In chronic kidney disease (CKD), the gut-microbiota metabolites indoxyl sulfate (IS) and p-cresyl sulfate (PCS) progressively accumulate due to their high albumin-binding capacity, leading to clinical complications. In a prospective crossover controlled trial, 60 patients with CKD grades 3B-4 (GFR = 21.6 ± 13.2 mL/min) were randomly assigned to two dietary regimens: (i) 3 months of free diet (FD) (FD is the diet usually used by the patient before being enrolled in the Medika study), 6 months of very low protein diet (VLPD), 3 months of FD and 6 months of Mediterranean diet (MD); (ii) 3 months of FD, 6 months of MD, 3 months of FD, and 6 months of VLPD. VLPD reduced inflammatory Proteobacteria and increased Actinobacteria phyla. MD and VLPD increased some butyrate-forming species of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bifidobacteriaceae, and decrease the pathobionts Enterobacteriaceae. The increased level of potential anti-inflammatory Blautia and Faecalibacterium, as well as butyrate-forming Coprococcus and Roseburia species in VLPD was positively associated with dietary intakes and it was negatively correlated with IS and PCS. Compared to FD and MD, VLPD showed a lower amount of some Lactobacillus, Akkermansia, Streptococcus, and Escherichia species. MD and VLPD reduced both the total and free serum IS (MD -36%, -40% and VLPD -69%, -73%, respectively) and PCS (MD -38%, -44% and VLPD -58%, -71%, respectively) compared to FD. VLPD reduced serum D-lactate compared to MD and FD. MD and, to a greater extent, VLPD are effective in the beneficial modulation of gut microbiota, reducing IS and PCS serum levels, and restoring intestinal permeability in CKD patients.

Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study)

Rocchetti, Maria Teresa;
2019-01-01

Abstract

In chronic kidney disease (CKD), the gut-microbiota metabolites indoxyl sulfate (IS) and p-cresyl sulfate (PCS) progressively accumulate due to their high albumin-binding capacity, leading to clinical complications. In a prospective crossover controlled trial, 60 patients with CKD grades 3B-4 (GFR = 21.6 ± 13.2 mL/min) were randomly assigned to two dietary regimens: (i) 3 months of free diet (FD) (FD is the diet usually used by the patient before being enrolled in the Medika study), 6 months of very low protein diet (VLPD), 3 months of FD and 6 months of Mediterranean diet (MD); (ii) 3 months of FD, 6 months of MD, 3 months of FD, and 6 months of VLPD. VLPD reduced inflammatory Proteobacteria and increased Actinobacteria phyla. MD and VLPD increased some butyrate-forming species of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bifidobacteriaceae, and decrease the pathobionts Enterobacteriaceae. The increased level of potential anti-inflammatory Blautia and Faecalibacterium, as well as butyrate-forming Coprococcus and Roseburia species in VLPD was positively associated with dietary intakes and it was negatively correlated with IS and PCS. Compared to FD and MD, VLPD showed a lower amount of some Lactobacillus, Akkermansia, Streptococcus, and Escherichia species. MD and VLPD reduced both the total and free serum IS (MD -36%, -40% and VLPD -69%, -73%, respectively) and PCS (MD -38%, -44% and VLPD -58%, -71%, respectively) compared to FD. VLPD reduced serum D-lactate compared to MD and FD. MD and, to a greater extent, VLPD are effective in the beneficial modulation of gut microbiota, reducing IS and PCS serum levels, and restoring intestinal permeability in CKD patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/394634
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 78
social impact