Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals. Here we demonstrated that 30 minutes of ischemia resulted in the induction of C4d/C1q, C4d/MLB, and MBL/MASP-2 deposits in a swine model of ischemia-reperfusion injury. The infusion of C1-inhibitor led to a significant reduction in peritubular capillary and glomerular C4d and C5b-9 deposition. Moreover, complement-inhibiting treatment significantly reduced the numbers of infiltrating CD163+, SWC3a+, CD4a+, and CD8a+ cells. C1-inhibitor administration led to significant inhibition of tubular damage and tubular epithelial cells apoptosis. Interestingly, we report that focal C4d-deposition colocalizes with C1q and MBL at the peritubular and glomerular capillary levels also in patients with delayed graft function. In conclusion, we demonstrated the activation and a pathogenic role of classical and lectin pathways of complement in a swine model of ischemia-reperfusion−induced renal damage. Therefore, inhibition of these two pathways might represent a novel therapeutic approach in the prevention of delayed graft function in kidney transplant recipients.

Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage.

CASTELLANO G;
2010-01-01

Abstract

Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals. Here we demonstrated that 30 minutes of ischemia resulted in the induction of C4d/C1q, C4d/MLB, and MBL/MASP-2 deposits in a swine model of ischemia-reperfusion injury. The infusion of C1-inhibitor led to a significant reduction in peritubular capillary and glomerular C4d and C5b-9 deposition. Moreover, complement-inhibiting treatment significantly reduced the numbers of infiltrating CD163+, SWC3a+, CD4a+, and CD8a+ cells. C1-inhibitor administration led to significant inhibition of tubular damage and tubular epithelial cells apoptosis. Interestingly, we report that focal C4d-deposition colocalizes with C1q and MBL at the peritubular and glomerular capillary levels also in patients with delayed graft function. In conclusion, we demonstrated the activation and a pathogenic role of classical and lectin pathways of complement in a swine model of ischemia-reperfusion−induced renal damage. Therefore, inhibition of these two pathways might represent a novel therapeutic approach in the prevention of delayed graft function in kidney transplant recipients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/17328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact