Lasioderma serricorne, also known as cigarette beetle, can exploit a wide variety of stored materials as foods, but it is particularly common on tobacco and herbs. This beetle is a dominant pest species of stored Chinese medicinal materials (CMMs) causing high economic damages, making effective control strategies urgently needed. Behavioural manipulation is an important component of Integrated Pest Management. To the best of our knowledge, plant-borne volatile organic compounds (VOCs) have never been explored to develop lures for managing L. serricorne. In this study, the behavioural responses of L. serricorne to VOCs from four selected CMMs (Euphorbia kansui, Aconitum carmichaelii, Eucommia ulmoides and Pinellia ternata) were studied and their components analysed. Then, the olfactory responses of L. serricorne to the most abundant VOC identified in the preferred CMM, i.e., paeonal, was tested. L. serricorne showed significant differences in its preferences for the VOCs from the four CMMs, i.e, E. kansui > A. carmichaelii > E. ulmoides > P. ternata. From the VOCs of E. kansui, A. carmichaelii, E. ulmoides, and P. ternata, 77, 74, 56, and 81 molecules, were identified, respectively. Paeonal (23.5%), junipene (17.2%), hexanal (17.1%), and benzeneacetonitrile (14.0%) were the most abundant, respectively. Since paeonal dominated the VOC spectrum of the most preferred CMM, this compound was selected for further studies. L. serricorne showed significant positive responses to paeonal tested at various doses, with the most attractive ones being 100 μg and 500 μg. Our findings shed light on the olfactory cues routing the food searching behaviour in the cigarette beetle, providing important information on how L. serricorne targets particular CMMs. The high attractiveness of paeonal at low doses tested here may be exploited further to develop novel monitoring and control tools (e.g., lure-and-kill strategies) against this important stored product pest.
Innate positive chemotaxis to paeonal from highly attractive Chinese medicinal herbs in the cigarette beetle, Lasioderma serricorne
Germinara G. S.;
2019-01-01
Abstract
Lasioderma serricorne, also known as cigarette beetle, can exploit a wide variety of stored materials as foods, but it is particularly common on tobacco and herbs. This beetle is a dominant pest species of stored Chinese medicinal materials (CMMs) causing high economic damages, making effective control strategies urgently needed. Behavioural manipulation is an important component of Integrated Pest Management. To the best of our knowledge, plant-borne volatile organic compounds (VOCs) have never been explored to develop lures for managing L. serricorne. In this study, the behavioural responses of L. serricorne to VOCs from four selected CMMs (Euphorbia kansui, Aconitum carmichaelii, Eucommia ulmoides and Pinellia ternata) were studied and their components analysed. Then, the olfactory responses of L. serricorne to the most abundant VOC identified in the preferred CMM, i.e., paeonal, was tested. L. serricorne showed significant differences in its preferences for the VOCs from the four CMMs, i.e, E. kansui > A. carmichaelii > E. ulmoides > P. ternata. From the VOCs of E. kansui, A. carmichaelii, E. ulmoides, and P. ternata, 77, 74, 56, and 81 molecules, were identified, respectively. Paeonal (23.5%), junipene (17.2%), hexanal (17.1%), and benzeneacetonitrile (14.0%) were the most abundant, respectively. Since paeonal dominated the VOC spectrum of the most preferred CMM, this compound was selected for further studies. L. serricorne showed significant positive responses to paeonal tested at various doses, with the most attractive ones being 100 μg and 500 μg. Our findings shed light on the olfactory cues routing the food searching behaviour in the cigarette beetle, providing important information on how L. serricorne targets particular CMMs. The high attractiveness of paeonal at low doses tested here may be exploited further to develop novel monitoring and control tools (e.g., lure-and-kill strategies) against this important stored product pest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.