Sterilization is a fundamental step in the reuse of endodontic instruments. The sterilization procedure involves disinfection, cleaning, washing, drying, packaging, and sterilization by heat. Heat sterilization can lead to changes in the physical and mechanical properties of dental instruments. These changes can affect the external surfaces via micropitting, corrosion, a reduction in cutting capacity, and/or an influence on the resistance to cyclic fatigue or to torsional fatigue. In this study, we examined the modification of the torsional properties of endodontic instruments after hot sterilization, and compared the properties with instruments not subjected to hot sterilization cycles in terms of resistance to torsional fatigue and deflection angle in NiTi and steel instruments. The following work was performed based on the PRISMA indications. Studies were identified through bibliographic research using electronic databases. A total of 725 records were identified in the PubMed and Scopus databases. A total of 685 records remained after exclusion by year of publication (1979 to 2019). With the application of the eligibility criteria (all articles pertaining to the issue of sterilization in endodontics), we found 146 articles, which decreased to 130 articles after elimination of duplications. There were 45 articles that studied the influences of sterilization procedures on the physical and mechanical characteristics of the instruments, and 12 that measured parameters related to resistance to torsional fatigue. Applying the inclusion and exclusion criteria resulted in a total of eight articles for quantitative analysis. The meta-analysis results show a pejorative effect of torsional fatigue for NiTi instruments subjected to heat sterilization compared to the non-sterilized control.
Effects of hot sterilization on torsional properties of endodontic instruments: Systematic review with meta-analysis
Dioguardi M.;Caponio V. C. A.;Zhurakivska K.;Troiano G.;Lo Muzio L.
2019-01-01
Abstract
Sterilization is a fundamental step in the reuse of endodontic instruments. The sterilization procedure involves disinfection, cleaning, washing, drying, packaging, and sterilization by heat. Heat sterilization can lead to changes in the physical and mechanical properties of dental instruments. These changes can affect the external surfaces via micropitting, corrosion, a reduction in cutting capacity, and/or an influence on the resistance to cyclic fatigue or to torsional fatigue. In this study, we examined the modification of the torsional properties of endodontic instruments after hot sterilization, and compared the properties with instruments not subjected to hot sterilization cycles in terms of resistance to torsional fatigue and deflection angle in NiTi and steel instruments. The following work was performed based on the PRISMA indications. Studies were identified through bibliographic research using electronic databases. A total of 725 records were identified in the PubMed and Scopus databases. A total of 685 records remained after exclusion by year of publication (1979 to 2019). With the application of the eligibility criteria (all articles pertaining to the issue of sterilization in endodontics), we found 146 articles, which decreased to 130 articles after elimination of duplications. There were 45 articles that studied the influences of sterilization procedures on the physical and mechanical characteristics of the instruments, and 12 that measured parameters related to resistance to torsional fatigue. Applying the inclusion and exclusion criteria resulted in a total of eight articles for quantitative analysis. The meta-analysis results show a pejorative effect of torsional fatigue for NiTi instruments subjected to heat sterilization compared to the non-sterilized control.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.