LIGHT, a TNF superfamily member, is involved in T-cell homeostasis and erosive bone disease associated with rheumatoid arthritis. Herein, we investigated whether LIGHT has a role in Multiple Myeloma (MM)-bone disease. We found that LIGHT was overproduced by CD14+ monocytes, CD8+ T-cells and neutrophils of peripheral blood and bone marrow (BM) from MM-bone disease patients. We also found that LIGHT induced osteoclastogenesis and inhibited osteoblastogenesis. In cultures from healthy-donors, LIGHT induced osteoclastogenesis in RANKL-dependent and -independent manners. In the presence of a sub-optimal RANKL concentration, LIGHT and RANKL synergically stimulated osteoclast formation, through the phosphorylation of Akt, NF?B and JNK pathways. In cultures of BM samples from patients with bone disease, LIGHT inhibited the formation of CFU-F and CFU-OB as well as the expression of osteoblastic markers including collagen-I, osteocalcin and bone sialoprotein-II. LIGHT indirectly inhibited osteoblastogenesis in part through sclerostin expressed by monocytes. In conclusion, our findings for the first time provide evidence for a role of LIGHT in MM-bone disease development.
LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease
MORI, GIORGIO;DI BENEDETTO, ADRIANA;
2014-01-01
Abstract
LIGHT, a TNF superfamily member, is involved in T-cell homeostasis and erosive bone disease associated with rheumatoid arthritis. Herein, we investigated whether LIGHT has a role in Multiple Myeloma (MM)-bone disease. We found that LIGHT was overproduced by CD14+ monocytes, CD8+ T-cells and neutrophils of peripheral blood and bone marrow (BM) from MM-bone disease patients. We also found that LIGHT induced osteoclastogenesis and inhibited osteoblastogenesis. In cultures from healthy-donors, LIGHT induced osteoclastogenesis in RANKL-dependent and -independent manners. In the presence of a sub-optimal RANKL concentration, LIGHT and RANKL synergically stimulated osteoclast formation, through the phosphorylation of Akt, NF?B and JNK pathways. In cultures of BM samples from patients with bone disease, LIGHT inhibited the formation of CFU-F and CFU-OB as well as the expression of osteoblastic markers including collagen-I, osteocalcin and bone sialoprotein-II. LIGHT indirectly inhibited osteoblastogenesis in part through sclerostin expressed by monocytes. In conclusion, our findings for the first time provide evidence for a role of LIGHT in MM-bone disease development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.