The aim of this study was to characterize the local distribution and organization of the plasma membrane NADPH-oxidase (NOX) in human haematopoietic stem cell (HSC) by means of the fluorescence scanning near-field optical microscopy approach. The presence of NOX in haematopoietic stem cells is thought to have a functional role as O2 sensor and/or as low-level reactive oxygen species (ROS) producer to be used as redox messenger for controlling cell growth and differentiation. Given the harmful potential of ROS, a fine-tuning of NOX activity is needed. The high resolution imaging of haematopoietic stem cell membrane obtained in this study combined with the immunodetection of NOX indicates for this the occurrence of a cluster-organized structure. These membrane 'rafts'-like micro-compartments may constitute localized protein aggregates whereby the assembly/activation of the NOX components are functionally integrated with upstream factors constituting signal-transduction platforms. © 2008 The Authors.

Topological organization of NADPH-oxidase in haematopoietic stem cell membrane: Preliminary study by fluorescence near-field optical microscopy

Frassanito, M. C.;Piccoli, C.;Capitanio, N.
2008

Abstract

The aim of this study was to characterize the local distribution and organization of the plasma membrane NADPH-oxidase (NOX) in human haematopoietic stem cell (HSC) by means of the fluorescence scanning near-field optical microscopy approach. The presence of NOX in haematopoietic stem cells is thought to have a functional role as O2 sensor and/or as low-level reactive oxygen species (ROS) producer to be used as redox messenger for controlling cell growth and differentiation. Given the harmful potential of ROS, a fine-tuning of NOX activity is needed. The high resolution imaging of haematopoietic stem cell membrane obtained in this study combined with the immunodetection of NOX indicates for this the occurrence of a cluster-organized structure. These membrane 'rafts'-like micro-compartments may constitute localized protein aggregates whereby the assembly/activation of the NOX components are functionally integrated with upstream factors constituting signal-transduction platforms. © 2008 The Authors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/371070
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact