepatocytes were obtained from split and whole livers by using an adaptive form of the collagenase perfusion technique employed in rodent and human biopsies. In order to guarantee a homogenous distribution of the perfusate within the whole specimen, major hepatic veins were cannulated with large bore catheters. This technique allowed for the isolation of human hepatocytes on a large scale (up to 18.5 x 10(9) in one case) from normal and diseased liver specimens. The yield of isolated normal viable hepatocytes is inversely proportional to the donor age. In addition, it was noted that a short time between declared death and organ harvest (cross clamp time) results in higher viability of hepatocytes. In contrast, the time of cold organ preservation did not correlate with the viability or the yield of isolated hepatocytes. We conclude that the technique presented here allows isolation of large numbers of human hepatocytes from specimens unsuitable for transplantation but very valuable for biomedical research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.