
Abstract. Aim: The aim of the present study was to
investigate the diagnostic and prognostic potential of
proteomic signatures in saliva of patients with oral squamous
cell carcinoma (OSCC). Materials and Methods: Data from
SELDI-TOF mass spectrometry of saliva from 45 OSCC
patients and 30 healthy controls were analyzed by means of
univariate and multivariate statistical approaches, in order to
identify proteomic OSCC signatures, reduce dimensionality
and build models for discriminating between OSCC and
controls, as well as predict nodal status. Results: The saliva
proteome presents significant modifications in OSCC patients;
some of them seem to be related to nodal involvement, and
may be useful for knowledge advancement regarding oral
carcinogenesis and definition of diagnostic and prognostic
biomarkers. Our attempt to create a predictive model using
different artificial neural networks (i.e. feed-forward (FF),
radial basis function (RBF), vector quantization (VQ))
demonstrated that such biostatistical tools are powerful but
not all network architectures have similar performance. RBF
architecture showed the best diagnostic performance
(91.89%), whereas FF had the best (77.27%) prognostic
accuracy (distinguishing between N– and N+). Discussion:
Searching for potential biomarkers among differently
expressed peptides is a challenge requiring for appropriate
strategies that still remain to be defined. A number of factors
may potentially impair results, e.g.: (i) a group’s definition for
adequate comparison; (ii) reduction of data dimensionality
and selection of variables to be tested in predictive models;
(iii) selection of the biostatistical tool for predictive models.

Delay in diagnosis can still be considered a major cause of
high morbidity and mortality of oral squamous cell carcinoma
(OSCC). In fact, the majority (two-thirds) of OSCCs are
diagnosed at an advanced stage (20), when prognosis is fairly
poor (the overall 5-year relative survival rate of oral and
pharyngeal cancer patients is approximately 59%) (17) and
current standards-of-care (surgery and/or radiotherapy) often
end-up with devastating consequences on the appearance and
function of affected organs, causing a marked detriment on the
quality of life, even in successfully-treated patients. This has
medical and social implications since OSCC is the tenth most
common malignancy in men, according to the worldwide
cancer cases estimation (16), and its incidence trends are
increasing in several countries (24). Thus, improving early
diagnosis of oral cancer is pivotal in obtaining a better
prognosis and quality of life of affected patients.

At present, early diagnosis of oral cancer is mainly based
on clinical oral examination; various tools have been
proposed as adjuvants for clinicians in identifying oral
cancer or malignant transformation of potentially malignant
oral lesions, but they are not completely validated by
adequate clinical trials and a number of drawbacks still need
to be addressed (26).

Thus, discovering new reliable markers for early OSCC
and developing new diagnostic tools for its early and easy
detection is a key issue in the field of oral medicine and oral
pathology research. Under this point of view new diagnostic
matrices (e.g. saliva) (2) are being investigated by means of
new molecular technologies (e.g. proteomics).

In fact, the use of saliva as a preferential diagnostic matrix
is being increasingly investigated (13, 14, 22) for the
following reasons: (i) very easy and non-invasive collection
(less risk for health professionals and a better psychological
acceptance for the patient); (ii) easy storage and shipping; (iii)
saliva contains proteomic markers for both oral and systemic
diseases (7, 21); (iv) salivary proteome has good stability
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even at room temperature up to 48 h with the addition of
protease inhibitors (23). These features, in the particular case
of OSCC, make saliva testing particularly adequate to develop
diagnostic tools to be used even in a non-laboratory setting,
that may be of utmost importance in improving early
diagnosis. Saliva screening by SELDI-TOF/MS (surface-
enhanced laser desorption/ionization time of flight mass
spectrometry), a high-throughput proteomic technology with
sensitivity up to femtomole concentration particularly suitable
for biomarkers discovery (15), particularly cancer biomarkers
(1, 11, 25), has been recently proposed in a number of
experimental studies to investigate changes in proteomic
profiles in OSCC compared to other potentially malignant
lesions such as oral leukoplakia (10), or in OSCC saliva
samples collected either pre- and post-treatment (27). 

Materials and Methods

In the current study, we utilised the same dataset as in our previous
article (19), with a different and more robust statistical approach.
Saliva collected from 45 patients affected by histopatologically-
proven OSCC and 30 healthy controls (CTRL), matched for mean
age, gender, smoking and alcohol consumption habits, was studied.
All patients gave their consent for enrolment in the study and saliva
collection.

Patients (33 men and 12 women) had a mean age of 60.3 years
(range=26-80 years). The majority of patients had advanced-stage
tumors, according to classification of the international union against
cancer (UICC) (28): 48.9% had stage IV cancers, 11.1% presented
with stage III tumors, while the remaining were stage II (20%) or
stage I (20%) tumors. Saliva collection and processing methods, as
well as instrument settings are detailed in our previous article (19).

Biostatistical analysis. A number of univariate and multivariate
analyses were performed, according to the following specifications:
a) Protein profiles of all samples were first analyzed by the Bio-Rad
DataManager™ software (Ver 3.5) (Bio-Rad, Hercules, CA, USA).
Differences between protein peaks intensities were tested using the
Mann-Whitney test (level of significance: p<0.05) in order to identify
a list (list 1) of differently expressed mass peaks between OSCC cases
and controls. Intensities of list 1 peaks were then exported to Wolfram
Mathematica ver.9 software for further analysis: to this end, OSCC
dataset was stratified in two groups: N+ and N– according to the
presence or absence of nodal metastases, respectively. b) Differential
expression of list 1 protein peaks intensities was investigated by
unpaired t-test in the following groups’ comparisons: OSCC vs.
CTRL, CTRL vs. N–, CTRL vs. N+ and N– vs. N+; degree of freedom
was determined in order to assess if t followed a Student distribution
with identical degree of freedom and, then, the p-value calculated,
assuming a 5% level of significance. For peaks with a statistical
significant differential expression (list 2), fold-change (and its
logarithm) was also calculated. c) Principal component analysis
(PCA), an excellent method for reducing high-dimensional data and
identifying outliers samples, was performed in order to identify, for
each of the studied groups (i.e. CTRL, the subsets of N– and N+), the
principal and most variable components and their correlation (60%
cut-off value was used) with list 1 peaks. Particular attention was
given to assess the correlation of principal components with list 2

peaks. d) Peaks included in list 2 (i.e. with a significant differential
expression) and having at least a 0.6 correlation coefficient with the
principal component, were identified and selected as peaks of interest
(list 3). e) Intensities of list 1 peaks were used to build a correlation
matrix, by calculating the Spearman rank correlation coefficient (ρ)
among intensity values. f) Starting from the correlation matrix (point
e), a “correlation graph” was built connecting those peaks with a
correlation coefficient above a given threshold (ρ≥0.6). In this graph,
the numerical weights on the edges were correlation coefficients,
while the nodes represented the peaks. Clustering was performed on
peaks included in the graph in order to identify potential biological
networks for the studied conditions (i.e. CTRL, N– and N+). We
named “communities” the obtained clusters, with many edges joining
vertices of the same community and comparatively few edges joining
vertices of different communities. A visual representation through
community graphs was constructed. g) Clustering was also
performed in order to visualize clusters formed by peaks of interest
(list 3). In such a particular case, the same method in point f was
used. This was represented by means of correlation graphs. h)
Supervised and mixed-architecture artificial neural networks were
also used to classify samples according to the following conditions:
CTRL vs. OSCC, and N- vs. N+. In particular, three network
architectures were used: feed-forward (FF), radial basis function
(RBF), vector quantization (VQ)(5), and results from the network
architecture showing the best performance were taken into account.
For each of them, classification attempts were performed using
different network parameters and different sets of input variables
(Table II) relative to the dataset constituted by 75 records (cases and
CTRL). In particular, each set was constituted by intensities of the
following peaks: (i) list 1 peaks; (ii) list 2 peaks; (iii) peaks belonging
to list 2 with a significant differential expression in all examined
conditions (i.e. CTRL, N–, N+), which will be addressed for simplicity
as “common peaks”; (iv) list 3 peaks.

Classification between CTRL and OSCC was performed by
randomly creating one training set (38 records: 15 CTRL and 23
OSCC) and one validation set (37 records: 14 CTRL and 23 OSCC),
whereas classification between N– and N+ was attempted by
randomly dividing OSCC patients in one training set (23 records: 11
N– and 12 N+) and one validation set (22 records: 11 N– and 11 N+).

Results

Application of the Mann-Whitney test allowed for
recognition of 74 mass peaks whose intensities were
significantly different between controls and OSCC (p<0.05).
Differential expression analysis showed significance for 22
of those peaks (Table I). 

Comparing CTRL with subset N–, differential expression
analysis identified 15 significant peaks, eleven of which were
below 9 kDa. Altered intensity of 16 significant peaks was
identified comparing CTRL to N+; only four peaks were
below 9 kDa. Six differently expressed peaks were also
identified comparing N– to N+ (3353, 3433, 4784, 6239,
8041, 13841), but, this time, just one was over 9 kDa.

When compared to CTRL, six peaks (i.e. 5235, 8041,
11064, 11948, 13287 and 27280) were significantly altered
in both N– group and N+ group; nine peaks (i.e. 3353, 3433,
3482, 4136, 5384, 6165, 6239, 6913, 8086) were selectively
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altered in N– group; ten peaks were selectively altered in N+
group (i.e. 4038, 7668, 10930, 11002, 11164, 13746, 13841,
15531, 16807, 17127). 

PCA showed that, considering OSCC and CRTL, 18
components account for 95.18% of total variance; 12 peaks,
having at least a 0.6 correlation coefficient with the principal
component, were identified; among them, 5 peaks, i.e.
10930, 11002, 13287, 13746, 27280 m/z peaks, were
identified also by differential expression analysis, and, thus,
included in the list of peaks of interest.

PCA showed that, considering N– and CRTL, 18
components account for 96.56% of total variance; 16 peaks,
having at least a 0.6 correlation coefficient with the principal
component, were identified; among them, two peaks, i.e.
4136 and 13287 m/z peaks, were identified also by
differential expression analysis, and, thus, included in the list
of peaks of interest.

Considering N+ and CTRL, 18 components account for
96.56% of total variance; 14 peaks, having at least a 0.6
correlation coefficient with the principal component, were
identified; among them, two peaks, i.e. 4038 and 13287 m/z
peaks, were identified also by differential expression
analysis, and, thus, included in the list of peaks of interest.

Considering N– and N+, 17 components account for
96.18% of total variance; 19 peaks, having at least a 0.6
correlation coefficient with the principal component, were
identified; among them, three peaks, i.e. 13841, 3433 and
3353 m/z peaks, were identified also by differential
expression analysis.

Community graphs visualizing the clustering of peaks
intensities, constructed using method indicated at point f of
biostatistical analysis section, are shown in Figure 1. Details
of clusters of peaks of interest, according to method
indicated at point g of biostatistical analysis section, are
shown in Figure 2.

Artificial neural networks showed different performances
in classifying cases and controls according to the set of
variables (i.e. peaks selected) for classification and the
network architecture (Table II). The best classification
performance, i.e. 91.89% of OSCC and CTRL, was obtained
using the six common peaks; whereas, considering N- and
N+, the best classification was achieved by using the three
peaks with a significant differential expression and having at
least a 0.6 correlation coefficient with the principal
component. Thus, a confirmation of the high association of
differentially expressed peaks to the corresponding
conditions was obtained. 

Discussion

Since proteins are the ultimate products of genetic
information and the final effectors of many cell functions,
proteome profiling may be of great relevance in
understanding pathogenetic mechanisms of disease,
identifying reliable markers and providing important clues
for targeted therapy. This is particularly true in oncology and
interesting results have been reported for breast (6), prostate
(3) and ovarian cancer (18). 

Proteomic investigations regarding head and neck
squamous cell carcinomas have shown that classification
algorithms based on differently expressed serum proteins can
distinguish patients with head and neck cancer from controls
with a high degree of sensitivity (range=68%-83.3%) (29,
30) and specificity (range=76%-90%) (8, 30). Encouraging
results have been also obtained in classifying pre-treatment
and post-treatment serum samples from head and neck
cancers patients (4, 9). Salivary proteomics seems even more
promising; in fact, potential salivary biomarker peptides with
sensitivity up to 90%, and specificity of 83% in detecting
OSCC have been proposed (12). Recently, Shintani et al.
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Table I. Fold-change of proteomic peaks showing a significant
differential expression. 

Peak Fold-change 

OSCC vs. CTRL CTRL vs. N– CTRL vs. N+ N– vs. N+

3353 –2.352 3.310 - –2.057 * 
3482 –2.636 3.369 - - 
3433 - 3.186 - –2.189 * 
4038 –2.058 - 2.146 * - 
4136 - 2.522 * - - 
4784 - - - –2.504 
5134 2.468 - - - 
5154 2.24 - - - 
5235 3.319 -2.752 -2.378 - 
5384 2.959 -2.186 - - 
6165 - -2.952 - - 
6239 3.393 -4.010 - 2.863 
6913 –3.208 3.192 - - 
7668 - - –2.644 - 
7989 2.693 - - - 
8041 4.116 –4.472 –2.088 3.162 
8086 2.947 -2.557 - - 
10930 3.13* - –2.800 - 
11002 2.842* - –2.661 - 
11064 3.583 –2.474 –2.895 - 
11164 3.147 - –2.786 - 
11948 –3.487 2.776 3.495 - 
13287 –2.549* 2.195 * 2.828* - 
13746 –2.694* - 3.244 - 
13841 - - 3.834 2.434 * 
15531 3.027 - -2.661 - 
16807 –2.503 - 3.040 - 
17127 - - 3.200 - 
27280 –2.36* 2.218 2.345 - 

-: Differential expression was not significant. *Peaks having at least a
0.6 correlation coefficient with the principal component. 



identified a differently excreted cistatin S-1 fragment in
OSCC samples collected either before and after surgical
treatment (27), while He and colleagues described a
proteomic pattern useful to discriminate OSCC from other
pre-cancerous lesions, namely oral leukoplakia (10). 

These findings seem to confirm the utility of SELDI
screening of saliva samples in order to recognize useful
biomarkers for non-invasive diagnosis of oral cancer.
However, most studies have investigated OSCC without
considering potential differences occurring at different stages
of the tumor progression or associated with the occurrence
of nodal metastasis.

In the current study we found that salivary proteome of
OSCC patients is significantly different from healthy
controls. In fact, 74 mass peaks have been identified, by
SELDI-TOF analysis, with a significant different intensity in
saliva of OSCC when compared to controls (Mann-Whitney
test, p<0.05). 22 out of those 74 peaks were characterized
by a significant differential expression (Table I).

Now, since oral carcinogenesis, under a theoretical point
of view, can be considered a continuum starting from a
mutated epithelial cell which progresses towards malignant
phenotype and then acquires a more aggressive behaviour
(i.e. ability to invade and give metastases), we have
considered the grouping of our samples in three categories,
i.e. controls, N– and N+, as representative of this continuum,
and used it for our analysis. 

Considering such a stratification for our samples, the
different salivary proteome profiling is even more
meaningful. In fact, our analysis found that there were
peptides (i.e. 5235, 8041, 11064, 11948, 13287 and 27280)
whose variation of concentration was differently altered
when passing from CTRL to N– and N+ groups, as well as
peptides whose variation of concentration was selectively
significant in N- group (i.e. 3353, 3433, 3482, 4136, 5384,
6165, 6239, 6913, 8086) and N+ group (i.e. 4038, 7668,
10930, 11002, 11164, 13746, 13841, 15531, 16807, 17127).

Some of these selectively expressed peaks (i.e. 3433,
4136 and 6165 in N– group; 7668, 13841, 17127 in N+
group) were not identified at differential expression
analysis when considered N– and N+ as a whole group (i.e.
OSCC group), which seems to suggest that lack of
stratification of OSCC patients according to nodal status,
which is at present one of the most reliable prognosis
predictor, might lead to miss some important markers. This
seems to be also confirmed by PCA; in fact, in N– group,
the 3433 and 4136 peaks were correlated with the principal
component with a ρ>0.6.

Under a biological point of view, it is possible to speculate
that common altered peptides among groups may reflect
mechanisms deranged all throughout the continuum leading,
or at least participating, to oral carcinogenesis, whereas
selectively altered peptides may reflect mechanisms switched
on and off in specific steps of the carcinogenesis. 
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Figure 1. Clustering of peak intensities in the studied groups. Peaks with significant differential expression are highlighted: in green, peaks common
to all groups; in yellow and blue peaks significant for N– and N+, respectively. 
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Figure 2. Clustering of peaks of interest. Only peaks directly connected to them and with a correlation coefficient (ρ) ≥0.6 have been considered.
Red dot: Peak of interest; red line: negative correlation; gray line: positive correlation; heavy line: ρ>0.7 (absolute value); light line: 0.6<ρ<0.7
(absolute value).

Table II. Classification performance of different artificial neural networks: feed forward (FF), radial basis function (RBF), vector quantization
(VQ).

Training set Validation set Correct classification of validation set (% cases)
(number (number 
of cases) of cases) Set of variables used for classification

List 1 peaks Common peaks List 2 peaks List 2 peaks List 3 peaks List 3 peaks 
(74 peaks) (6 peaks) (22 peaks) (6 peaks) (5 peaks) (3 peaks)

CTRL vs. OSCC
Network architecture RBF RBF RBF - FF -
Network parameters 
(input-(hidden)-output) 74-(37)-2 6-(8)-2 22-(66)-2 - 5-(8)-2 -

CTRL 15 14 80% 80% 73.33% - 60% -
OSCC 23 23 90.91% 100% 95.45% - 90.91% -
Total 38 37 86.47% 91.89% 86.47% - 78.38% -

N– vs. N+
Network architecture VQ RBF - FF FF
Network parameters 
(input-(hidden)-output) 74-(6)-2 6-(24)-2 - 6-(12)-2 - 3-(9)-2 

N– 11 11 27.27% 54.55% - 54.55% - 72.73%
N+ 12 11 63.64% 54.55% - 36.36% - 81.82%

Total 23 22 45.45% 54.55% - 45.45% - 77.27%

List 1 peaks: differently expressed mass peaks between OSCC cases and controls (Mann-Whitney test, p<0.05). List 2 peaks: sub-group of list 1
peaks with a statistical significant differential expression in the specific condition. Common peaks: sub-group of list 2 peaks with a significant
differential expression in all examined conditions (i.e. CTRL, N-, N+). List 3 peaks: sub-group of list 2 peaks having at least a 0.6 correlation
coefficient with the principal component.



Interestingly, in N– group the majority (11/15) of
differentially expressed peptides maps in a mass range
below 9kDa (3353-8086 Da), whereas in N+ group twelve
out of the 16 characterizing peptides fall in the mass range
between 10930 and 27,280 Da. Thus, it seems that
alteration of smaller molecules participates in early steps
of carcinogenesis, whereas heavier molecules are involved
in metastasis. This seems to also be confirmed by
clustering analysis; in fact, in N– it is possible to observe
(Figure 1) the segregation of a three small molecules group
(i.e. 3353, 3433, 3482), whose significance remains to be
investigated.

Results of a previous study of our group (19) focusing in
identifying markers capable to distinguish between early-
and late-stage OSCC, have been confirmed by the present
analysis. In fact, the 8041 and 6239 m/z peaks showed the
highest fold change at differential expression analysis when
comparing N– vs. N+ (Table I).

Our attempt to create a predictive model by means of
different artificial neural networks architectures has clearly
demonstrated that such biostatistical tools have great
potential but, at the same time, not all network architectures
have the same performance in correcting classification
between cases and controls, as well as between presence or
absence of nodal involvement. In addition, the process of
data mining and selection of the variables to work with in
the predictive model is of outstanding importance. To this
end, we have used different strategies to reduce the
dimensionality of our data, and we have tested the different
set of variables output by those strategies. Under this point of
view, the best diagnostic performance (91.89%) was
achieved with a RBF neural network architecture (Table II)
using the 6 peaks with a significantly altered differential
expression in all our groups (i.e. CTRL, N–, N+); on the
other hand, the best (77.27%) prognostic accuracy (capacity
to distinguish between N– and N+) was obtained with a FF
neural network architecture using a panel of three proteomic
peaks with a significant differential expression between N–
and N+ and a correlation coefficient >0.6 with the principal
component.

Overall, our data confirm that saliva proteome presents
several significant modifications in OSCC patients; in
addition, some of these modifications seem to be related to
nodal involvement, thus, theoretically following oral
carcinogenesis and offering the opportunity for a better
understanding over this phenomenon, as well as for
discovering potential biomarkers useful for clinical purposes.
Under this view, our results clearly indicate the challenge, at
the biostatistical level, in selecting for the most appropriate
predictive model, a fact that remains to be further
investigated. Nonetheless, it appears that salivary proteomics
is really worth further investigation and may lead to valuable
results in the struggle against oral cancer.
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