The enzyme fructose-1,6-bisphosphate aldolase consists of three isozymes that are expressed in a tissue-specific manner. Using antibodies against aldolase B and C, it is shown that aldolase C is expressed in virtually all neuronal cell lines derived from the central and peripheral nervous system. Recently, experiments with transgenic mice indicated that a (G+C)-rich region of the aldolase C promoter might function as a neuron-specific control element of the rat aldolase C gene [Thomas, M., Makeh, I., Briand, P., Kahn, A. & Skala, H. (1993) Eur. J. Biochem. 218, 143-151). To functionally analyse this element, a plasmid consisting of four copies of this (G+C)-rich sequence, a TATA box, and the rabbit beta-globin gene as reporter was constructed. This plasmid was transfected into neuronal and nonneuronal cell lines and transcription was monitored by RNase protection mapping of the beta-globin mRNA. It is shown that the (G+C)-rich element of the aldolase C promoter directs transcription in neuronal as well as in nonneuronal cells. In contrast, the synapsin I promoter, used as a control for neuron-specific gene expression, directed transcription only in neuronal cells. In gel-retardation assays, two major DNA-protein complexes were detected with the (G+C)-rich element of the aldolase C promoter used as a DNA probe and nuclear extracts from brain and liver as a source for DNA-binding proteins. These DNA-proteins interactions could be impaired by a DNA probe that contained an Sp1-binding site, indicating that Sp1 or an Sp1-related factor binds to the aldolase C promoter (G+C)-rich element. This was confirmed by supershift analysis with antibodies specific for Sp1. The zinc finger transcription factor zif268/egr-1, also known to recognize a (G+C)-rich consensus site, did not, however, bind to the (G+C)-rich motif of the aldolase C promoter, nor could it stimulate transcription in transactivation assays from this control region. From these data, we conclude that the (G+C)-rich element of the aldolase C promoter functions as a constitutive transcriptional response element mediated by Sp1 and Sp1-related transcription factors.

A (G+C)-rich motif in the aldolase C promoter functions as a constitutive transcriptional enhancer element

CIBELLI, GIUSEPPE;
1996-01-01

Abstract

The enzyme fructose-1,6-bisphosphate aldolase consists of three isozymes that are expressed in a tissue-specific manner. Using antibodies against aldolase B and C, it is shown that aldolase C is expressed in virtually all neuronal cell lines derived from the central and peripheral nervous system. Recently, experiments with transgenic mice indicated that a (G+C)-rich region of the aldolase C promoter might function as a neuron-specific control element of the rat aldolase C gene [Thomas, M., Makeh, I., Briand, P., Kahn, A. & Skala, H. (1993) Eur. J. Biochem. 218, 143-151). To functionally analyse this element, a plasmid consisting of four copies of this (G+C)-rich sequence, a TATA box, and the rabbit beta-globin gene as reporter was constructed. This plasmid was transfected into neuronal and nonneuronal cell lines and transcription was monitored by RNase protection mapping of the beta-globin mRNA. It is shown that the (G+C)-rich element of the aldolase C promoter directs transcription in neuronal as well as in nonneuronal cells. In contrast, the synapsin I promoter, used as a control for neuron-specific gene expression, directed transcription only in neuronal cells. In gel-retardation assays, two major DNA-protein complexes were detected with the (G+C)-rich element of the aldolase C promoter used as a DNA probe and nuclear extracts from brain and liver as a source for DNA-binding proteins. These DNA-proteins interactions could be impaired by a DNA probe that contained an Sp1-binding site, indicating that Sp1 or an Sp1-related factor binds to the aldolase C promoter (G+C)-rich element. This was confirmed by supershift analysis with antibodies specific for Sp1. The zinc finger transcription factor zif268/egr-1, also known to recognize a (G+C)-rich consensus site, did not, however, bind to the (G+C)-rich motif of the aldolase C promoter, nor could it stimulate transcription in transactivation assays from this control region. From these data, we conclude that the (G+C)-rich element of the aldolase C promoter functions as a constitutive transcriptional response element mediated by Sp1 and Sp1-related transcription factors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/122457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact