The Advanced Therapy Production Unit of the Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), headed by prof. Angelo Luigi Vescovi, located in San Giovanni Rotondo (FG – Italy), is a Cell Factory authorized by the competent Ethic Committee to isolate human neural stem cells (hNSCs) according to a Good Manufacturing Practice (GMP) grade protocol, from brain specimens of fetuses died for natural causes in utero death or miscarriage, for research and clinical applications for neurodegenerative diseases. The very same hNSCs have already been used in a phase I clinical trial on Amyotrophic Lateral Sclerosis (ALS) patients, concluded and conducted in Azienda Ospedaliera Santa Maria di Terni (Mazzini L. et al., 2015). In this study hNSCs were delivered into the spinal cord showing no major complications due to transplant procedure; moreover, in a very similar study, conducted by prof. Boulis and colleagues in Atlanta, cells that were detected up to 30 months after transplant even in patients showed a transient improvement of motor function (Boulis et al. 2011; Riley J.P. et al. 2011, Riley J. et al. 2014, Glass J.D. et al. 2012, Feldman E. et al. 2014, Tadesse T. et al. 2014). We are now planning a Phase II clinical trial on ALS and a Phase I on SPMS patients is currently on-going. Considering the source of hNSCs, the starting material is very rare and precious; in addition, since the spontaneous abortion may occur at any and unpredictable times and our manufacturing method requires that fetal human brain tissue specimens should be received and transferred into GMP facility to be immediately processed, this could involve a heavy workloads and, if there is unavailability of suitably trained staff, waste of precious tissue donations. Therefore, it is really important to find a way to optimize the production process of hNSCs for the development of future clinical trials. We hypothesize that block of fetal human brain tissue can be cryopreserved and that neural stem cells with a high post-thawing viability could be recovered at later time. To our knowledge, currently there is no description of a specific clinical-grade protocol for the cryopreservation of human brain tissue. Dimethyl sulfoxide (DMSO) is the most frequently used as cryoprotectant agent in clinical setting but there is no consensus on its optimal concentration in cellular or tissue products. Defining the right concentration is important, because DMSO is cytotoxic. Historically, 10% of DMSO is widely used for cell cryopreservation. Our Translational Advanced Therapy Research Center follows the “standard” of 10% for cell cryopreservation (Gelati M. et al. 2013); however, the recent trend is reducing DMSO concentration. We report here a GMP protocol for successful freezing of pieces of tissue derived from human fetal brain subventricular zone brain, testing three different percentages of DMSO in freezing medium. Cellular assays show that the cell cultures derived from frozen tissue are equivalent to those cultures derived from fresh tissue with no significant difference among 5%, 8% and 10% of DMSO solutions compared with fresh tissue. Moreover, our results argue that freezing of tissue up to 5 days at -80°C and up to 2 and 9 months in liquid nitrogen does not markedly alter cell viability and multipotency of NSCs. From our preliminary data, we conclude that cryopreservation tissue allows to create a system of biobanking of stem cells for our restorative therapy, granting necessary safety and quality control standards.

L'Unità Produttiva per Terapie Avanzate dell'Istituto per la Biologia delle Cellule Staminali, la Medicina Rigenerativa e le Terapie innovative (ISBReMIT), guidata dal Prof. Angelo Luigi Vescovi, con sede a San Giovanni Rotondo (FG – Italia), è una Cell-Factory autorizzata dalla Comitato Etico di Casa Sollievo della Sofferenza ad isolare cellule staminali neurali umane, in stretto regime GMP (Good Manufacturing Practice), da cervelli di feti morti per cause naturali in utero o aborto spontaneo, per la ricerca e le applicazioni cliniche in ambito di malattie neurodegenerative. Cellule staminali neurali fetali sono già state utilizzate in pazienti affetti da Sclerosi Laterale Amiotrofica (SLA) nell’ambito di in uno studio clinico di fase I condotto e conclusosi presso l’Azienda Ospedaliera Santa Maria di Terni (Mazzini L. et al., 2015). In questo studio le staminali neurali umane sono state trapiantate nel midollo spinale, senza riscontrare nei pazienti alcun evento avverso imputabile alla procedura chirurgica o alle cellule trapiantate; inoltre, in uno studio molto simile condotto dal Prof. Boulis e colleghi ad Atlanta, le staminali neurali sono state monitorate fino a 30 mesi dopo il trapianto e i pazienti hanno mostrato un miglioramento transitorio della funzione motoria (Boulis et al. 2011; 2011 Riley J.P. et al., Riley J. et al. 2014, Glass J.D. et al. 2012, Feldman E. et al. 2014, Tadesse T. et al. 2014). Attualmente, stiamo pianificando uno studio clinico di fase II sulla SLA mentre la sperimentazione di fase I sui pazienti con Sclerosi Multipla Progressiva Secondaria (SMPS) è già in corso. Considerata la fonte delle cellule staminali neurali, il materiale di partenza è molto raro e prezioso; inoltre, dal momento che l'aborto spontaneo può verificarsi in qualsiasi momento e il nostro metodo di produzione richiede che i campioni di tessuto cerebrale umano fetale debbano essere ricevuti ed immediatamente trasferiti in un impianto GMP per essere processati e trasformati, ciò potrebbe comportare carichi di lavoro gravosi e, in caso di indisponibilità di personale adeguatamente addestrato, perdita del tessuto prezioso. Pertanto, è molto importante trovare un modo per ottimizzare il processo di produzione delle staminali neurali umane per lo sviluppo di future sperimentazioni cliniche. Ipotizziamo che il tessuto cerebrale umano fetale possa essere crioconservato e che le cellule staminali neurali possano essere utilizzate in un secondo momento con alta vitalità post-scongelamento. Attualmente non esiste un protocollo GMP per la crioconservazione ottimale del tessuto cerebrale umano. Il dimetilsolfossido (DMSO) è l’agente crioprotettivo più frequentemente usato in clinica, ma non è ben definita la concentrazione ottimale per cellule o tessuti. Stabilire la giusta concentrazione è importante, perché il DMSO è citotossico. In letteratura è descritta il 10% di DMSO come percentuale ampiamente usata per la crioconservazione delle cellule. Il nostro centro di ricerca per la terapia avanzata traslazionale segue lo "standard" del 10% per la crioconservazione delle cellule (Gelati M. et al. 2013); tuttavia, la tendenza è di ridurne la concentrazione. In questo lavoro, riportiamo un protocollo di congelamento GMP per tessuto derivante della zona sotto-ventricolare del cervello fetale umano, testando tre diverse percentuali di DMSO nel mezzo di congelamento. I saggi cellulari dimostrano che le colture cellulari derivate dal tessuto congelato sono equivalenti a quelle colture derivate da tessuto fresco senza differenze significative tra il 5%, l'8% e il 10% delle soluzioni DMSO. Inoltre, i nostri risultati sostengono che il congelamento dei tessuti fino a 5 giorni a -80 °C e fino a 2 e 9 mesi in azoto liquido non altera sensibilmente la vitalità delle cellule e la multipotenza delle staminali neurali. I dati preliminari contribuiscono a dimostrare che la crioconservazione del tessuto permette di creare un sistema di bio-banking delle cellule staminali per la nostra terapia cellulare somatica, garantendo al contempo gli standard necessari di sicurezza e controllo di qualità.

Development of cryopreservation of human neural tissue as strategy to produce clinical-grade stem cells / Fidanza, LUCIA MICHELA PIA. - (2019 Apr 30). [10.14274/fidanza-lucia-michela-pia_phd2019-04-30]

Development of cryopreservation of human neural tissue as strategy to produce clinical-grade stem cells

FIDANZA, LUCIA MICHELA PIA
2019-04-30

Abstract

The Advanced Therapy Production Unit of the Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), headed by prof. Angelo Luigi Vescovi, located in San Giovanni Rotondo (FG – Italy), is a Cell Factory authorized by the competent Ethic Committee to isolate human neural stem cells (hNSCs) according to a Good Manufacturing Practice (GMP) grade protocol, from brain specimens of fetuses died for natural causes in utero death or miscarriage, for research and clinical applications for neurodegenerative diseases. The very same hNSCs have already been used in a phase I clinical trial on Amyotrophic Lateral Sclerosis (ALS) patients, concluded and conducted in Azienda Ospedaliera Santa Maria di Terni (Mazzini L. et al., 2015). In this study hNSCs were delivered into the spinal cord showing no major complications due to transplant procedure; moreover, in a very similar study, conducted by prof. Boulis and colleagues in Atlanta, cells that were detected up to 30 months after transplant even in patients showed a transient improvement of motor function (Boulis et al. 2011; Riley J.P. et al. 2011, Riley J. et al. 2014, Glass J.D. et al. 2012, Feldman E. et al. 2014, Tadesse T. et al. 2014). We are now planning a Phase II clinical trial on ALS and a Phase I on SPMS patients is currently on-going. Considering the source of hNSCs, the starting material is very rare and precious; in addition, since the spontaneous abortion may occur at any and unpredictable times and our manufacturing method requires that fetal human brain tissue specimens should be received and transferred into GMP facility to be immediately processed, this could involve a heavy workloads and, if there is unavailability of suitably trained staff, waste of precious tissue donations. Therefore, it is really important to find a way to optimize the production process of hNSCs for the development of future clinical trials. We hypothesize that block of fetal human brain tissue can be cryopreserved and that neural stem cells with a high post-thawing viability could be recovered at later time. To our knowledge, currently there is no description of a specific clinical-grade protocol for the cryopreservation of human brain tissue. Dimethyl sulfoxide (DMSO) is the most frequently used as cryoprotectant agent in clinical setting but there is no consensus on its optimal concentration in cellular or tissue products. Defining the right concentration is important, because DMSO is cytotoxic. Historically, 10% of DMSO is widely used for cell cryopreservation. Our Translational Advanced Therapy Research Center follows the “standard” of 10% for cell cryopreservation (Gelati M. et al. 2013); however, the recent trend is reducing DMSO concentration. We report here a GMP protocol for successful freezing of pieces of tissue derived from human fetal brain subventricular zone brain, testing three different percentages of DMSO in freezing medium. Cellular assays show that the cell cultures derived from frozen tissue are equivalent to those cultures derived from fresh tissue with no significant difference among 5%, 8% and 10% of DMSO solutions compared with fresh tissue. Moreover, our results argue that freezing of tissue up to 5 days at -80°C and up to 2 and 9 months in liquid nitrogen does not markedly alter cell viability and multipotency of NSCs. From our preliminary data, we conclude that cryopreservation tissue allows to create a system of biobanking of stem cells for our restorative therapy, granting necessary safety and quality control standards.
30-apr-2019
L'Unità Produttiva per Terapie Avanzate dell'Istituto per la Biologia delle Cellule Staminali, la Medicina Rigenerativa e le Terapie innovative (ISBReMIT), guidata dal Prof. Angelo Luigi Vescovi, con sede a San Giovanni Rotondo (FG – Italia), è una Cell-Factory autorizzata dalla Comitato Etico di Casa Sollievo della Sofferenza ad isolare cellule staminali neurali umane, in stretto regime GMP (Good Manufacturing Practice), da cervelli di feti morti per cause naturali in utero o aborto spontaneo, per la ricerca e le applicazioni cliniche in ambito di malattie neurodegenerative. Cellule staminali neurali fetali sono già state utilizzate in pazienti affetti da Sclerosi Laterale Amiotrofica (SLA) nell’ambito di in uno studio clinico di fase I condotto e conclusosi presso l’Azienda Ospedaliera Santa Maria di Terni (Mazzini L. et al., 2015). In questo studio le staminali neurali umane sono state trapiantate nel midollo spinale, senza riscontrare nei pazienti alcun evento avverso imputabile alla procedura chirurgica o alle cellule trapiantate; inoltre, in uno studio molto simile condotto dal Prof. Boulis e colleghi ad Atlanta, le staminali neurali sono state monitorate fino a 30 mesi dopo il trapianto e i pazienti hanno mostrato un miglioramento transitorio della funzione motoria (Boulis et al. 2011; 2011 Riley J.P. et al., Riley J. et al. 2014, Glass J.D. et al. 2012, Feldman E. et al. 2014, Tadesse T. et al. 2014). Attualmente, stiamo pianificando uno studio clinico di fase II sulla SLA mentre la sperimentazione di fase I sui pazienti con Sclerosi Multipla Progressiva Secondaria (SMPS) è già in corso. Considerata la fonte delle cellule staminali neurali, il materiale di partenza è molto raro e prezioso; inoltre, dal momento che l'aborto spontaneo può verificarsi in qualsiasi momento e il nostro metodo di produzione richiede che i campioni di tessuto cerebrale umano fetale debbano essere ricevuti ed immediatamente trasferiti in un impianto GMP per essere processati e trasformati, ciò potrebbe comportare carichi di lavoro gravosi e, in caso di indisponibilità di personale adeguatamente addestrato, perdita del tessuto prezioso. Pertanto, è molto importante trovare un modo per ottimizzare il processo di produzione delle staminali neurali umane per lo sviluppo di future sperimentazioni cliniche. Ipotizziamo che il tessuto cerebrale umano fetale possa essere crioconservato e che le cellule staminali neurali possano essere utilizzate in un secondo momento con alta vitalità post-scongelamento. Attualmente non esiste un protocollo GMP per la crioconservazione ottimale del tessuto cerebrale umano. Il dimetilsolfossido (DMSO) è l’agente crioprotettivo più frequentemente usato in clinica, ma non è ben definita la concentrazione ottimale per cellule o tessuti. Stabilire la giusta concentrazione è importante, perché il DMSO è citotossico. In letteratura è descritta il 10% di DMSO come percentuale ampiamente usata per la crioconservazione delle cellule. Il nostro centro di ricerca per la terapia avanzata traslazionale segue lo "standard" del 10% per la crioconservazione delle cellule (Gelati M. et al. 2013); tuttavia, la tendenza è di ridurne la concentrazione. In questo lavoro, riportiamo un protocollo di congelamento GMP per tessuto derivante della zona sotto-ventricolare del cervello fetale umano, testando tre diverse percentuali di DMSO nel mezzo di congelamento. I saggi cellulari dimostrano che le colture cellulari derivate dal tessuto congelato sono equivalenti a quelle colture derivate da tessuto fresco senza differenze significative tra il 5%, l'8% e il 10% delle soluzioni DMSO. Inoltre, i nostri risultati sostengono che il congelamento dei tessuti fino a 5 giorni a -80 °C e fino a 2 e 9 mesi in azoto liquido non altera sensibilmente la vitalità delle cellule e la multipotenza delle staminali neurali. I dati preliminari contribuiscono a dimostrare che la crioconservazione del tessuto permette di creare un sistema di bio-banking delle cellule staminali per la nostra terapia cellulare somatica, garantendo al contempo gli standard necessari di sicurezza e controllo di qualità.
HUman neural, stem cells, good manifacturing practice, amyotrophic lateral sclerosis, cryopreservation clincal grade stem cells, bio-bancing
File in questo prodotto:
File Dimensione Formato  
TESI PHDFG.pdf

Open Access dal 01/05/2021

Tipologia: PDF Editoriale
Licenza: Dominio pubblico
Dimensione 721.8 kB
Formato Adobe PDF
721.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/382261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact