

Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview

Leonardo Petruzzi, Daniela Campaniello, Barbara Speranza, Maria Rosaria Corbo, Milena Sinigaglia, and Antonio Bevilacqua

Abstract: Fruit and vegetable juices and beverages are generally preserved by thermal processing, currently being the most cost-effective means ensuring microbial safety and enzyme deactivation. However, thermal treatments may induce several chemical and physical changes that impair the organoleptic properties and may reduce the content or bioavailability of some nutrients; in most cases, these effects are strongly dependent on the food matrix. Moreover, the efficacy of treatments can also be affected by the complexity of the product and microorganisms. This review covers researches on this topic, with a particular emphasis on products derived from different botanical sources. Technologies presented include conventional and alternative thermal treatments. Advances toward hurdle-based technology approaches have been also reviewed.

Keywords: beverages, fruit, juices, thermal processing, vegetable

Introduction

The intake of fruits and vegetables decreases the occurrence of diseases related to oxidative stress (inflammation, cardiovascular diseases, cancer, and aging-related disorders) (Escudero-López and others 2016). Beneficial effects are attributed to dietary intake of some bioactive compounds (tocopherols, carotenoids, polyphenols, phenolics, and anthocyanins) (Kongkachuichai and others 2015), vitamins, minerals, and fibers (Liu 2013).

The 2010 Dietary Guidelines for Americans recommend in a 2000-kcal diet 9 servings of fruits and vegetables per day, 4 servings of fruits and 5 servings of vegetables (Liu 2013). The European Union supports the WHO recommendation for at least 400 g/d (Tennant and others 2014). Dietary guidelines around the world recommend increased intakes of fruits and nonstarchy vegetables for the prevention of chronic diseases and possibly obesity (Charlton and others 2014).

Despite these guidelines, the consumption of vegetables and fruit remains below recommended levels in many countries and a substantial burden of disease globally is attributable to low consumption (Mytton and others 2014). Therefore, the promotion of the consumption of fruit and vegetable is a key objective of food and nutrition policy (Rekhy and McConchie 2014). Juices, blends, smoothies, and fermented and fortified beverages are a popular way to consume fruits and fresh-like vegetables and contribute to a healthy diet and a healthy life style (Wootton-Beard

and Ryan 2011; Corbo and others 2014; Marsh and others 2014; Ramachandran and Nagarajan 2014; Hurtado and others 2015).

Many approaches alternative to thermal treatments have been tested and successfully proposed for juices (Jiménez-Sánchez and others 2017), but thermal processing still remains the most cost-effective tool to ensure microbial safety and enzyme deactivation (Rawson and others 2011). Some drawbacks of thermal processes are the slow conduction and convection heat transfer (Baysal and Icier 2010), and the negative effect of overprocessing on the sensory, nutritional, and functional properties (Gonzalez and Barrett 2010). In most cases, these effects are strongly dependent on the food matrix (Rodríguez-Roque and others 2015, 2016). Moreover, the efficacy of thermal treatments can also be affected by the complexity of the product and microorganisms (Chen and others 2013b).

The preservation of the organoleptic scores of food is a key goal of the food industry. As a result, the optimization of heat treatments is a key tool to maintain an equilibrium between safety and nutritional quality of the raw material (Traffano-Schiffo and others 2014). Apart from the conventional thermal processing, there are some other nonconventional thermal approaches (ohmic and microwave heating (MHW)), characterized by some benefits, such as a better energy efficiency, a lower capital cost, and shorter treatment time (Salazar-González and others 2014; Lee and others 2015).

To the best of our knowledge, there are not comprehensive reviews on the thermal treatments applied to fruit and vegetable juices, juice blends, smoothies, and enriched and fermented beverages. This review is an update of the most important advances on this topic; Figure 1 offers an overview of the manuscript. A summary of the current state of knowledge about the factors enhanced or reduced by thermal processing is given in Table 1.

CRF3-2017-0017 Submitted 1/24/2017, Accepted 4/25/2017. Authors are with the Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Foggia, Italy. Direct inquiries to author Bevilacqua (Email: antonio.bevilacqua@unifg.it; abevi@libero.it).

Table 1-Factors enhanced or reduced by thermal processing: summary of issues.

Compound(s)/quality attribute(s)	Product	Thermal treatment	Reference(s)
		Enhanced by thermal	processing
Anthocyaning	luice	MTI T	Mena and others (2013b)
Anthocyannis	luice	HTIT	Flez Garofulić and others (2015)
Aromatic compounds	Nectar	НТІТ	Šimunek and others (2013)
Alomatic compounds	luice blend	OH	Dima and others (2015)
Carotenoids	Smoothie	MWH	Arimandi and others (2016)
Enzymatic	Juice	MWH	Rayman and Baysal (2011) Demirdöven and Baysal (2015)
inactivation			······································
	Smoothie	HTLT	Hurtado and others (2015) Rodríguez-Verástegui and others (2016)
	Juice-blend mixed with	HTLT	Morales-de la Peña and others (2010)
	soymilk		
	Mixed beverage	HILI	Swami Hulle and Rao (2016)
	JUICE	HILI	Saeeduddin and others (2015) Chaikham and Balpong (2016)
	Smoothe		Aguilar Boses and others (2012) Kative and others (2014)
	Juice		Aguilar-Rosas and others (2013) Kaliyo and others (2014) Huang and others (2012)
	Nectar	MWH	Salazar-Conzálaz and others (2017)
		MWH	Rayman and Raysal (2011)
Elavonoid content	luice	MWH	Saikia and others (2015)
Microbial inactivation	Juice enriched with	HTLT	Bilek and Bayram (2015)
	hydrolyzed collagen		
	Juice	HTLT	Farhadi Chitgar and others (2016) Bhat and others (2016) Suna
			and others (2013) Santhirasegaram and others (2015)
	Beverage	HTLT	de Oliveira and others (2011)
	Juice	HTST	Zhao and others (2013) Zou and others (2016)
	Juice	MTLT	Mert and others (2013) Saeeduddin and others (2015) Aganovic
			and others (2016)
	Juice blend	MILI	Kaya and others (2015)
	Smootnie	IVI I S I	Paigan and others (2012)
			Aganovic and others (2014) Piasek and others (2011) Dhumal and others (2015) Stratakes and
	Juice		others (2016)
	luice	OH	Somavat and others (2013)
Overall quality	luice	MTST	Sun and others (2016)
	Concentrated juice	OH	Tumpanuvatr and Jittanit (2012)
Phenolic content	Juice	HTLT	He and others (2016) Dereli and others (2015)
	Juice	MWH	Saikia and others (2015)
	Juice	HTST	He and others (2016)
	Juice	MTLT	Saikia and others (2015)
	Juice	MTST	Queirós and others (2015)
Viscosity	Juice	HTST	Chen and others (2012)
		Reduced by thermal p	processing
Anthocyanins	Juice	HTLT	Shaheer and others (2014) Pala and Toklucu (2011)
	Juice	HTST	Woodward and others (2011)
Antioxidant capacity	Juice	HTLT	Bansal and others (2015) Chen and others (2015b)
Aromatic compounds	Smoothie added with skim	HTLT	Andrés and others (2016c)
	milk		
	Juice	HTLT	Zhang and others (2010)
	Juice	MTLT	Aganovic and others (2016)
	Juice blend	MIST	Caminiti and others (2012)
Ascorbic acid	Juice	HILI	Bansal and others (2015) Chen and others (2015b)
	Juice-blend mixed with	HILI	Rodriguez-Roque and others (2015)
	SUYIIIIK Plandad bayaraga	ЦТІТ	Padziojowska Kubzdola and Piogańska Marosik (2015)
	Blended beverage	HTST	Rauziejewska-Rubzuela aliu Diegaliska-Malecik (2013) Barba and others (2010)
	luice blend	нтут	Mena and others (2013a)
	Drink	MTLT	Abiove and others (2013)
	luice blend	MTLT	Profir and Vizireanu (2013)
	Juice blend	MTST	Mena and others (2013a)
Carotenoids	Juice	HTLT	Oliveira and others (2012)
	Juice	HTST	Uçan and others (2016)
Color	Juice blend	MTST	Caminiti and others (2012)
	Smoothie	HTLT	Andrés and others (2016b)
	Juice	HTLT	Guo and others (2011)
	Herbal-plant beverage added	HTLT	Worametrachanon and others (2014)
-	with rice		
Flavonoid content	Juice	MTLT	Saikia and others (2015)
Overall quality	Blended beverage	HILT	Jayachandran and others (2015) Kathiravan and others (2014a)
Dhanalis contact	Juice	HILI	Santnirasegaram and others (2015)
Phenolic content		HILI	Rounguez-Roque and others (2015)
		НТСТ	liménez-Aquilar and others (2015)
	54100	11151	5

Table 1-Continued.

Compound(s)/quality attribute(s)	Product	Thermal treatment	Reference(s)
Protein content	Juice	HTLT	Deboni and others (2014)
Soluble solids	Juice	HTLT	Khandpur and Gogate (2015)
Viscosity	Juice	HTLT	Nayak and others (2016) Liu and others (2012) Deboni and others (2014)
	Juice	HTST	Aguiló-Águayo and others (2010)

Thermal Treatments

High temperature-long time (HTLT)

Thermal processes can be classified according to the intensity of the heat treatment (Miller and Silva 2012). HTLT (temperature ≥ 80 °C and holding times > 30 s) is the most commonly used method in the processing of juices and beverages; it can be classified as pasteurization (temperature <100 °C), canning (temperature ca. 100 °C), or sterilization (temperature >100 °C) (Miller and Silva 2012). Juice pasteurization is based on a 5 log reduction of the most resistant microorganisms. This method relies on heat generated outside and then transferred into the food through conduction and convection mechanisms (Chen and others 2013b). Exposure to high temperatures (strong stresses) can induce a continuous increase in membrane permeability caused by time-dependent changes such as lipid phase transitions and protein conformation changes, eventually causing cell death. Membrane fluidity changes may differ significantly, according to the type of thermal stress (Gonzalez and Barrett 2010). Juices with pH > 4.5require stronger treatments to achieve the desirable shelf life. Table 2 provides a comprehensive summary of the most important outputs on HTLT thermal treatments.

Some examples of the effect of this technology on microbial quality of products include the total inactivation of native microflora in coconut-nannari blended beverage (Kathiravan and others 2014a), litchi (Guo and others 2011), mango (Santhirasegaram and others 2015), pear (Saeeduddin and others 2015) and tomato juices (Stratakos and others 2016), longan juice added

with xanthan gum (Chaikham and Apichartsrangkoon 2012), and apple, grape, or orange juices enriched with hydrolyzed collagen (Bilek and Bayram 2015). Moreover, HTLT could control bacterial growth in açaí beverage (de Oliveira and others 2011), amla (Bansal and others 2015), asparagus (Chen and others 2015b), black raspberry (Suna and others 2013) and reduced-calorie carrot juices (Sinchaipanit and others 2013), papaya nectar (Parker and others 2010), as well as yeast growth in grape wine (Cui and others 2012). During the storage, thermal pasteurization assures the control of microbial growth in cupuaçu nectar (Vieira and Silva 2014), basil-bottle gourd juice blend (Majumdar and others 2011), grapefruit (Uckoo and others 2013), pennywort (Chaikham and others 2013), spinach and sweet lime juices (Khandpur and Gogate 2015), an herbal-plant beverage added with rice (Worametrachanon and others 2014), as well as in a juice-blend mixed with whole or skim milk (Salvia-Trujillo and others 2011), or mixed with soymilk (Morales-de la Peña and others 2010).

HTLT treatments could reduce or inactivate some enzymes, whose activities result in undesirable changes in sensory quality attributes and nutritive value of the products (Miller and Silva 2012), such as polyphenoloxidase (PPO), peroxidase (POD), pectin esterase (PE), and polygalacturonase (PG) (Marszałek and others 2016). PPO is responsible for the browning and degradation of natural pigments and other polyphenols, leading to discoloration and the loss of antioxidant activity. POD participates in several metabolic plant processes (catabolism of auxins, lignification of the cell wall, browning reactions which catalyze

Figure 1–Roadmap of the manuscript.

Table 2–Conventional thermal processing: high temperature-long time (HTLT)

Fruit⁄vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Açaí	Beverage	80 °C/2 min	Reduction of naturally occurring microbiota	de Oliveira and
Acerola, cashew apple, mango	Nectar blend	90 °C/1 min	Lower counts of lactic acid bacteria, yeasts and molds, coliforms, and Salmonella sp. below the detection limit	da Silva and others (2011)
Amla	Juice	90 °C/1 min	Zygosaccharomyces bailii (MTCC 257) reduced by 4.9 log CFU/mL; significant degradation of ascorbic acid and antioxidant canacity	Bansal and others (2015)
Aonla, bottle gourd, ginger, lemon	Juice blend	80 to 95/5 to 30 min	Minimum and maximum loss of ascorbic acid of juice blend were 22.97% at 80 °C for 5 min and 47.70% at	Gajera and Joshi (2014)
Aonla, carrot	Blended nectar	80 to 90 °C/30 s to 5 min	The treatment at 90 °C for 30 s retained significantly higher ascorbic acid content as compared to other treatments	Yadav (2015)
Apple	Juice enriched with oligosac- charides	80 and 90 °C/5 to 15 min	The carbohydrate fraction with a degree of polymerization ≥3 was stable in juice heated at temperatures up to 90 °C for 15 min	López-Sanz and others (2015)
Apple	Nectar	80 °C/2 min	More aromatic compounds in comparison with the	Šimunek and others
Apple	Juice	80 °C/30 min	Increase of 39.8% and 69.1% in total phenolic content and radical scavenging activity value, respectively. No	(2013) He and others (2016)
Apple	Juice supplemented	96 °C/60 min	Improved overall quality	Lee and others (2016)
Apple, banana, blackberry, gooseberry, grape, lime, orange, ctrowbern,	Smoothie	85 °C/7 min	Microbial quality in the smoothies kept at 4 $^{\circ}\text{C}$ for 28 d	Hurtado and others (2017)
Apple, banana, orange, strawberry	Smoothie	85 °C/7 min	Benefits regarding enzyme inactivation (POD, PPO, PME); limits connected to the development of cooked fruit flavors	Hurtado and others (2015)
Apple, bilberry, blackberry, raspberry, red currant, grape,	Smoothie	80 °C/1 min	Reduction of total aerobic mesophilic (3.4 log CFU/mL), lactic acid bacteria (3.3 log CFU/mL) and yeasts and molds (3.8 log CFU/mL)	Zacconi and others (2015)
orange, strawberry Apple, carrot	Juice blend	98 °C⁄3 min	No effect on the antioxidant capacity	Gao and Rupasinghe (2012)
Apple, grape	Juice enriched with hydrolyzed	95 °C/20 to 23 min	Inactivation of the naturally occurring microbiota	Bilek and Bayram (2015)
Apple, red cabbage	Blended beverage	90 °C/5 min	Significant reduction of ascorbic acid and glucosinolates. However, samples were found to be sensorially acceptable	Radziejewska- Kubzdela and Biegańska- Marecik (2015)
Aronia, cistus, green tea, nettle	Juice-herbal drink	85 °C/6 min	Slight increase of polyphenols content. Decrease of the total content of anthocyanin	Skąpska and others (2016)
Asparagus	Juice	121 °C/3 min	Reduction of the total mesophilic bacteria below the detection limit. Negative effects on aldehydes, alcohols and ketones concentrations, ascorbic acid, rutin, total phenolic contents, and total antioxidant activity.	Chen and others (2015b)
Baobab	Drink	80 and 90 °C/0 to 180 min	95.99 and 98.90% ascorbic acid degradation after 180 min at 80 and 90 °C, respectively	Abioye and others (2013)
Barberry	Juice	Approximately 90 °C/1 min	Complete inactivation naturally occurring microbiota. Significant reduction in total phenol content and	Farhadi Chitgar and others (2016)
Basil, bottle gourd	Juice blend	95 °C/15 min	The blended juice was acceptable for 6 mo at room	Majumdar and others (2011)
Beetroot	Juice	96 °C/9 to 15 min	Thermal pasteurization for a total heating time of 12 min was able to produce microbiologically stable bestroot juice with the retention of guality attributes	Kathiravan and others (2014b)
Blackberry	Juice	80 and 90 °C/0 to 300 min	The antioxidant activity of juice was reduced as a result of temperature increase. However, the amount of	Zhang and others (2012)
Black mulberry	Juice	107 °C/3 min	The total phenolic content, total flavonoid content monomeric anthocyanin content, and total antioxidant capacities were all significantly higher in the final pasteurized juice sample as compared to the starting raw fruit material. However, during <i>in vitro</i> simulated gastrointestinal digestion, monomeric anthocyanins in the fruit matrix had a significantly higher bioavailability than in the juice matrix	Tomas and others (2015)
Black raspberry	Juice	100 °C/25 min	Microbial safety	Suna and others (2013)
				(Continued)

Table 2–Continued.

Bottle gand Juke 12 l° C/5 to 7 min A reduction of 81 JP/8 was abserved in starting yests, and moles was reduced below the Bueberry Next and others (2016) (2016) Blueberry Next and the Sample's B0 °C / 2 min Personalis degradation of bloactive phytochemics, and eccess of antioodant activity phytochemics, and eccess of antiondant activity phytochemics, and ecces	Fruit⁄vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Bluebery Nectar B0°C/2 min 300 min brespace Decrease of the consistency coefficient for pasteurized 300 min perpent. Simule and others 200 min antipic Decrease of the consistency coefficient for pasteurized antipic decrease of attrobulg inclusional thus diminution others (2015) Simule and others 2010 min perpent. Simule and others 2010 min perpent. <th< td=""><td>Bottle gourd</td><td>Juice</td><td>121 °C/5 to 7 min</td><td>A reduction of 49.14% and 51.97% was observed in ascorbic acid content for 6 and 7 min, respectively. Bacteria, yeasts, and molds were reduced below the detection limit</td><td>Bhat and others (2016)</td></th<>	Bottle gourd	Juice	121 °C/5 to 7 min	A reduction of 49.14% and 51.97% was observed in ascorbic acid content for 6 and 7 min, respectively. Bacteria, yeasts, and molds were reduced below the detection limit	Bhat and others (2016)
Blue-Bernel Juice Juice 100 °C/60 to 300 min Reduction of amboyanis, degradation of bioactive (amboyanis, degradation) (amboyanis, degradation)	Blueberry	Nectar	80 °C/2 min	Decrease of the consistency coefficient for pasteurized samples	Šimunek and others (2014)
Broccali Juice 90 °C/1 min Reduction of bioactive compounds and thus diminitation antioxidant capacity. Sanctare keeps and antioxidant capacity. Sanctare keeps and antin antin antion antion antin ap	Blue-berried honeysuckle	Juice	100 °C⁄60 to 300 min	Reduction of anthocyanins, degradation of bioactive phytochemicals, and decrease of antioxidant activity	Piasek and others (2011)
Broccolic carrot, red perpert, formato Smoothie 80 °C/3 min Thermat rearment, forally incritives were minimal during storage up to 40 and 58 dat 20 and 5° (r, espectively) Rodrigue2 Carrot Juice 90 °C/10 min Increase offer total phenolic and hydroxycinnamic acids Rodrigue2 Rodrigue3 Rodrigue3 Carrot Bedrucet-calorie 80 °C/1 min Solonoellos es, or Staphylococcus surves bleiv the detection limit. Headulton of yeasts, molds, and total colliforms. Sinchaigant and others (2013) Carrot, grape Blended nettar 80 °C/2 min Solonoellos es, or Staphylococcus surves bleiv the solon durines. Sinchaigant and others (2013) Carrot, melon, orange, papaya Smoothie added 80 °C/3 min Heat treatment did not protoke any major variation in treated smoothies were relatively stable after 45 d.t. athrough the loss of scoralic creations. Ande's and others (2016) Carrot, melon, orange, papaya Smoothie added 80 °C/3 min carrot, melon, orange, papaya 80 °C/3 min carrot, melon, orange, papaya Node the sol of 5 min scare add with sol of 5 min papaya 80 °C/3 min carces in addelyne, kitons, and palatoxief (16%), and palatoxief (2016) Ande's and others (2016) Coronut Water 90 °C/1 0 min scare add with and palatoxief (16%), and palatoxief (16%) for 45 d.t. Bended beverage 90 °C/1	Broccoli	Juice	90 °C/1 min	Reduction of bioactive compounds and thus diminution of antioxidant capacity	Sánchez-Vega and others (2015)
Cactus Juice 100 °C/20 min Pasteurization process affected viscosity and protein content content content content Debin and others (2013) Carrot Reduced calorie juice 90 °C/10 min Increase of the total phenolic and hydroxycinnamic acids contents Definition and others (2013) Carrot, melon, orange, papaya Smoothie 80 °C/3 min Color degradation Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with somilik 80 °C/3 min Color degradation Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with somilik 80 °C/3 min Heat treatment (id not produce any major variations in bloactuce companed to the fresh product, athough the loss of ascorbit acid resulted in microorganisms. Arona and accent, bioagranate Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with somilik 80 °C/3 min Heat treatment (id not produce any major variations in thoactuce companed to the fresh product, athough the loss of ascorbit acid resulted in microorganisms. Arona and accentpoint acid result of in rotal reduction of actinions acid antersult in total reduction of actinions acid to result in total reduction of actinions acid to result in the so of ascorbit acid (SM), and cyanidin actions (2015) Andrés and others (2016) Coronut Water 90 °C/10 min Loss of ascorbit acid (SM), and cyanidin accester abity scores ac	Broccoli, carrot, red pepper, tomato	Smoothie	80 °C/3 min	Thermal treatment totally inactivated PPO, POD, and PME which activities were minimal during storage up to 40 and 58 d at 20 and 5 °C, respectively	Rodríguez- Verástegui and others (2016)
Carrot Juice 90 °C/10 min Increase of the total phenolic and hydroxycinnamic acids contents contents Description (2015) Carrot Reduced-calorie juice 80 rc9 °C/10 min Safimonella sp. or Staphyloccaccus aureus bloot contents Sinchalpant and others (2013) Carrot, grape Blended nectar 80 rc9 °C/30 min The total guagar content was significantly higher at B°C for 5 min Yadav (2015) Carrot, melon, orange, papaya Smoothie added with som mik 80 °C/3 min Heat treatment did not produce any major vatators in bloactive compounds. The bioactive compounds of treated smoothies were relatively stable after 45 d of refrigerated Storage compared to the fresh product and restand others. Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with sim mik 80 °C/3 min Heat treatment did not produce any major vatators in bloactive compounds. The bioaxies of compared treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh product and thesis and others (2016) Andrés and others (2016) Carrot, pmegranate Blended nectar 80 to 90 °C/30 min Heat treatment did not produc any major vatators and comparison and companing and adders and others (2016) Wadav (2015) Carot, pmegranate Blended nectar 80 to 90 °C/30 min Levense of visitanin A because of copandin addes score printonin decaroid addes (264%), and o	Cactus	Juice	100 °C/20 min	Pasteurization process affected viscosity and protein content	Deboni and others (2014)
Carrot Reduced-calorie juice 80 °C/1 min Safimone/a sp. or Staphylaccoccus aures how the detection limit. Reduction of yeasts, molds, and total coliforms Similar participanti and detection limit. Reduction of yeasts, molds, and total coliforms Similar participanti and thess (2013) Carrot, melon, orange, papaya Smoothie 80 °C/3 min Color degradation Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with soymik 80 °C/3 min Heat treatment did not produce any major wratisms in bioactive compounds. The bioactive compounds on treated smoothies were relatively stable after 45 d of refrigerated storage compaced to the fresh produc, although the loss of ascobic acid resulted in daccrased activaciant calcopacity Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added metcar 80 °C/3 min Total reduction in microorganisms. Arma and decrased activaciant calcopacity Andrés and others (2016) Carrot, melon, orange, papaya Juice 90 °C/10 min Loss of yandin a staphicaside (15%), decreased and bread and yandin shyole (2014) Wilkes and others (2014) Corout Water 90 °C/10 min Loss of yandin a staphicaside (15%), decrease in deletydes, ketones, and 2 acetyl-in pyrodine (2016) Jayachandran and others (2015) Cocout Water 90 °C/10 min Decrease of miscostap during the storage (2016) Jay	Carrot	Juice	90 °C/10 min	Increase of the total phenolic and hydroxycinnamic acids contents	Dereli and others (2015)
Carret, grape Blended netar 80 to 90 °C/30 s The total sugars content was significantly higher at b5 min Yadav (2015) Carrot, melon, orange, papaya Smoothie added 80 °C / 3 min Color degradation Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added 80 °C / 3 min Heat treatment did not produce any major variations in bioactive compounds. The bioactive compounds in the loss of smoothins. Arona and atter 4.5 d of tareful state state in the loss of smoothins. Arona and atter 4.5 d of tareful state state state in the loss of smoothins. Arona and atter 4.5 d of tareful state st	Carrot	Reduced-calorie juice	80 °C/1 min	Salmonella sp. or Staphyloccoccus aureus below the detection limit. Reduction of yeasts, molds, and total coliforms	Sinchaipanit and others (2013)
Carrot, melon, orange, papaya Smoothie 80 °C/3 min Color degradation Andrés and others (2016) Carrot, melon, orange, papaya Smoothie added with saymilk 80 °C/3 min Heat treatment did not produce any major variations in treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh product, although the loss of ascorbic acid encased (2016a) Andrés and others (2016a) Carrot, melon, orange, papaya Smoothie added with saymilk 80 °C/3 min Heat treatment did not produce any major variations in treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh ordex and (2016a) Andrés and others (2015) Carrot, melon, orange, papaya Smoothie added were stable after 45 d of refrigerated storage compared to the increase of the increase of (2016a) Andrés and others (2015) Carrot, melon, orange, and the encrease of the increase of vitamin A because of the increase of (2016a) Pagetyaya Yadav (2015) Coronut Water 90 °C/1 min Increase in aldehydes, letones, and 2-acetyl-1-pyroline, and carbonid of anticyanid and vanidin 3-galucaside (39%), and (vanidin 3-galucaside (39%), and (vanidin 3-galucaside (39%), and (vanidin 3-galucaside (30%), and (vanidin 4-galucaside (30%), and (vanidin 3-galucasid	Carrot, grape	Blended nectar	80 to 90 °C/30 s	The total sugars content was significantly higher at 80°C for 5 min	Yadav (2015)
Cardin, milon, orange, papaya Smoothie added with soymilk 80 °C/3 min Heat treatment did not produce any major variations in treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh product, adult adpathy the bioactive compounds. The bioactive compounds of treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh product, adult adpathy the compared to the fresh product, adult adpathy the compared to the fresh product, adjust adju	Carrot, melon, orange,	Smoothie	80 °C/3 min	Color degradation	Andrés and others
Carrot, melon, orange, papayaSmoothie added with skim milk Blended nectar80 °C/3 min with skim milk to 5 minTotal reduction in microorganism's Aroma and microorganism's Aroma and carrot, pomegranateAndrés and others (2016)Carrot, pomegranateBlended nectar80 to 90 °C/30s to 5 minDecrease of vitamin A because of the increase of processing temperature and heating time.Yadav (2015)ChokeberryJuice90 °C/10 minLoss of cyanidin 3-arabinoside and cyanidin 3-glucoside (50%)Vanidin 3-glactoside (58%), and cyanidin 3-glucoside (50%)Wilkes and others (2014)CoconutWater90 °C/10 minIncrease in aldehyde, ketones, and 2-acetyl-1-pyrroline, an aroma compound active allow doot thresholds and others (2015)De Marchi and others (2015)Coconut, lemon, litchiBlended beverage95 °C/10 min to 45 dLoss in ascobic acid. Low retention of nutritional quality attributesJayachandran and others (2015)Coconut, nannariBlended beverage90 °C/2 minSignificant decrease in the consistency coefficient attability or 45 dSimunek and others (2014)CupuacuNectar90 °C/3 minReduction of mesophilic bacteria, yeasts and molds; stability for 45 dVieira and Silva (2014)GrapeJuice80 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good reterition of active components and radical scavenging activity and phenolic content and radical scavenging activity and	Carrot, melon, orange, papaya	Smoothie added with soymilk	80 °C/3 min	Heat treatment did not produce any major variations in bioactive compounds. The bioactive compounds of treated smoothies were relatively stable after 45 d of refrigerated storage compared to the fresh product, although the loss of ascorbic acid resulted in decreased antioxidant capacity	Andrés and others (2016a)
Carrot, pomegranate Blended nectar 80 to 90 °C/30 s to 5 min Decrease of vifamin A because of the increase of processing temperature and heating time. Yadav (2015) Chokeberry Juice 90 °C/10 min Decrease of vifamin A because of the increase of the standard and the stand the standard and the standard and the stan	Carrot, melon, orange,	Smoothie added with skim milk	80 °C/3 min	Total reduction in microorganisms. Aroma and acceptability scores significantly decreased	Andrés and others (2016c)
Chokeberry Juice 90°C/10 min Loss of cyanidin 3-anathonicia end cyanidin 3-yohoside end cyanidin 3-yohoside (58%), and cyanidin 3-glucoside (50%). Wilkes and others (2014) Coconut Water 90°C/1 min Loss of cyanidin 3-anathonicia end cyanidin 3-glucoside (58%), and cyanidin 3-glucoside (50%). De Marchi and others (2015) Coconut, lemon, litchi Blended beverage 95°C/10 min Loss in ascorbic acid. Low retention of nutritional quality advectated by "popcom" and "toasted" odor descriptors. De Marchi and others (2015) Coconut, lemon, litchi Blended beverage 95°C/10 min Loss in ascorbic acid. Low retention of nutritional quality advectated by "popcom" and "toasted" odor descriptors. De Marchi and others (2015) Coconut, nannari Blended beverage 95°C/10 min Loss in ascorbic acid. Low retention of nutritional quality advectation of native microflora. Decrease of the consistency coefficient Simurek and others (2014a) Cupuacu Nectar 90°C/3 min Reduction of mesophilic bacteria, yeasts and molds; Viera and Silva Viera and Silva Clinager Nectar 90°C/10 min The beverage remain microbiologically safe for 6 mo, and radical scavenging activity in the bioaccesilvity of the total phenolic content and radical scavenging activity in the bioaccesilvity (2016) Outers (2016) Grape Wine 80°C/15 min Inacrease of 67.4% and	Carrot, pomegranate	Blended nectar	80 to 90 °C/30 s to 5 min	Decrease of vitamin A because of the increase of processing temperature and heating time.	Yadav (2015)
CoconutWater90 °C/1 minIncrease in aldehyde, ktones, and 2-actyl-1-pyrroline, an aroma compound active at low odor thresholds and others (2015)De Marchi and others (2015)Coconut, lemon, litchiBlended beverage95 °C/10 minLoss in ascorbic acid. Low retention of nutritional quality attributesJayachandran and others (2015)Coconut, nannariBlended beverage96 °C/2 minSignificant decrease in the consistency coefficientJayachandran and others (2015)Coconut, nannariBlended beverage96 °C/2 minSignificant decrease in the consistency coefficientSimunek and others (2014)CranberryNectar90 °C/3 minReduction of mesophilic bacteria, yeasts and molds; stability for 45 dVieira and Silva (2014)CupuacuNectar90 °C/10 minDecrease in viscosity during the storage the total phenolics increased by 33.9%Nagak and others (2016)GingerReady-to-drink beverage95 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good retention of active components the total phenolics increased by 33.9%Gui and others (2016)GrapeWine80 °C/15 minLethality of 89.40% for S. cerevisiae (QA23) collagenGui and others (2012)Grape, orangeJuice85 °C/18 min enriched with hydrolyzed collagenInactivation of the naturally occurring microbiota characteristicsBilek and Bayram (2015)GuavaJuice85 °C/10 min beverage remained microbiologically safe for 6 mo, the total phenolis, increased by 33.9%Gui and others (2016)Grape, orange	Chokeberry	Juice	90 °C/10 min	Loss of cyanidin 3-arabinoside and cyanidin 3xyloside (69%), cyanidin 3-galactoside (58%), and cyanidin 3-olucoside (50%)	Wilkes and others (2014)
Coconut, lemon, litchiBlended beverage95 °C/10 minLoss in accrbic acid. Low retention of nutritional quality attributesJayachandran and others (2015)Coconut, nannariBlended beverage96 °C/6 minTotal inactivation of native microflora. Decrease of radical scavening activity and overall acceptabilityJayachandran and others (2014a)CranberryNectar80 °C/2 minSignificant decrease in the consistency coefficientSimunek and others (2014)CupuaçuNectar90 °C/3 minReduction of mesophilic bacteria, yeasts and molds; stability for 45 dVieira and Siva (2014)Elephant appleJuice80 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good retention of active components and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9%Vieira and others (2016)GrapeJuice80 °C/15 minLethality of 89.40% for 5. cerevisiae (QA23) characteristicsCui and others (2012)Grape, orangeJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others (2015)GuavaJuice85 °C/20 minAscorbic acid, total monomeric anthocyanins, total phenols, and articivity decreased significantly during grader with a good retention of active components the total phenolics increased by 20% to 26%Sinchaipanit and others (2015)Grape rungeJuice85 °C/10 minAscorbic acid, total monomeric anthocyanins, total phenols, and anthoxidant activity decreased significantly during storage <b< td=""><td>Coconut</td><td>Water</td><td>90 °C∕ 1 min</td><td>Increase in aldehydes, ketones, and 2-acetyl-1-pyrroline, an aroma compound active at low odor thresholds and characterized by "popcorn" and "toasted" odor descriptors</td><td>De Marchi and others (2015)</td></b<>	Coconut	Water	90 °C∕ 1 min	Increase in aldehydes, ketones, and 2-acetyl-1-pyrroline, an aroma compound active at low odor thresholds and characterized by "popcorn" and "toasted" odor descriptors	De Marchi and others (2015)
Coconut, nannariBlended beverage96 °C/6 minTotal inactivation of native microflora. Decrease of radical scavenging activity and overall acceptabilityKathiravan and others (2014)CranberryNectar80 °C/2 minSignificant decrease in the consistency coefficientSignificant decrease in the consistency coefficientSignificant decrease in the consistency coefficientSignificant decrease in viscosity during the storageVieira and Silva (2014)CupuaçuNectar90 °C/1 minDecrease in viscosity during the storageNayak and others (2016)GingerReady-to-drink beverage95 °C/10 minThe beverage enami microbiologically safe for 6 mo, with a good retention of active components and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9%Dadasaheb and (2016)GrapeWine80 °C/15 minLethality of 89.40% for <i>S. cerevisiae</i> (QA23)Cui and others (2012)Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/10 minInactivation of the naturally occurring microbiota significantly during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013)GuavaJuice85 °C/10 minAscorbic acid, total monomeric anthocyanins, total phenols, and atioxidant activity decreased significantly during storage significantly during storageSinchaipanit and others (2015)Guava, mango, papaya, roselleJuice80 °C/20 minAscorbic acid, total monomeric anthocyanins, total phenols, and atroixidant activity decreased significantly during storage si	Coconut, lemon, litchi	Blended beverage	95 °C/10 min	Loss in ascorbic acid. Low retention of nutritional quality	Jayachandran and others (2015)
CranberryNectar80 °C/2 minSignificant decrease in the consistency coefficientSimule and others (2014)CupuaçuNectar90 °C/3 minReduction of mesophilic bacteria, yeasts and molds; stability for 45 dVieira and Silva (2014)Elephant appleJuice80 °C/1 minDecrease in viscosity during the storage with a good retention of active componentsNayak and others (2016)GingerReady-to-drink beverage95 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)GrapeJuice80 °C/15 minLethality of 89.40% for <i>S. cerevisiae</i> (QA23) collagenCui and others (2012)Grape, orangeJuice95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)Grape, orangeJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice85 °C/10 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice80 °C/5 minAscorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storage ginificantly during storageDadasaheb and others (2014)JaboticabaJuice80 °C/20 minThe beverage remained microbiologically safe for 6 mo, others (2015)GrapeJuice80 °C/10 minThe beverage remained microbiologically safe for 6 mo, othe	Coconut, nannari	Blended beverage	96 °C/6 min	Total inactivation of native microflora. Decrease of radical scavenging activity and overall acceptability	Kathiravan and others (2014a)
CupuaçuNectar90 °C/3 minReduction of mesophilic bacteria, yeasts and molds; stability for 45 dVieira and Silva (2014)Elephant appleJuice80 °C/1 minDecrease in viscosity during the storageNayak and others (2016)GingerReady-to-drink beverage95 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)GrapeJuice80 °C/30 minIncrease of 67.4% and 216.9% in total phenolic content and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9%Cui and others (2016)GrapeWine80 °C/15 minLethality of 89.40% for 5. cerevisiae (QA23)Cui and others (2012)Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)GuavaJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice blend82.5 °C/20 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend80 °C/5 minHigh anthocyanin degradationMagaya-Kilima and others (2015)JamunJuice80 °C/25 minHigh anthocyanin degradationDadasaheb and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins with a god retention of active componen	Cranberry	Nectar	80 °C/2 min	Significant decrease in the consistency coefficient	Šimunek and others
Elephant apple Juice 80 °C/1 min Decrease in viscosity during the storage Navak and others (2016) Ginger Ready-to-drink beverage 95 °C/10 min The beverage remain microbiologically safe for 6 mo, with a good retention of active components Dadasaheb and others (2015) Grape Juice 80 °C/15 min Increase of 67.4% and 216.9% in total phenolic content and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9% Cui and others (2016) Grape Wine 80 °C/15 min Lethality of 89.40% for <i>S. cerevisiae</i> (QA23) Cui and others (2012) Grape, orange Juice blend enriched with hydrolyzed collagen 95 °C/18 min Inactivation of the naturally occurring microbiota Bilek and Bayram (2015) Guava Juice 85 °C/45 s No microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristics Uckoo and others 2013 Guava Juice blend 82.5 °C/20 min Ascorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storage Magaya-Kiima and others (2014) Indian borage Ready-to-drink beverage 95 °C/10 min The beverage remained microbiologically safe for 6 mo, uvith a good retention of active components Dadasaheb and others (2014) Jamun	Сириаçи	Nectar	90 °C/3 min	Reduction of mesophilic bacteria, yeasts and molds; stability for 45 d	Vieira and Silva (2014)
GingerReady-to-drink beverage95 °C/10 minThe beverage remain microbiologically safe for 6 mo, with a good retention of active componentsDadasahe and others (2015)GrapeJuice80 °C/30 minIncrease of 67.4% and 216.9% in total phenolic content and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9%Gui and others (2016)GrapeWine80 °C/15 minLethality of 89.40% for <i>S. cerevisiae</i> (QA23)Gui and others (2012)Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)GrapefruitJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice85 °C/10 minAscorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storageSinchaipanit and others (2015)Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2014)JamunJuice80 °C/5 minHigh anthocyanin degradationDadasaheb and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationDadasaheb and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation f1 % to 2% after 60 min)Dadasaheb and others (2015)<	Elephant apple	Juice	80 °C/1 min	Decrease in viscosity during the storage	Nayak and others
GrapeJuice80 °C/30 minIncrease of 67.4% and 216.9% in total phenolic content and radical scavenging activity. The bioaccessibility of the total phenolics increase db y3.9%He and others (2016)GrapeWine80 °C/15 minLethality of 89.40% for <i>S. cerevisiae</i> (QA23)Cui and others (2012)Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)Grape fruitJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice blend82.5 °C/20 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend82.5 °C/10 minAscorbic acid, total monomeric anthocyanins, total significantly during storageMgaya-Kilima and others (2014)Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationShaheer and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Mercali and others (2015)	Ginger	Ready-to-drink	95 °C/10 min	The beverage remain microbiologically safe for 6 mo, with a good retention of active components	Dadasaheb and others (2015)
GrapeWine80 °C/15 minLethality of 89.40% for <i>S. cerevisiae</i> (QA23)Cui and others (2012)Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)GrapefruitJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice85 °C/10 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend82.5 °C/20 min beverageAscorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storageMgaya-Kilima and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationDadasaheb and others (2015)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Dadasaheb and others (2015)	Grape	Juice	80 °C/30 min	Increase of 67.4% and 216.9% in total phenolic content and radical scavenging activity. The bioaccessibility of the total phenolics increased by 33.9%	He and others (2016)
Grape, orangeJuice blend enriched with hydrolyzed collagen95 °C/18 minInactivation of the naturally occurring microbiotaBilek and Bayram (2015)GrapefruitJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice85 °C/1 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend82.5 °C/20 minAscorbic acid, total monomeric anthocyanins, total significantly during storageMgaya-Kilima and others (2014)Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)JamunJuice80 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Dadasahe dres (2015)	Grape	Wine	80 °C/15 min	Lethality of 89.40% for <i>S. cerevisiae</i> (QA23)	Cui and others
GrapefruitJuice85 °C/45 sNo microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color characteristicsUckoo and others 2013GuavaJuice85 °C/1 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend82.5 °C/20 minAscorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storageMgaya-Kilima and others (2014)Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationShaheer and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Mercali and others (2015)	Grape, orange	Juice blend enriched with hydrolyzed	95 °C⁄18 min	Inactivation of the naturally occurring microbiota	Bilek and Bayram (2015)
GuavaJuice85 °C/1 minAscorbic acid decreased by 20% to 26%Sinchaipanit and others (2015)Guava, mango, papaya, roselleJuice blend82.5 °C/20 minAscorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storageMgaya-Kilima and others (2014)Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationShaheer and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Mercali and others (2015)	Grapefruit	Juice	85 °C/45 s	No microbial growth during 21 d of refrigerated storage. Negative effect on the levels of ascorbic acid and color	Uckoo and others 2013
Guava, mango, papaya, roselle Juice blend 82.5 °C/20 min Ascorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased significantly during storage Mgaya-Kilima and others (2014) Indian borage Ready-to-drink beverage 95 °C/10 min The beverage remained microbiologically safe for 6 mo, with a good retention of active components Dadasaheb and others (2015) Jamun Juice 80 °C/5 min High anthocyanin degradation Shaheer and others (2014) Jaboticaba Juice 80 to 90 °C/15 to 90 min Low stability of the monomeric anthocyanins to geradation of 1% to 2% after 60 min) Mercali and others (2015)	Guava	Juice	85 °C∕1 min	Ascorbic acid decreased by 20% to 26%	Sinchaipanit and
Indian borageReady-to-drink beverage95 °C/10 minThe beverage remained microbiologically safe for 6 mo, with a good retention of active componentsDadasaheb and others (2015)JamunJuice80 °C/5 minHigh anthocyanin degradationShaheer and others (2014)JaboticabaJuice80 to 90 °C/15 to 90 minLow stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)Mercali and others (2015)	Guava, mango, papaya, roselle	Juice blend	82.5 °C/20 min	Ascorbic acid, total monomeric anthocyanins, total phenols, and antioxidant activity decreased	Mgaya-Kilima and others (2014)
Jamun Juice 80 °C/5 min High anthocyanin degradation Shaheer and others (2014) Jaboticaba Juice 80 to 90 °C/15 to 90 min Low stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min) Mercali and others (2015)	Indian borage	Ready-to-drink	95 °C/10 min	The beverage remained microbiologically safe for 6 mo, with a good retention of active components	Dadasaheb and
Jaboticaba Juice 80 to 90 °C/15 to Low stability of the monomeric anthocyanins 90 min (degradation of 1% to 2% after 60 min) (2015) (2015)	Jamun	Juice	80 °C∕5 min	High anthocyanin degradation	Shaheer and others
	Jaboticaba	Juice	80 to 90 °C/15 to 90 min	Low stability of the monomeric anthocyanins (degradation of 1% to 2% after 60 min)	Mercali and others (2015)

Table 2–Continued.

Fruit/vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Kiwifruit, mango,	Juice-blend mixed	90 °C∕1 min	Decreased bioaccessibility of ascorbic acid and phenolic	Rodríguez-Roque
orange, pineappie Kiwifruit, mango, orange, pineapple	Juice-blend mixed with whole or skim milk	90 °C/1 min	Thermal processing ensured the microbial stability of the beverages during 56 d at 4 °C without significant changes on pH, acidity, and soluble solid content values. Thermal treatment did not inactivate PG	Salvia-Trujillo and others (2011)
Kiwifruit, orange, pineapple	Juice-blend mixed with soymilk	90 °C/1 min	POD and LOX of heat treated beverages were inactivated by 100% and 51%, respectively. Thermal treatment ensured the microbial stability of the beverage for 56 d	Morales-de la Peña and others (2010)
Litchi	Mixed beverage	95 °C∕5 min	Inactivation of PME, PPO and POD (83%, 79%, and 78%, respectively); loss of ascorbic acid of 31%. Shelf life 80 d	Swami Hulle and Rao (2016)
Litchi	Juice	90 °C∕1 min	Total inactivation of naturally occurring microbiota. Negative effects on color. Decrease of the total free amino acids	Guo and others (2011)
Litchi	Probiotic juice	95 °C∕1 min	Probiotic <i>Lactobacillus casei</i> at 8.0 CFU/mL log after 4	Zheng and others
Longan	Juice	100 °C/1 min	Significant loss in physicochemical properties and flavor	Zhang and others (2010)
Longan	Xanthan-added juice	90 °C/2 min	Complete inactivation of naturally occurring microorganisms and PPO significant decrease of total phenols and antioxidant activity	Chaikham and Apichart- srangkoon (2012)
Longan, pennywort	Herbal-plant beverage added with rice (<i>Oryza</i> sativa L)	90 °C/2 min	No microbial growth for 3 wk at 4 °C. Negative impact on color and bioactive compounds	Worametrachanon and others (2014)
Mandarin	Juice	85 °C⁄5 to 15 min	The highest nonenzymatic browning during 6-mo-refrigerated storage was observed in juice	Pareek and others (2011)
Mango	Juice	90 °C∕1 min	Complete inactivation of occurring microbiota.	Santhirasegaram
Mango	Nectar	100 °C/10 min	Negative impact on color	Tribst and others
Maoberry	Juice	90 °C∕1 min	Complete inactivation of mesophilic bacteria, and PPO.	Chaikham (2015)
Maqui berry	Juice	85 °C/2 min	Reduction of anthocyanin	Brauch and others
Orange	Juice	90 °C∕1 min	High retention of ascorbic acid. Low preservation of total	Velázquez-Estrada
Orange	Juice enriched with hydrolyzed	95 °C/21 min	Inactivation of occurring microbiota	Bilek and Bayram (2015)
Рарауа	collagen Nectar	80 °C/5 min	Reduction pectinesterase activity, E. coli K12, L. innocua,	Parker and others
Passion fruit	Juice	90 °C/1 min	The levels of ascorbic acid, anthocyanins, and	(2010) Fernandes and
Peach	Juice	90 °C⁄5 min	carotenoids were slightly affected Significant reductions in total carotenoids,	others (2011) Oliveira and others
Pear	Juice	95 °C∕2 min	Complete inactivation of PPO, POD, PME, and natural occurring microbiota. Reduction of ascorbic acid, total	(2012) Saeeduddin and others (2015)
Pennywort	Juice	90 °C/3 min	Naturally occurring microbiota below the detection limit for 4 mo at 4 °C. Negative effects on ascorbic acid,	Chaikham and others (2013)
Physalis	Juice	90 °C/2 min	total phenolic compounds, and antioxidant capacity Preservation of the valuable attributes of the juice	Rabie and others
Pindo palm	Juice	85 °C/20 min	The physicochemical properties of juice, excluding color, and their proportion of ascorbic acid and β -carotene,	(2015) Jachna and others (2016)
Pineapple	Juice	90 °C∕1.5 min	Adverse effect on ascorbic acid, total phenolic, and	Zheng and Lu
Pitahaya	Juice	80 and 85 °C/10	radical scavenging activity High reduction of betacyanin content at 85 °C for	(2011) Wong and Siow
Pomegranate	Juice	to 30 min 90 °C/2 min	30 mm. 15.4% to 28.3% loss of anthocyanin	(2015) Pala and Toklucu
Pomegranate	Nectar	95 °C⁄45 s	Loss of 76% and 42% to 77% for flavonoid and antioxidant activity	(2011) Surek and Nilufer-Erdil
Rabbiteye blueberry	Juice	80 °C/0 to	Half-life time of 5.1 h for anthocyanin.	(2014) Kechinski and others
Red-fleshed apple	Juice	3000 min 80 °C/10 min and 90 °C/5 min	0.02 and 0.12 for PPO and POD residual enzyme activity at 80 °C, and 0.00 and 0.10 at 90 °C, respectively.	(2010) Katiyo and others (2014)
				(Continued)

Table 2-Continued.

Fruit∕vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Red raspberry	Juice	80 °C/15 min	The content of the ascorbic acid was reduced by 47% and 31% in fresh and processed juice after 20 d of refrigerated storage	Yang and others (2015)
Sea buckthorn	Juice	90 to 120 °C/0 to 300 min	Significant effect on ascorbic acid content.	Xu and others (2015a)
Sour cherry	Juice	80 °C/2 min	Increase in anthocyanins and phenolic acids	Elez Garofulić and others (2015)
Sour orange	Juice	70 to 80 °C∕5 to 25 min	12.10% PME residual activity at 80 °C for 5 min	Koshani and others (2014)
Soursoup	Juice	60 °C/60 min	Significant decrease of naturally occurring microbiota during storage (30 to 31 °C; 2 wk). Decrease in titratable acidity from 23.25 to 21.92	Nwachukwu and Ezeigbo (2013)
Spinach	Juice	80 °C/10 min	No microbial growth during the storage at 4 °C for 10 wk. Degradation of color pigments. Significant loss of soluble solids	Khandpur and Gogate (2015)
Strawberry	Juice	90 °C/1 min	No effect on the antioxidant activity	Odriozola-Serrano and others (2016)
Strawberry	Nectar	85 °C/15 min	Moderate loss of anthocyanins during the refrigerated storage	Marszałek and others (2011)
Sweet lime	Juice	80 °C/10 min	No microbial growth during the storage at 4 °C for 10 wk. Degradation of color pigments. Significant loss of soluble solids	Khandpur and Gogate (2015)
Tamarillo	Nectar	80 to 95 °C/10 min	Increasing temperatures led to significant loss in some carotenoids, such as zeaxanthin and β -carotene.	Mertz and others (2010)
Tomato	Juice	85 °C/5 min	Inactivation of natural microorganisms. Moderate effect on physicochemical and color characteristics	Stratakos and others (2016)
Tomato	Fermented juice	100 °C/5 to 120 min	The lycopene content of tomato juice after heating at 100 °C for 5 min was significantly increased from 88 to 113 μ g/g.	Koh and others (2010)
Twistspine pricklypear	Juice	95 °C⁄3 min	Low preservation of antioxidant activity	Moussa-Ayoub and others (2011)
Yellow mombin	Juice	90 °C∕1 min	25% and $2.5%$ residual activity for PME and POD	De Carvalho and others (2015)
Watermelon	Juice	95 °C∕1 min	Decrease of cloud stability	Liu and others (2012)
White mulberry	Juice	95 °C/1 min	14% reduction of α -glucosidase inhibitory activity	Yu and others (2014)
Wild cherry	Juice	90 °C∕1 min	PPO was completely inactivated	Chaikham and Baipong (2016)

PME, pectin methyl esterase; PG, polygalacturonase; LOX, lipoxygenase; PPO, polyphenol oxidase; POD, peroxidase

the oxidation processes). PE and PG are involved in the breakdown of pectin and other cell wall materials, resulting in a product with reduced viscosity and undesirable organoleptic properties (Marszałek and others 2016). Therefore, several studies were performed to evaluate the effect of HTLT treatments on these activities. Examples include: (1) the reduction of PME enzymatic activity by 75% to 83%, respectively, in yellow mombin juice (de Carvalho and others 2015) and litchi-based beverage (Swami Hulle and Rao 2016), or its complete inactivation in pear juice (Saeeduddin and others 2015), and broccoli/carrot/red pepper/tomato smoothie (Rodríguez-Verástegui and others 2016); (2) the reduction of PPO enzymatic activity by 79% in litchi-based beverage (Swami Hulle and Rao 2016), or its total inactivation in smoothie (Rodríguez-Verástegui and others 2016), pear juice (Saeeduddin and others 2015), and longan juice added with xanthan (Chaikham and Apichartsrangkoon 2012); (3) the reduction of POD enzymatic activity by 78% and 97.5% in litchi-based beverage (Swami Hulle and Rao 2016) and yellow mombin juice (de Carvalho and others 2015), respectively, as well as its complete inactivation in pear juice (Saeeduddin and others 2015), in a juice-blend mixed with soymilk (Morales-de la Peña and others 2010), and a vegetable-based smoothie (Rodríguez-Verástegui and others 2016); and (4) the reduction of LOX enzymatic activity by 51% in kiwifruit/orange/pineapple juice blend mixed with soymilk (Morales-de la Peña and others 2010).

HTLT might affect many antioxidant compounds, thus reducing their beneficial health effects. The reduction of the antiox-

idant capacity was generally due to a loss in total anthocyanins and vitamin C (Miller and Silva 2012). Some of these studies reported: (1) the degradation of ascorbic acid in amla juice (Bansal and others 2015), apple/red cabbage (Radziejewska-Kubzdela and Biegańska-Marecik 2015) and coconut/lemon/litchi blended beverages (Jayachandran and others 2015), grapefruit juice (Uckoo and others 2013); (2) the degradation of anthocyanins in jamun (Shaheer and others 2014), maqui berry (Brauch and others 2016), and pomegranate (Pala and Toklucu 2011) juices; (3) the degradation of carotenoids in peach (Oliveira and others 2012) and pindo palm (Jachna and others 2016) juices; and (4) the reduction of antioxidant capacity in amla (Bansal and others 2015), asparagus (Chen and others 2015b), orange (Velázquez-Estrada and others 2013), pear (Saeeduddin and others 2015), and twist spine prickly pear juices (Moussa-Ayoub and others 2011).

Similarly, other drawbacks related to quality attributes include (1) the detrimental effect on color in carrot/melon/orange/papaya smoothie (Andrés and others 2016b), coconut/nannari blended beverage (Kathiravan and others 2014a), grapefruit (Uckoo and others 2013), litchi (Guo and others 2011), spinach and sweet lime (Khandpur and Gogate 2015) juices, mango nectar (Tribst and others 2011), as well as in a longan/pennywort-based beverage added with rice (Worametrachanon and others 2014); (2) the losses in physicochemical properties in cactus (Deboni and others 2014), litchi (Guo and others 2011), longan (Zhang and others 2010), mango (Santhirasegaram and others 2015), and watermelon (Liu and others 2012) juices, as well as in blueberry nectar (Šimunek

Table 3-Conventional thermal processing: high temperature-short time (HTST)

Fruit⁄vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Amla, bael	Juice blend	80 to 90 °C/25 s	Juice treated at 90 °C showed best results for the	Rathod and others
Apple	Juice	90 °C/30 s	nutritional quality of product Complete inactivation of <i>L. brevis</i> and <i>S. cerevisiae</i> . 95.3% and 90.9% inactivation of PME and PPO	(2014) Aguilar-Rosas and others (2013)
Apple	Concentrated	100 °C/30 s	Reduction of <i>A. acidoterrestris</i> spores; the complete	Djas and others
Apple	Smoothie added with	85 °C/15 s	Negative effects were not reported	Sun-Waterhouse and others (2014)
Apricot	cellulose Nectar	110 °C/8.6 s	Complete inactivation of PPO, POD, and PME	Huang and others (2013)
Blackberry	Juice	92 °C/10 s	 High levels of total phenolics, (–)-epicatechin, ferulic acid, and p-coumaric acid Retention of biological properties related to inhibition of peroxidation and its capacity to scavenge intracellular radicale 	Azofeifa and others (2015)
Blackcurrant	Juice	103 °C/30 s	Significant loss in anthocyanin content (approximately 22%)	Woodward and others (2011)
Black mulberry	Juice	90 °C/30 s	Reduction of the antioxidant activity	Jiang and others
Blueberry	Juice	90 °C/15 s	No changes for reducing sugars, total acid, phenol contents, and soluble solids. Low stability of ascorbic	Chen and others (2014)
Carrot	Juice	98 °C/21 s	Actor Higher viscosity and low stability of particles dispersion during the refrigerated storage	Chen and others (2012)
Carrot	Reduced-calorie	90 °C/15 s	Low β -carotene content	Sinchaipanit and
Carrot, celery, green pepper, lemon,	Blended beverage	90 and 98 °C/15 and 21 s	Decrease of ascorbic acid	Barba and others (2010)
Chinese bayberry	Juice	120 °C/3 s	Moderate flavor changes	Xu and others
Cucumber	Juice	85 °C∕15 s	Yeasts and molds were completely inactivated, and their levels were below the detection limit for 50 d	Zhao and others (2013)
Grape	Juice	90 °C/30 s	Increase of 65% and 116.6% in total phenolic content and radical scavenging activity value respectively	He and others
Grapefruit	Juice	80 °C/11 s	Significant decrease in citric and ascorbic acids	Igual and others
Guava	Nectar	90 °C/3.1 and 12.5 s	Treatments for 3.1 and 12.5 s retained, respectively, 92% and 90% of the initial ascorbic acid content	Salazar-González and others (2014)
Lemon	Juice	90 °C∕15 s	Increase of total phenolic content. Decrease of total	Ucan and others
Lemon, maqui berry	Isotonic drink	80 and 85 °C/6 s	Heat treatments did not affect anthocyanins. However, 80 °C/ heat treatment with storage at 7°C controlled	Gironés-Vilaplana and others (2016)
Lemon, pomegranate	Juice blend	90 °C/5 s	microbial growth Complete inactivation of naturally occurring microorganisms. High increase in the color hue.	Mena and others (2013a)
Mandarin	Juice	82 and 92 °C/12 s	Marked effect on ascorbic acid degradation POD activity ranging from 0.11 to 0.23 (units/g of juice)	Hirsch and others
Mango	Nectar	110 °C/8.6 s	Significant inactivation of naturally occurring microorganisms. The activity of acid invertase was	Liu and others (2014)
Mulberry	Juice	110 °C/8.6 s	reduced by 91.4%. Significant increase of viscosity Total aerobic bacteria, yeasts, and molds were not detected for 28 d at 4 °C and 25 °C	Zou and others
Orange	Juice	90 °C/20 s	PME activity increased during storage (4 °C, 180 d)	Agcam and others
Orange	Juice mixed with	90 °C/15 s	5-log reduction of <i>L. plantarum</i> (CECT 220). Significant	Zulueta and others
Orange	Fermented juice	85 °C∕30 s	Partial amino acid degradation; however, the total	Cerrillo and others
Orange, sweet pepper	Juice blend	110 °C/8.6 s	About 4 log reduction of total aerobic bacteria, yeasts,	Xu and others
Рарауа	Beverage	110 °C/8.6 s	Total aerobic bacteria, yeasts, and molds were below the	Chen and others
Рарауа	Nectar	80 to 135 °C/1 to 3 s	β -Carotene was significantly reduced at 80 and 110 °C (22.5%) and increased at 135 °C, with an overall	Swada and others (2016)
Persimmon	Juice	95 °C∕ 30 s	6.26% Increase Formation of phenylalanine-hexoside and	Jiménez-Sánchez
Pomegranate	Juice	110 °C/8.6 s	tryptopnan-nexoside pH, total soluble solids, and titratable acidity did not show significant changes	and others (2015) Chen and others
Prickly pear	Juice	131 °C/2 s	High loss in phenols	Jiménez-Aguilar and
Pummelo	Juice	110 °C/8.6 s	PME and POD were inactivated. Decrease of total phenols (7.7%) and ascorbic acid (27.9%)	Gao and others (2015)
				(Continued)

Table 3-Continued.

Fruit/vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Purple sweet potato	Nectar	110 °C∕8.6 s	Inactivation of yeasts and molds to a level below the detection limit, and the count of yeasts and molds in juice was kept lower than the detection limit during 12 wk of storage at 4 and 25 °C	Wang and others (2012)
Red-fleshed apple	Juice	115 °C⁄5 s	0.06 and 0.20 for PPO and POD residual enzyme activity, respectively	Katiyo and others (2014)
Strawberry	Nectar	80 to 135 °C/1 to 3 s	Antioxidant capacity was constant at 80 °C, significantly increased at 110 °C, and remained relatively constant thereafter, with an overall 9.82% increase.	Swada and others (2016)
Tomato	Juice	92 °C/5 s	Complete inactivation of total plate count. Slight increase of acidity	Giner and others (2013)
Watermelon	Juice	90 °C/30 s	Low viscosity values over the subsequent refrigerated storage	Aguiló-Águayo and others (2010)

PME, pectin methyl esterase; PPO, polyphenol oxidase; POD, peroxidase.

and others 2014); and (3) the negative effects on flavor compounds in longan juice (Zhang and others 2010).

However, HTLT could affect in a positive way some bioactive compounds. Remarkable examples include the enhancement of: (1) total phenolic, total flavonoid, and monomeric anthocyanin contents, as well as total antioxidant capacity in black mulberry juice (Tomas and others 2015); (2) total phenolic and hydroxycinnamic acids amount in carrot juice (Dereli and others 2015); (3) anthocyanins and phenolic acids content in sour cherry juice (Elez Garofulić and others 2015); and (4) aromatic compounds in apple juice (Šimunek and others 2013).

High temperature-short time (HTST)

In order to avoid the drawbacks of the traditional thermal technologies, ensure product safety, and maintain the desired bioactive compounds, HTST thermal pasteurization (temperature ≥ 80 °C and holding times ≤ 30 s) has been proposed and tested (Table 3), because temperature dependency is more significant for microorganism destruction than for nutrient degradation (Achir and others 2016).

A broad range of studies mainly focused on microbiological quality of products. HTST treatments can: (1) control the growth of *Lactobacillus plantarum* CECT 220 in orange juice added with milk (Zulueta and others 2013), or the native microorganisms in orange/sweet pepper juice blend (Xu and others 2015b) and mango nectar (Liu and others 2014); (2) inactivate *Lactobacillus brevis* and *Saccharomyces cerevisiae* in apple juice (Aguilar-Rosas and others 2013), as well as the native microorganisms in purple sweet potato nectar (Wang and others 2012), tomato (Giner and others 2013) and cucumber juices (Zhao and others 2013a); and lemon/pomegranate juice blend (Mena and others 2013a); and (3) ensure microbial stability during the storage of mulberry juice (Zou and others 2016) and purple sweet potato nectar (Wang and others 2012).

The effects of HTST treatment on different enzymes were also studied; it could: (1) reduce PME (95.3%) and PPO (90.9%) in apple juice (Aguilar-Rosas and others 2013); and (2) ensure the complete inactivation of PPO, POD, and PME in apricot nectar (Huang and others 2013), and PME and POD in pummelo juice (Gao and others 2015), respectively.

Interestingly, the application of HTST heat treatment is reported to increase: (1) total phenolics, (–)-epicatechin, ferulic acid, and *p*-coumaric acid content in apricot nectar (Huang and others 2013); (2) color hue in lemon/pomegranate juice blend (Mena and others 2013a); (3) nutritional value in fermented orange juice (Cerrillo and others 2015); and (4) viscosity in carrot juice (Chen and others 2012) and mango nectar (Liu and others 2014). Never-

theless, the exposure to high temperatures, even for short periods, can result in sensorial changes of appearance, texture, color, and flavor (Miller and Silva 2012). For example, HTST heat treatment can decrease: (1) the content of citric and ascorbic acids in grape-fruit juice (Igual and others 2010); (2) the amount of ascorbic acid in lemon/pomegranate juice blend (Mena and others 2013a); and (3) total phenolic content in prickly pear juice (Jiménez-Aguilar and others 2015).

Mild temperature-long time (MTLT)

Over the last years, some researchers studied MTLT heat treatments (temperature <80 °C and holding times >30 s) to improve the shelf life of minimally processed products (Table 4). MTLT can provide: (1) the increase of total phenolic content in black jamun juice (Saikia and others 2015); (2) a good preservation of color in cucumber juice (Wang and others 2013); (3) high retention of ascorbic acid and other phenolic compounds in pineapple juice (Saeeduddin and others 2015); (4) an increase of color stability and viscosity in prickly pear juice (Cruz-Cansino and others 2015); (5) high retention of β -carotene content in reduced-calorie carrot juice (Sinchaipanit and others 2013); and (6) a good retention of ascorbic acid and anthocyanin (58.3% and 85.1%, respectively) in Chinese bayberry juice (Wang and others 2015).

Moreover, MTLT can ensure: (1) ca. 4.39 log reduction of aerobic plate count in pomegranate juice (Mena and others 2013b); (2) the complete inactivation of total plate count in maoberry juice (Chaikham 2015); and (3) the microbial stability of up to 2 y storage in grape juice (Mert and others 2013). However, Gouma and others (2015) reported only 2.9-log reduction of potential pathogen Escherichia coli (STCC 4201) population in apple juice (Gouma and others 2015). On the other hand, Kaya and others (2015) reported >6 log reduction of E. coli K12 (ATCC 25253) in lemon/melon juice blend (Kaya and others 2015), which is likely the result of using different E. coli strains, as well as a different acidic food-matrix. Pathogens can survive in juice because of acid adaptation and develop adaptive mechanisms by undergoing genetic and physiologic changes that allow cells to stay viable. Acid adaption of pathogens shows cross-protection against thermal processing (Song and others 2015). When microorganisms develop resistance to commonly used preservation methods, juice quality and safety may be affected, and therefore understanding of stress adaptive mechanisms plays a key role in designing safe food processing conditions (Guevara and others 2015).

Regarding the enzymatic activities, MTLT heat treatments were efficient to: (1) reduce significantly PPO, POD, and PME in pear juice (Saeeduddin and others 2015); and (2) completely inactivate PPO in maoberry juice (Chaikham 2015) and

Table 4-Conventional thermal processing: mild temperature-long time (MTLT)

Fruit⁄vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Amla	Juice	70 °C/10 min	Initial reduction and increase of the naturally occurring microbiota within the storage. The critical threshold	Sangeeta and others (2013)
Apple	Juice	55 °C/3.58 min	2.9-log reduction of <i>E. coli</i> (STCC 4201)	Gouma and others
Apple, banana, orange, strawberry	Smoothie	70 °C/10 min	Reduction of the total antioxidant capacity, total phenols, anthocyanins and color. Total inactivation of PPO	Keenan and others (2012)
Apple, orange	Juice blend	70 °C/60 and 90 s	A thermal treatment for 60 s did not have effect on the growth of <i>S. cerevisiae</i> SPA. Indeed, only a 0.49 log CFU/mL reduction was observed in samples, subjected to a thermal treatment for 90 s, after 8 d at room temperature	Tyagi and others (2014b)
Banana	Juice	45 to 60 °C/30 min	At a temperature below 50 °C, PPO activity only decreased by 9.1% at 55 °C and 20.5% at 60 °C.	Yu and others (2013b)
Baobab	Drink	60 and 70 °C/0 to	83.37% and 91.71% ascorbic acid degradation after	Abioye and others
Blackberry	Juice	70 °C/0 to	The antioxidant capacity is highly related with	Zhang and others
Black jamun	Juice	Approximately 75 °C/3 min	Increase in total phenolic content and ferric reducing	Saikia and others
Bottle gourd	Juice	63 °C/30 min and 75 °C/10 min	Higher decrease in ascorbic acid (35.27%) was observed at 63 °C. Increase in pasteurization temperature lead to significant increase in total phenolics	Bhat and others (2016)
Carrot	Reduced-calorie	65 °C/30 min	High retention of β -carotene content. Production of an unaccentable cooked flavor	Sinchaipanit and others (2013)
Carrot	Juice	20 to 70 °C/1 to 60 min	Juices processed at low temperatures of 20 °C showed an enhancement on both falcarinol and falcarindiol-3-acetate contents with increasing the processing times up to 10 min compared to untreated juices. In contrast, longer processing times of 30 and 60 min did not affect the polyacetylene levels of the samples	Aguiló-Aguayo and others (2014)
Carrot, celery, beetroot	Juice blend	70 °C/3 min	High losses of ascorbic acid, as well as low increase of acidity throughout the subsequent storage for 2 wk at $4 \circ C$	Profir and Vizireanu (2013)
Carrot, orange, pumpkin-carrot, grapefruit, pumpkin celery, orange, numpkin	Juice blend	70 °C∕10 min	Negative influence on flavor and flavonoids during the refrigerated storage for 14 d	Dima and others (2015)
Carambola	Juice	Approximately 75 °C/3 min	Increase in ferric reducing antioxidant property	Saikia and others (2015)
Chinese bayberry	Juice	55 °C/8 min	58.3% and 85.1% of ascorbic acid and anthocyanin retention	Wang and others
Coconut, lemon, litchi	Beverage blend	40 to 70 °C/0 to 20 min	A minimum thermal inactivation of PPO up to 7.5 % was achieved at 40 °C/5 min, and a maximum level of inactivation to the tune of 50 % was attained at 70 °C/20 min	Jayachandran and others (2016)
Cucumber	Juice	60 °C/2 min	Good preservation of color	Wang and others (2013)
Grape	Juice	65 °C/30 min	No microbial growth up to 2 y storage. Detection of HMF	Mert and others
Guava	Whey drink-based beverage	60 to 70 °C/15 to 25 min	The beverage pasteurized at 65 °C/25 min was more acceptable compared to the other combinations for shelf life, microbiological safety, color, taste, aroma,	Singh and others (2014)
Jaboticaba	Juice	15 to 90 min⁄60 and 70	A high stability of the monomeric anthocyanins was observed at 60 °C (degradation of 1% to 2% after 60 min)	Mercali and others (2015)
Litchi	Juice	Approximately	Decrease in total phenolic content and ferric reducing	Saikia and others
Lemon, melon	Juice blend	72 °C/1.11 min	Reduction of <i>E. coli</i> K12 (ATCC 25253) population by	Kaya and others
Mandarin	Juice	65 °C∕15 to 35 min and 75 °C∕10 to 20 min	Juice processed at 65 °C for 15 min maintained better qualitative characteristics like total soluble solids, acidity, ascorbic acid, sugars, and nonenzymatic browning during 6 mc refrigerented storage	Pareek and others (2011)
Pear	Juice	65 °C/10 min	High retention of ascorbic acid and other phenols. Significant reduction in PPO, POD, and PME, and complete microbial inactivation	Saeeduddin and others (2015)
Pineapple	Juice	Approximately 75 °C/3 min	Decrease in total flavonoid content	Saikia and others (2015)
Pitahaya	Juice	65 to 75 °C/10 to	High preservation of betacyanin content at 65 °C. No	Wong and Siow
Pomegranate	Juice	65 °C/1 min	4.39 log reduction of aerobic plate count. The anthocyanin content was enhanced	Mena and others (2013b)

(Continued)

Table 4-Continued.

Fruit/vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Prickly pear	Juice	70 °C/30 min	Partial inactivation of mesophilic bacteria and enterobacteria. Higher total phenolic values	Cruz-Cansino and others (2015)
Rabbiteye blueberry	Juice	40 to 70 °C/0 to 3000 min	Half-life time values of 180.5, 42.3, 25.3, and 8.6 h for the degradation of anthocyanin at 40, 50, 60, and 70 °C, respectively	Kechinski and others (2010)
Sour orange	Juice	40 to 70 °C/5 to 25 min	Thermal treatments at low temperatures ($T < 60$ °C) did not reduce PME activity considerably. After 5 min of thermal treatment at 60 °C, the residual activity was 77.55%	Koshani and others (2014)
Watermelon	Juice	74 °C/45 s	<i>E. coli, L. innocua, L. plantarum,</i> and <i>S. cerevisiae</i> were inactivated below the detection limit. Alteration of the flavor profile	Aganovic and others (2016)

PME, pectin methyl esterase; PPO, polyphenol oxidase; POD, peroxidase.

apple/banana/orange/strawberry smoothie (Keenan and others 2012).

Some drawbacks related to MTLT include: (1) the reduction of total antioxidant capacity, total phenols, anthocyanin content, and instrumental color variables in smoothie (Keenan and others 2012); (2) high losses of ascorbic acid in carrot/celery/beetroot juice blend (Profir and Vizireanu 2013); (3) a decrease of total phenolic content and ferric reducing antioxidant property in litchi juice (Saikia and others 2015); (4) the reduction of total flavonoid content in pineapple juice (Saikia and others 2015); and (5) negative effects on color attributes of maoberry juice (Chaikham 2015).

Mild temperature-short time (MTST)

MTST heat processing uses temperatures <80 °C and holding times \leq 30 s (Table 5). These treatments have a limited effect on product characteristics. Examples include: (1) the preservation of the sensory quality (appearance, sweetness, and acidity) in apple/cranberry juice blend (Caminiti and others 2011), as well as the biological properties related to inhibition of peroxidation and its capacity to scavenge intracellular radicals in blackberry juice (Azofeifa and others 2015); and (2) the enhancement of anthocyanin content in pomegranate juice (Mena and others 2013b), and total phenolic content in sweet cherry juice (Queirós and others 2015).

MTST heat treatments were reported to achieve: (1) a 6 to 7 log reduction of *Listeria innocua* (NCTC 11288) population in apple/mango/orange/pineapple smoothie (Palgan and others 2012); (2) a 3.5 to 3.7 log reduction of the native microorganisms in apple/banana/coconut/orange/pineapple smoothie (Walkling-Ribeiro and others 2010); (3) ca. 4.09 log reduction in pomegranate juice (Mena and others 2013b); (4) the total inactivation of microbiological load in sweet cherry juice (Queirós and others 2015); and (5) the control of the residual microorganisms (*L. innocua, E. coli, L. plantarum, S. cerevisiae*, and *Aspergillus niger*) in tomato juice for at least 21 d (Aganovic and others 2014), and the total plate count in apple juice for 48 d (Torkamani 2011).

However, MTST treatments can affect the physicochemical, sensory, and functional properties of beverages, namely: (1) color in apple juice (Torkamani 2011), as well as color and flavor in a carrot/orange juice blend (Caminiti and others 2012); (2) ascorbic acid content in lemon/pomegranate juice blend (Mena and others 2013a); and (3) unsaturated fatty acids in tomato juice (Aganovic and others 2014).

MWH

New thermal technologies have been studied as alternative methods to heat treatment (Mercali and others 2015). MWH is a

promising way for some benefits, like the reduced processing time, high energy efficiency, a good process control, and space savings (Salazar-González and others 2014). An overview of the effects of MWH on fruit and vegetable beverages is shown in Table 6.

Generally, the effectiveness of MWH toward the conventional processing is confirmed by: (1) the increase of total phenolic content in carambola, watermelon, and pineapple juices (Saikia and others 2015); (2) the great retention of flavonoid compounds throughout 2 mo of frozen storage in grapefruit juice (Igual and others 2011); (3) the preservation of physicochemical properties in tomato juice (Stratakos and others 2016) and many juice-blends (Math and others 2014); (4) the increase of total flavonoid content in black jamun and litchi juices (Saikia and others 2015); (5) the significant retention of ascorbic acid and the preservation of color and rheological properties in guava nectar (Salazar-González and others 2014); and (6) the 2- to 3-fold increase of total soluble solids, acidity, sugars, polyphenols, anthocyanins, and antioxidant activity content in pomegranate juice (Dhumal and others 2013).

Overall, MWH systems have been considered to deliver reduced thermal exposure to inactivate microorganisms (Arjmandi and others 2016). However, some studies reported: (1) the inactivation of natural microorganisms in tomato juice (Stratakos and others 2016) and in pomegranate juice (Dhumal and others 2015); (2) a 3 log reduction of bacteria and fungi population in many juice blends (Math and others 2014); and (3) the microbial stability during storage of guava nectar (Salazar-González and others 2014) and orange juice (Demirdöven and Baysal 2015). Recently, MWH successfully eliminated vegetative bacteria in smoothies without compromising food quality. Interestingly, L. monocytogenes was not detected throughout the shelf life of product (Arjmandi and others 2016). Since increasing MWH power has an important effect on the reduction of heating time, a combination of high power and short time might be a solution for reducing the loss of quality, as well as destroy harmful pathogenic microorganisms (Arjmandi and others 2016).

Generally, MWH could not inactivate browning-related enzymes (Miller and Silva 2012), but there is not a general consensus on this topic. In fact, some studies stated that MWH ensures significant PME inactivation in guava nectar (Salazar-González and others 2014), and kava juice (Abdullah and others 2013), as well as its complete inactivation in carrot juice (Rayman and Baysal 2011). Some drawbacks related to MWH include: (1) the formation of colored decomposition products (that is, browning) in beetroot juice (Gonçalves and others 2013); and (2) the decrease of pH and color values in pomegranate juice (Dhumal and others 2015).

Table 5-Conventional thermal processing: mild temperature-short time (MTST)

Fruit/vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Amla	Juice blend	75 °C/25 s	Shelf life at 45 d (refrigeration)	Rathod and others (2014)
Apple	Juice	74.3 °C/25 s	Mesophilic bacteria below the detection limit for 48 d. Change in color	Torkamani (2011)
Apple	Cider	60 to 76 °C/1.3 s	A significant decrease in <i>E. coli</i> K12 (ATCC 23716) was found at 76 °C	Azhuvalappil and others (2010)
Apple, banana, coconut, orange, pineapple	Smoothie	72 °C/15 s	3.5 to 3.7 log reduction of naturally occurring microbiota. High structural degradation	Walkling-Ribeiró and others (2010)
Apple, orange	Juice blend	70 °C∕ 30 s	The treatment did not have effect on the growth of <i>S.</i> cerevisiae SPA	Tyagi and others (2014b)
Apple, cranberry	Juice blend	72 °C/26 s	No significant loss in sensory quality	Caminiti and others (2011)
Apple, mango, orange, pineapple	Smoothie	72 °C/26 s	Microbial reduction of <i>L. innocua</i> (NCTC 11288) of about 6 to 7 log CFU/mL	Palgan and others (2012)
Blackberry	Juice	75 °C/15 s	Retention of the biological properties related to inhibition of peroxidation and to scavenge intracellular radicals	Azofeifa and others (2015)
Carrot, orange	Juice blend	72 °C/26 s	8% PME residual activity. Negative effects on color and flavor	Caminiti and others (2012)
Guava	Nectar	60 and 73 °C/0 to 20 s	Significant reduction in the heat resistance of cocktails of <i>E. coli</i> (NRRL 3704, ATCC 8739, ATCC 92522) and <i>S. enterica</i> serovars Typhimurium (NRRL B-4420), Typhi (NRRL B-573), and Enteritidis (Biotech 1963) when heating was increased from 60 to 73 °C	Gabriel and others (2015)
Lemon	Juice	42 to 72 °C/12 s	Any effect of temperature on final POD activity	Hirsch and others (2011)
Lemon, pomegranate	Juice blend	65 °C/30 s	Reduction of naturally occurring microbiota. Good preservation of color properties. Marked effect on ascorbic acid degradation	Mèna and others (2013a)
Mandarin	Juice	42 to 72 °C/12 s	PME activity ranged from 0.07 to 0.88 (units/g of juice) at 72 and 42 °C, respectively	Hirsch and others (2011)
Orange	Juice	70 °C/7.2 s	No changes in pH, soluble solids, titratable acidity, and ascorbic acid content, 86,4% PMF inactivation	Yuk and others (2014)
Pomegranate	Juice	65 °C/30 s	4.09 log reduction of natural microbiota. The anthocyanin content was enhanced	Mena and others (2013b)
Soursop	Nectar	60 and 73 °C/0 to 20 s	Significant reduction in the heat resistance of cocktails of <i>E. coli</i> (NRRL 3704, ATCC 8739, ATCC 92522) and <i>S. enterica</i> serovars Typhimurium (NRRL B-4420), Typhi (NRRL B-573), and Enteritidis (Biotech 1963) when heating was increased from 60 to 73 °C	Gabriel and others (2015)
Sweet cherry	Juice	70 °C/30 s	Reduction of natural microbiota below the detection limit. Increase of total phenolic content. No effect on anthocyanins	Queirós and others (2015)
Tomato	Juice	74 °C/30 s	Residual microorganisms (<i>L. innocua, E. coli, L. plantarum, S. cerevisiae</i> , and <i>A. niger</i>) were below the detection limit for at least 21 d. Enhancement oxidative breakdown of unsaturated fatty acids	Aganovic and others (2014)
Winter melon	Juice	71 °C/15 s	High acceptability in the sensory panel	Sun and others (2016)

PME, pectin methyl esterase.

Ohmic heating (OH)

OH is based on the passage of electrical current through a food product that provides electrical resistance (Baysal and Icier 2010). Since the electrical conductivity of most foods increases with temperature, OH is very effective in fruit juices, which contain water and ionic salts in abundance (Miller and Silva 2012). OH provides uniform and rapid heating of foods, with a beneficial effect on the nutritional and organoleptic properties of processed products (Mercali and others 2015). Additionally, OH offers better energy efficiency, lower capital cost, shorter treatment time, and is an environmentally friendly process (Lee and others 2015) since 90% of electrical energy is converted into heat (Srivastav and Roy 2014).

With regard to the applications of OH in the juice industry, a broad range of studies focused on its suitability for replacing traditional heating processes, studying in turn its effects on the nutrients in processed juices (Traffano-Schiffo and others 2014) (Table 7). Bhat and others (2016) confirmed this statement, suggesting that OH is a promising alternative to conventional thermal technologies with a maximum retention of functional components and

the complete destruction of microorganisms in bottle gourd juice. Similarly, other studies reported: (1) the lack of the effect on the flavor of many juice blends during the refrigerated storage for 2 wk (Dima and others 2015); (2) the retention of the carotenoids in orange and grapefruit juices (Achir and others 2016); (3) a moderate loss of ascorbic acid in carrot/celery/beetroot juice blend (Profir and Vizireanu 2013); and (4) any effect on the overall quality of orange and pineapple juices (Tumpanuvatr and Jittanit 2012).

Electric field strength, which is applied in OH, is too weak to inactivate foodborne pathogens by electroporation alone. However, the lethal effect of cell electroporation is an important factor for inactivating foodborne pathogens when combined with heating (Park and Kang 2013). In apple juice, OH for 30 s at 58 °C accomplished 4.00-, 4.63-, and 1.11-log reductions in levels of *E. coli* O157:H7, *S. Typhimurium*, and *L. monocytogenes* organisms, respectively. Conventional heating under the same conditions resulted in 1.58-, 1.42-, and 0.41-log reductions, respectively, which were less than those obtained by OH for all 3 pathogens (Park and Kang 2013).

Table 6-Alternative thermal processing: microwave heating (MWH)

Fruit/vegetable source(s)	Product(s)	Processing conditions	Key finding(s)	Reference
Apple	Juice	1200 W/90 and 120 s	Microwave (MW) could effectively remove the moisture in apple juice without affecting the overall guality	Xinfeng (2014)
Apple	Concentrated juice	40 to 800 W/18 to 270 s/<97 °C	A. acidoterrestris spores could be inactivated by combining heat-treatment and MW	Djas and others (2011)
Beetroot	Juice	25 to 200 W/0.3 to 40 min/approximately 100 °C	Browning	Gonçalves and others (2013)
Banana, grape, papaya; Bittergourd, bottlegourd, cucumber; Bittergourd, black jamun; Carrot, pomegranate; Figs, watermelon; Grape, melon: Grape, papaya; Grape, mango	Juice blend	1800 W/0 to 400 s/<121 °C	3 log reduction bacteria and fungi. Enterobacteria below the detection limit	Math and others (2014)
Black jamun	Juice	600 and 900 W/30 s/approximately 75 to 80 °C	Increase of flavonoid content	Saikia and others (2015)
Black mulberry	Juice	300 W/<150 min	Good preservation of anthocyanins	Hojjatpanah and others (2011)
Blueberry Blue-berried honeysuckle	Juice Juice	200 and 250 W 90 to 135 °C/7 s	Good preservation of phenolic content Only the portion of juice treated with the lowest temperature (80 °C) contained some contaminating bacteria	Elik and others (2016) Piasek and others (2011)
Carambola	Juice	600 and 900 W/30 s/approximately 75 to 80 °C	Increase of total phenolic content, ferric reducing antioxidant property	Saikia and others (2015)
Carrot	Juice	540 to 900 W/4 min/<99 °C	Total inactivation of PME	Rayman and Baysal (2011)
Carrot, lemon, pumpkin, tomato	Smoothie	210 and 260 W or 1600 and 3600 W/approximately 90 °C/646 and 608 s or 206 and 93 s	Increase of the contents of total phenolic compounds and carotenoids. The highest power and the shortest time MWH treatments (3600 W for 93 s), resulted into better preservation of antioxidant capacity and vitamin C. No L. monocytogenes growth	Arjmandi and others (2016)
Chokeberry	Juice	90 to 135 °C/7 s	Total inactivation of contaminating bacteria from 90 to 135 °C	Piasek and others (2011)
Grapefruit	Juice	900 W/30 s/80 °C	Retention of flavonoids throughout 2 mo of frozen storage	Igual and others (2011)
Guava	Nectar	500 and 950 W/9 and 11 s/90 °C	Significant PME inactivation and ascorbic acid retention. Preservation of color and rheological properties. Microbial counts remained below detectable levels throughout storage	Salazar-González and others (2014)
Kava	Juice	1.8 kW	Significant PME inactivation (34% to 83%). Kavalactones were kept constant or increased	Abdullah and others (2013)
Litchi	Juice	600 and 900 W/30 s/approximately 75 to 80 °C	Increase of total flavonoid content	Saikia and others (2015)
Orange	Juice	540 to 900 W/1 min/<95 °C	95% PME inactivation. Preservation of the guality characteristics. Antimicrobial effect	Demirdöven and Baysal (2015)
Pineapple	Juice	600 and 900 W/30 s/approximately 75 to 80 °C	Increase in total phenolic content and radical scavenging activity	Saikia and others (2015)
Pomegranate	Juice	350 W/78 min	No microbial growth and absence of indicator organisms like <i>S. aureus, Pseudomonas</i> sp., <i>E. coli</i> , and <i>Salmonella</i> sp. Decrease in pH and effect on color, total soluble solids, acidity, sugars, polyphenols, anthocyanins, and antioxidant activity content	Dhumal and others (2015)
Tomato	Juice	18 kW/approximately 82 s/approximately 85 °C	Inactivation of naturally occurring microorganisms. Moderate effect on physicochemical and color characteristics	Stratakos and others (2016)
Watermelon	Juice	600 and 900 W/30 s/approximately 75 to 80 °C	Increase of total phenolic content	Saikia and others (2015)

PME, pectin methyl esterase.

Table 7-Alternative thermal processing: ohmic heating (OH)

Fruit/vegetable source(s)	Product	Processing conditions	Key finding(s)	Reference
Apple	Juice	60 V/cm/0 to 30 s/55 to 60 °C	Electric field-induced ohmic heating led to additional bacterial (<i>E. coli</i> 0157:H7, <i>S. enterica</i> serovar Typhimurium, and <i>L. monocytogenes</i>) inactivation at sublethal temperatures	Park and Kang 2013
Black mulberry blueberry, coconut, guava, passion fruit, pummelo tamarind	Juice	50 Hz/10 and 33 V/cm/80 °C	Prediction of the temperature changes of the juice during OH was more accurate if the heat loss to the surroundings and evaporated moisture were included in the mathematical models	Tumpanuvatr and Jittanit (2012)
Bottle gourd	Juice	60 to 90 °C/0 to 105 s	No significant change in TS content at all temperature-time combinations but showed increase in TSS in temperature range of 60 to 90 °C. Maximum polyphenol content observed at 80 °C for 90 s; however, reverse trend was followed as temperature increased beyond 80 °C. Increase in temperature showed increase in carotenoids up to 80 °C, further increase in temperature led to degradation of these compounds	Bhat and others (2016)
Broccoli carrot	Juice	6 to 1500 min/58 to 78 °C	Destabilization of the labile isozyme fraction of POD	Jakób and others (2010)
Carrot, celery, beetroot	Juice blend	17.5 V/cm/3 to 4 min/70 °C	Low loss of ascorbic acid throughout the refrigerated storage for 2 wk	Profir and Vizireanu (2013)
Carrot, orange, pumpkin, carrot, grapefruit, pumpkin, celery, orange, pumpkin	Juice blend	17.5 V/cm/3 to 4 min/70 °C	No negative influence on flavor during the refrigerated storage for 2 wk	Dima and others (2015)
Cloudberry	Juice	6 to 1500 min/58 to 78 °C	A low destabilization of PME	Jakób and others (2010)
Grapefruit, orange	Juice	50 Hz/0.1 to 3 kV/m/50 and 150 min/95 °C	No negative effects on carotenoids	Achir and others (2016)
Jaboticaba	Juice	0 to 90 min/70 to 90 °C	Anthocyanins have similar degradation pathways during ohmic and conventional heating	Mercali and others (2015)
Lemon	Juice	20 to 74 °C/0 to 50 s	The electrical conductivity of lemon juice is strongly dependent on temperature	Darvishi and others
Orange, pineapple	Concentrated juice	50 Hz/10 and 33 V/cm/<500 s/80 °C	No additional effect on the juice quality	Tumpanuvatr and Jittanit (2012)
Pomegranate	Juice	20 to 85 °C/0 to	As the voltage gradient increased, time, system	Darvishi and others
Potato	Juice	6 to 1500 min/58 to 78 °C	A significant destabilization of the labile isozyme fraction of POD	Jakób and others (2010)
Tomato	Juice	10 kHz and 60 Hz/<30 min/<1	Accelerated inactivation of <i>B. coagulans</i> (ATCC 8038) 10°C spores	Somavat and others (2013)

PME, pectin methyl esterase; POD, peroxidase.

Bacillus coagulans is a nonpathogenic organism, but it can pose a safety hazard because of its ability to increase the pH of a high acid food, processed with a reduced treatment, to a level where surviving *Clostridium botulinum* spores can germinate (Somavat and others 2013). In this respect, OH at 60 Hz and 10 kHz resulted in accelerated inactivation of *B. coagulans* (ATCC 8038) spores in tomato juice compared to conventional treatment (Somavat and others 2013). According to the authors, these results could confirm the presence of the additional nonthermal effect of OH on bacterial spores.

Improving the Effectiveness of Thermal Processing Technologies

"Hurdle technology" is the term often applied when hurdles are deliberately combined to improve the microbial stability and quality of foods and their nutritional and economic properties (de Oliveira and others 2015). Different hurdles can have an additive or synergistic effect.

Examples of hurdle approaches used in thermal processing of fruit and vegetable juices and beverages include: (1) the evaluation of intrinsic hurdles such as pH and dissolved solids (°Brix), as well as (2) the combination with other preservation such as antimicrobials and bacteriocins. An overview of the different approaches

currently used to improve the effectiveness of thermal processing is reported in Table 8 and 9.

When a thermal process is applied, the microbial heat resistance is influenced not only by temperature but also by several other factors, such as the physiological state of the microorganisms, pH, water activity, and the composition of raw material (Miller and Silva 2012). pH is generally considered the most important factor determining the heat resistance of bacterial spores (Peng and others 2012; Tola and Ramaswamy 2014).

The evaluation of solids content is also of concern, since it is extremely hard to kill pathogens in juice concentrate by thermal treatment (Song and others 2015). Song and others (2015) reported that 18 °Brix apple juice underwent a larger reduction of pathogens than 36 and 72 °Brix juice.

Several studies reported the synergistic effect of heat treatments and antimicrobial compounds or bacteriocins to extend the shelf-life of fruit and vegetable juices and beverages and/or inhibit pathogens. On the other hand, the pressure from consumers for minimally processed products free from traditional preservatives has induced manufacturers to consider new strategies for juice stabilization including natural antimicrobials (Belletti and others 2007). Overall, supplementation of these additives together with heating might result in more acceptable thermal process schedules, possessing the desired lethalities without

Table 8–Improving	the effectiveness	of thermal treatme	ents. Approach 1:	evaluation of i	ntrinsic hurdles
i dalle e improring					

Fruit/vegetable source(s)	Product	Processing conditions	Intrinsic hurdle	Key finding(s)	Reference
			HTLT		
Carrot	Juice	87 °C/0 to 24 min or 92 °C/0 to 16 min or 97 °C/0 to 8 min	pH 4.5 to 6.2	Enhancement of the lethality at acidic pH	Tola and Ramaswamy (2014)
Carrot, basil, celery, cucumber, lemon, olive, onion, pepper, tomato	Blended beverage	50 to 65 °C/0 to 75	pH (4.25 to 5.20)	A reduction of 5 log CFU/mL of <i>L. innocua</i> (CECT 910) at 65 °C could be achieved after 1 or 2 min, depending on the pH (4.25 to 4.75 or 5.20, respectively)	Vega and others (2016)
Tomato	Juice	100 °C/2 to 10 min	pH 3.8 to 4.3	Lethality toward <i>B. coagulans</i> (ATCC 8038) enhanced by pH	Peng and others (2012)
			MTLT		
Apple	Juice	25 to 55 °C/1 min	Soluble solids 18 to -72 °Brix	An increase of soluble solids caused an increase of the lethality of the treatment	Song and others (2015)
Pitahaya	Juice	65 °C/30 min	pH 3.0 to 7.0	High preservation of betacyanin content at pH 4	Wong and Siow (2015)
			OHMIC HEATING	5	
Grape	Juice	10 to 15 V/cm/25 to 80 °C	Soluble solids 10.5 to 14.5 °Brix	Electrical conductivity increased as concentration and temperature increased	Assawarachan (2010)
Carrot	Juice	4 kHz/87 °C/0 to 24 min or 92 °C/0 to 16 min or 97 °C/0 to 8 min	pH 4.5 to 6.2	Lethal effect of electricity on <i>Bacillus</i> <i>licheniformis</i> spores could be enhanced at higher pH and temperature	Tola and Ramaswamy (2014)
Orange	Juice	16 V/cm/20 kHz/0 to 60 s/50 to 60 °C	pH 2.5 to 4.5	The lethality of the thermal treatment towards <i>E. coli</i> 0157:H7, <i>S</i> . Typhimurium and <i>L. monocytogenes</i> was enhanced by high temperatures and acidic pH	Lee and others (2015)

negatively affecting product qualities (Gabriel and Estilo 2015).

In apple juice, HTLT thermal treatment alone (80 °C/6 min) was not able to reduce *Alicyclobacillus acidoterrestris* (DSMZ 2498 and c8 cocktail) spore number, while citrus and lemon extract combined with thermal treatments reduced alicyclobacilli after 16 d by 1 or 1.50 log CFU/mL (Bevilacqua and others 2013). When combined with heat (51 °C/approximately 60 min), propolis reduced time and temperature required to achieve a 5 log reduction of *E. coli* O157:H7 (Sakai stx 1A– /stx 2A–) by 75% and 3 °C, respectively (Luis-Villaroya and others 2015). Using a MTLT treatment (54 °C/10 min), essential oils decreased the time to inactivate *E. coli* O157:H7 VTEC – (Phage type 34) cells by 3.5 to 5.7 times (Ait-Ouazzou and others 2012).

In coconut liquid endosperm, heat treatment (55 °C/120 min) combined with malic acid attained a 3-fold reduction of E. coli O157:H7 (Gabriel and Estilo 2015). In mango juice, the time to inactivate by 5 log cycles E. coli O157:H7 decreased by 75% when heat treatment (54 and 60 °C/10 min) was combined with carvacrol (Ait-Ouazzou and others 2013). In orange juice, a reduction of 2.34 log CFU/mL for A. acidoterrestris (CCT 49028) spores was observed in the first 24 h of incubation after heat treatment (99 °C/1 min) + saponin (Alberice and others 2012). The addition of 200 ppm of (+)-limonene or citrus essential oil to orange juice reduced the heating time to achieve a 5 log reduction of E. coli O157:H7 (VTEC - Phage type 34) by 3.8 or 2.5 times, respectively (Espina and others 2014). In pineapple juice, the use of 15 ppm of essential oil during pasteurization of pineapple juice at 60 °C reduced the time required for a 4-log reduction in Listeria monocytogenes (56 LY) by 74.9% (Ngang and others 2014).

Overall, these compounds control microbial growth by lowering the pH levels and disrupting cellular membrane functionality as well as by acting on enzymes and genetic material (Gabriel and Estilo 2015). Cell membrane alterations caused by these com-

pounds are able to induce sublethal injury. As sublethal injury is supposed to be related to the higher sensitivity of survivors to stress conditions after treatment, the success of a combined treatment should be correlated with the degree of sublethal injury caused by the hurdles in the bacterial population. Moreover, under suitable conditions, sublethal injured cells might be repaired, which is a very important aspect to be taken into account regarding food safety (Guevara and others 2015).

The antimicrobial compounds can have a positive effect on the quality parameters. Combined with thermal treatment, stevia increased the stability of color and some polyphenols, such as quercetin, gallic acid, and rosmarinic acid, during the storage of roselle beverage. In addition, stevia decreased the loss of scavenging activity and α -amylase inhibitory capacity (Pérez-Ramírez and others 2015). Other compounds combined with thermal treatments include ascorbic acid (Wong and Siow 2015), SO₂ (Cui and others 2012), *Scapania nemorea* methanolic extract (Bukvicki and others 2014), and nanocomposite packaging containing nano-ZnO particles (Emamifar and others 2012).

Among antimicrobial compounds, bacteriocins have received special attention due to their natural origin but also because they are associated with a large number of fermentations (Martín-Belloso and Sobrino-López 2011). For example, nisin with thermal pasteurization had a synergistic effect on the inactivation of total aerobic bacteria (1.18 log reduction) in cucumber juice (Zhao and others 2013). In litchi juice, heat treatment combined with nisin reduced the aerobic bacteria by 4.19 log CFU/mL (Li and others 2012). In carrot juice, at the lowest nisin concentration tested (0.13 μ M), growth rate was significantly reduced; at higher concentrations (0.39 μ M), the growth of *L. monocytogenes* (CECT 4031) was completely inhibited for at least 15 d (Esteban and Palop 2011). Heat treatment (55 °C/120 min) combined with nisin caused a 3-fold reduction of the heat resistance of *E. coli* O157:H7 in coconut liquid endosperm (Gabriel and Estilo

|--|

Fruit/vegetable source(s)	Product	Processing conditions	Additional hurdle(s)	Key finding(s)	Reference
			HTLT+ANTIMICROBIALS		
Apple	Juice	80 °C/6 min	Citrus extract or lemon extract (80 ppm)	The combination of citrus or lemon extract with the thermal treatment reduced <i>A. acidoterrestris</i> (DSMZ 2498 and c8 cocktail) spores by 1 or 1.50 log CFU/mL	Bevilacqua and others (2013)
Apple, orange	Juice blend	80 °C⁄ 60 and 90 s	Lemon grass oil (0.28 to 1.13 mg/mL)	The combination of thermal treatment for 90 s enhanced the log reduction of <i>S. cerevisiae</i> SPA by 1 log as compared to lemon grass alone	Tyagi and others (2014b)
Apple, orange	Juice blend	80 °C/60 and 90 s	Mentha oil (0.28 to 1.13 mg∕mL)	The combination of thermal treatment for 90 s enhanced the log reduction of <i>S. cerevisiae</i> SPA by 1.03 log as compared to only mentha treated samples	Tyagi and others (2013)
Grape	Wine	80 °C/15 min	SO ₂ (40 mg∕L)	99.91% lethality toward <i>S. cerevisiae</i>	Cui and others (2012)
Guava	Juice	85 °C∕1 min	Sodium metabisulphite (0.04 g/L), or potassium sorbate (0.8 g/L), or sodium benzoate (0.5 g/L), or sodium metabisulfite (0.02 g/L) + sodium benzoate (0.25 g/L), or sodium metabisulphite (0.02 g/L) + potassium sorbate (0.4 g/L)	The preservatives used were effective in inhibiting microorganisms during storage at room temperature. Formulations with the isolated metabisulphite and associated with potassium sorbate showed the highest sensory acceptance	da Silva and others (2016)
Mango	Juice	121 °C/15 min	Zinc oxide nanoparticles (5 and 8 mM) containing citric acid (0.3%)	Zinc oxide nanoparticles reduced the counts of <i>L. monocytogenes</i> (PTCC1163), <i>E. coli</i> (PTCC1394), <i>S. aureus</i> (PTCC1431), and <i>B. cereus</i> (PTCC1015) strains in juice	Firouzabadi and others (2014)
Orange	Juice	99 °C/1 min	Saponin (100 to 500 mg∕L)	Reduction of 2.34 log CFU/mL for A. acidoterrestris (CCT 49028) spores in the first 24 h	Alberice and others (2012)
Рарауа	Spiced beverage blend	80 to 90 °C∕15 min	Citric acid (0.1%)	Microbiota below the detection limit (5 mo at approximately 28 °C)	Ramachandran and Nagarajan (2014)
Prickly pear	Juice	121 °C/15 min	Sodium benzoate (300 ppm) + potassium sorbate (100 ppm) + fumaric (0.17% w/v), citric (0.4% w/v) and tartaric (0.5% w/v) acids	After 4 d of storage, the use of acids caused a reduction of <i>E. coli</i> (ATCC 11229) (3- to 6-log CFU/mL) and <i>S.</i> <i>cerevisiae</i> (ATCC 26109) (2 log CFU/mL)	García-García and others (2015)
Roselle	Beverage	95 °C/15 min	Sodium benzoate (0.7 g/L), stevia (14 to 15 g/L), citric acid (0.2 and 0.3 g/L)	Stevia increased the stability of color and some polyphenols, such as quercetin, gallic acid, and rosmarinic acid, during storage. In addition, stevia decreased the loss of scavenging activity and α -amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect	Pérez-Ramírez and others (2015)
			HTST+ANTIMICROBIALS		
Acerola, cashew apple, guava, papaya, passion fruit	Blended nectar added with caffeine	90 °C/30 s	Sodium metabisulfite (60 mg/L) + sodium benzoate (500 mg/L)	The product was microbiologically stable during 6 mo of storage at room temperature (approximately 25 °C). The ascorbic acid content decreased significantly throughout time	de Sousa and others (2010)
Apple, orange	Juice blend	80 °C/30s	Lemon grass essential oil (0.28 to 1.13 mg/mL)	Inhibition of <i>S. cerevisiae</i> SPA after 2 d of storage at room temperature. No growth for 7 d	Tyagi and others (2014b)
Apple, orange	Juice blend	80 °C/30 s	Mentha essential oil (0.28 to 1.13 mg/mL)	Complete growth inhibition of <i>S.</i> <i>cerevisiae</i> SPA using 1.13 mg/mL of mentha oil No effect on odor and color	Tyagi and others (2013)
Prickly pear	Juice	131 ℃⁄2 s	Sodium benzoate (0.3 g/L), sodium sorbate (0.15 g/L), fumaric acid (1.4 g/L), tartaric acid (0.4 g/L) and sodium citrate (0.3 g/L)	Loss of ascorbic acid (46% to 76%), total phenolic (27% to 52%), flavonoids (0% to 52%), betalains (7% to 45%), and antioxidant activity (16% to 45%) when compared to untreated beverages	Jiménez-Aguilar and others (2015)
			MTLT+ANTIMICROBIALS		
Apple	Juice	54 °C/0 to 35 min	Citrus lemon essential oil (200 μ L/L)	6.2-fold increase in the lethality on <i>E. coli</i> 0157:H7. No effect on the sensory attributes	Espina and others (2012)
					(Continued)

Heat treatment for juices and beverages . . .

Table 9-Continued.

Fruit/vegetable Key finding(s) source(s) Product Processing conditions Additional hurdle(s) Reference The combination increased the lethality (+)-limonene (0.2 μ L/mL) Juice 54 °C/10 min Chueca and Apple others (2016) Leuconostoc fallax 74 by 1.5 log CFU/mL Juice 54 °C/8 min The addition of 18 and 200 ppm of citral Citral (18 and 200 ppm) Espina and Apple to the juice acted synergistically with heat to inactivate 4.5 and 7.4 log *E*. others (2010) coli O157:H7 cells, respectively Luis-Villaroya Juice 51 °C/approximately Propolis (0.1 and 0.2 mg/mL) The time to achieve a 5 log reduction of Apple 60 min E. coli O157:H7 was reduced by 75% and others and the temperature by 3 °C (2015)Apple Juice 54 °C/10 min Essential oils (0.2 μ L/mL) When combined with heat, Mentha Ait-Ouazzou and pulegium or Thymus algeriensis others (2012) accused, respectively, a 3.5- and a 5.7-fold decrease of the time to achieve a 5 log reduction of E. coli O157:H7 (VTEC - Phage type 34) Apple Juice 54 and 60 °C/10 min Carvacrol (1.3 mM) The time to achieve a 5 log reduction of Ait-Ouazzou and E. coli O157:H7 was reduced by 75% others (2013) E. coli (STCC 4201) reduced by 4.4 log 55 °C/0 to 3.58 min Dimethyl dicarbonate (25 to Apple Juice Gouma and others (2015) CFU/mL. The addition of dimethyl 75 mg/L) decarbonate (>25 mg/L) increased the lethality of heat Apple, orange Juice blend 70 °C/60 and 90 s Eucalyptus essential oil (0 to 2.25 mg/mL of eucalyptus oil + 90 s Tyagi and others (2014a) 4.5 mg/mL) thermal treatment reduced S. cerevisiae SPA below the detection limit Citron Soft drink 55 °C/15 min Citral (0 to 120 μ L/L) or Additive/synergistic effect of the Belletti and compounds **linalool** (0 to 60 μ L/L) or others (2010) β -pinenè (0 to 60 μ L/L) 45 and 50 °C/5 to Combined treatment with caprylic acid + citric acid (2.5 mM) at 50 °C for Carrot Juice Caprylic acid (5.0 mM) Kim and Rhee and/or citric acid (2.5 or 15 min (2015)5.0 mM) >5 min or with caprylic acid + citric acid (both at 5.0 mM) at either 45 °C or 50 °C for > 5 min completely inactivated the natural occurring bacteria. Combined treatment also increased the redness of the juice Sado Kamdem Citral (50 mg/L), or 55 °C/5 and 10 min Accelerated death kinetics of L Carrot Juice or 63 °C/1 min carvacrol (30 mg/L), or monocytogenes (56LY) in the presence and others (E)-2-hexenal (65 mg/L) of the aroma compounds (2010)55 °C/120 min Malic acid (800 to 1500 ppm) 3-fold reduction of the heat resistance of Gabriel and Coconut Liquid Estilo (2015) endosperm the E. coli 0157:H7 54 and 60 °C/10 min Carvacrol (1.3 mM) The time to achieve a 5 log reduction of Ait-Ouazzou and Mango Juice E. coli O157:H7 decreased by a 75% others (2013) Vanillin (900 to 1.100 ppm) The addition of 900 ppm vanillin and 25 52 to 61 °C/0 to Char and others Orange Juice 12 min and/or citral (25 to 75 ppm citral enhanced the lethality of (2010)ppm) the thermal treatment towards L. innocua (ATCC 33090) Juice 54 to 60 °C/0 to (+)-limonen (50, 100, and The addition of 200 ppm of (+)-limonene Espina and Orange or citrus essential oil reduced the time others (2014) 250 min 200 ppm) or citrus essential oil (50 to 200 to achieve a 5-log inactivation of E. coli 0157:H7 ppm) 54 and 60 °C/10 min Orange Juice Carvacrol (1.3 mM) The time to achieve a 5 log reduction of Ait-Ouazzou and E. coli 0157:H7 decreased by 84% others (2013) Orange Concentrated 45 °C/28 d Sodium benzoate (50 and A continuous bactericidal effect against Kawase and 2 Alicyclobacillus strains for 28 d others (2013) juice 100 mg/L), commercial benzoic acid (50 and 100 period using micronized benzoic acid mg / L), and micronized (50 mg/L) benzoic acid (25 and 50 mq⁄L) 55 to 65 °C/0 to Eryngium foetidum essential Pineapple Juice The use of 15 ppm of essential oil during Ngang and others (2014) 15 min **oil** (0 to 60 ppm) pasteurization of pineapple juice at 60 °C reduced the time required for a 4-log reduction in L. monocytogenes (strain 56 LY) by 74.9% Wong and Siow (2015) Ascorbic acid (0.25 to 1.50%) Juice added with 0.25% ascorbic acid Pitahaya Juice 65 °C/30 min gave the highest betacyanin content w/w) Significant decrease in microbial load Nwachukwu and Soursop Juice 60 °C/60 min Sodium benzoate (0.05%) throughout the period of storage (30 Ezeiqbo to 31 °C; 2 wk) compared to (2013) nonpasteurized juice. Decrease in titratable acidity from 23.62 to 18.10 Tomato Juice 54 and 60 °C/10 min Carvacrol (1.3 mM) The time to achieve a 5 log reduction of Ait-Ouazzou and E. coli O157:H7 decreased by 75% others (2013)

(Continued)

Table 9–Continued.

Fruit/vegetable source(s)	Product	Processing conditions	Additional hurdle(s)	Key finding(s)	Reference
			MTST+ANTIMICROBIALS		
Apple, orange	Juice blend	70 °C/30 s	Eucalyptus essential oil (0 to 4.5 mg/mL)	A dose 2.25 mg/mL of eucalyptus oil combined with thermal treatment reduced the naturally occurring microbiota by 4.5 log CEU/mL	Tyagi and others (2014a)
Apple, orange	Juice blend	70 °C/30 s	Scapania nemorea methanolic extract (0.05 to 0.2 mg/mL)	Partial inactivation of <i>S. cerevisiae</i> 635. Changes in color and flavor of the beverages were considered acceptable also after 1 wk of storage at 25 °C.	Bukvicki and others (2014)
Orange	Juice	65 and 55 °C/16 s	Ag and ZnO nanoparticles (10% m/m of low-density polyethylene nanocomposite packaging)	Application of nanocomposite packaging-containing Ag decreased the pasteurization temperature of juice by 10 °C, resulting in a lower degradation of ascorbic acid	Emamifar and others (2012)
			HTLT+ BACTERIOCINS		
Apple	Juice	90 °C/25 min	Bificin C6165 (0 to 160 μg∕mL)	The heat resistance of <i>A. acidoterrestris</i> (DSM3922 and CFD1) spores declined gradually as bificin C6165 concentration increased	Pei and others (2014)
			HTST+ BACTERIOCINS		
Cucumber	Juice	85 °C/15 s	Nisin (100 IU∕mL)	Nisin with thermal pasteurization had a synergistic effect on the inactivation of total aerobic bacteria	Zhao and others (2013)
			MTLT+ BACTERIOCINS		
Carrot	Juice	55 °C/15 min	Nisin (0.13 to 0.39 μM)	The antimicrobial effect towards <i>L.</i> monocytogenes (CECT 4031) relied	Esteban and Palop (2011)
Coconut	Liquid endosperm	55 °C/120 min	Nisin (0 to 150 ppm)	The combined treatment caused a 3-fold reduction of the heat resistance of <i>E. coli</i> 0157:H7	Gabriel and Estilo (2015)
Litchi	Juice	32 to 52 °C/5 to 30 min	Nisin (200 ppm)	Aerobic bacteria reduced by 4.19 log CFU/mL at 52 °C for 15 min	Li and others (2012)
Orange	Juice	72 °C/2 min	Antilisterial Bacteriocin101 and 103 (40 ppm)	L. monocytogenes (MTCC 657) was controlled for 6 d at 4 °C	Backialakshmi and others (2015)
		HTST-	+BACTERIOCINS + ANTIMICRO	OBIALS	
Orange	Nectar	90 °C/15 s	Nisin (46.8 IU/mL) + cinnamaldehyde (0.39 μ L/mL)	The combination of nisin and cinnamaldehyde showed a synergistic effect against <i>A. acidoterrestris</i> (ATCC 49025) and extend the shelf life of nectar to 33 d at 45 °C	Khallaf-Allah and others (2015)
		MTLT-	+ BACTERIOCINS + ANTIMICR	OBIALS	
Carrot	Juice	55 °C/15 min	Nisin (0.13 μ M) + carvacrol (0.11 and 0.22 mM)	The growth of <i>L. monocytogenes</i> (CECT 4031) was inhibited for at least 15 d even at the lowest concentration tested (0.13 μM nisin plus 0.11 μM carvacrol)	Esteban and Palop (2011)
Litchi	Juice	30 to 45 °C/0.5 to 6 h)	Nisin (200 IU/mL) + dimethyl dicarbonate (250 mg/L)	Molds and yeasts, and bacteria were not detected in the juice supplemented with 200 IU/mL nisin and exposed to 250 mg/L dimethyl dicarbonate at 45 °C for 3 h	Yu and others (2013a)

2015). However, several studies have been able to demonstrate that at least 15 d by 0.13 μ M nisin + 0.11 μ M carvacrol (Esteban and nisin was only able to reduce the population of Gram-negative cells that have been previously exposed to sublethal injury after exposure to 55 °C; and that the bacteriocin had little or no effect on uninjured cells (Gabriel and Estilo 2015). In apple juice, the heat resistance of A. acidoterrestris (DSM3922 and CFD1) spores declined gradually as bificin C6165 concentration increased (Pei and others 2014).

Some authors evaluated the combination between bacteriocins + antimicrobials and heat treatment. For example, yeasts and molds, and bacteria were not detected in litchi juice supplemented with 200 IU/mL nisin and 250 mg/L dimethyl dicarbonate at 45 °C for 3 h (Yu and others 2013a). In another study, the growth of L. monocytogenes (CECT 4031) in carrot juice was inhibited for

Palop 2011).

In this perspective, predictive microbiology is a useful tool to determine shelf life and stability of juices and beverages treated with combined stabilizing techniques (Belletti and others 2007).

Future Perspectives and Current Efforts

Fruit and vegetable consumption is a marker of higher-quality diets. The consumption of fruit juices, along with whole fruit, is one way to meet total fruit consumption goals (Francou and others 2015).

Recent analyses showed that whole fruit contributed fully 2/3 to total fruit consumption, with only 1/3 coming from juices. However, whereas whole fruit consumption was highest among older adults and among groups with higher education and incomes, no social gradient was observed for juices (Francou and others 2015). Hence, these products were more likely to meet total fruit and vegetable goals that are promoted by food and nutrition policy.

The benefits and the drawbacks of heat treatments in juices were extensively reported in many papers and hereby shortly addressed. In most cases, these effects are strongly dependent on the food matrix. Moreover, the efficacy of treatments can also be affected by the complexity of the product and microorganisms.

The use of nonconventional heat approaches or the combination with some antimicrobial compounds are promising ways, but the optimization of the combination time/temperature still remains the only effective way to design energy-saving and efficient methods. Thus, a better understanding of the mechanism of action of thermal processing technologies and their effects on bioaccessibility and bioavailability of beneficial compounds, would also contribute to an effective application in juice.

References

- Abdullah SA, Lee SH, Cho IK, Li QX, Jun S, Choi W. 2013. Pasteurization of kava juice using novel continuous flow microwave heating technique. Food Sci Biotechnol 22:961–6.
- Abioye AO, Abioye VF, Ade-Omowaye BIO, Adedeji AA. 2013. Kinetic modeling of ascorbic acid loss in baobab drink at pasteurization and storage temperatures. IOSR J Environ Sci Toxicol Food Technol 7:17–23.
- Achir N, Dhuique-Mayer C, Hadjal T, Madani K, Pain JP, Dornier M. 2016. Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innov Food Sci Emerg Technol 33:397–404.
- Aganovic K, Grauwet T, Kebede BT, Toepfl S, Heinz V, Hendrickx M, Van Loey A. 2014. Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. Innov Food Sci Emerg Technol 26:431–44.
- Aganovic K, Grauwet T, Siemer C, Toepfl S, Heinz V, Hendrickx M, van Loey A. 2016. Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice. Eur Food Res Technol 242:787–803.
- Agcam E, Akyıldız A, Evrendilek GA. 2014. Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new inactivation kinetic model. Food Chem 165:70–6.
- Aguilar-Rosas S, Ballinas-Casarrubias M, Elias-Ogaz L, Martin-Belloso O, Ortega-Rivas E. 2013. Enzyme activity and colour changes in apple juice pasteurised thermally and by pulsed electric fields. Acta Aliment 42:45–54.
- Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O. 2010. Colour and viscosity of watermelon juice treated by high-intensity pulsed electric fields or heat. Innov Food Sci Emerg Technol 11:299–305.
- Aguiló-Aguayo I, Brunton N, Rai DK, Balagueró E, Hossain MB, Valverde J. 2014. Polyacetylene levels in carrot juice, effect of pH and thermal processing. Food Chem 152:370–7.
- Ait-Ouazzou A, Espina L, Cherrat L, Hassani M, Laglaoui A, Conchello P, Pagán R. 2012. Synergistic combination of essential oils from Morocco and physical treatments for microbial inactivation. Innov Food Sci Emerg Technol 16:283–90.
- Ait-Ouazzou A, Espina L, Garcia-Gonzalo D, Pagan R. 2013. Synergistic combination of physical treatments and carvacrol for *Escherichia coli* O157:H7 inactivation in apple, mango, orange, and tomato juices. Food Control 32:159–67.
- Alberice JV, Funes-Huacca ME, Guterres SB, Carrilho E. 2012. Inactivation of *Alicyclobacillus acidoterrestris* in orange juice by saponin extracts combined with heat-treatment. Int J Food Microbiol 159:130–5.
- Andrés V, Mateo-Vivaracho LEG, MY V, Tenorio M. 2016a. High hydrostatic pressure treatment and storage of soy-smoothies: colour, bioactive compounds and antioxidant capacity. LWT - Food Sci Technol 69, 123–30.
- Andrés V, Villanueva MJ, Tenorio MD. 2016b. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem 192:328–35

Andrés V, Villanueva, MJ, Tenorio MD. 2016c. Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic

acids, and mineral content of milk- and soy-smoothies. LWT - Food Sci Technol 65:98–105.

- Arjmandi M, Otón M, Artés F, Artés-Hernández F, Gómez PA, Aguayo E. 2016. Semi-industrial microwave treatments positively affect the quality of orange-colored smoothies. J Food Sci Technol 53:3695–703.
- Assawarachan R. 2010. Estimation model for electrical conductivity of red grape juice. Int J Agric Biol Eng 32:52–7.

Azhuvalappil Z, Fan X, Geveke DJ, Zhang HQ. 2010. Thermal and nonthermal processing of apple cider: storage quality under equivalent process conditions. J Food Qual 33:612–31.

- Azofeifa G, Quesada S, Pérez AM, Vaillant F, Michel A. 2015. Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. J Food Comp Anal 42:56–62.
- Backialakshmi S, Meenakshi RN, Saranya A, Jebil MS, Krishna AR, Krishna JS, Ramasamy S. 2015. Biopreservation of fresh orange juice using Antilisterial Bacteriocins101 and Antilisterial Bacteriocin103 purified from *Leuconostoc mesenteroides*. J Food Process Technol 6:479.
- Bansal V, Sharma A, Ghanshyam C, Singla ML, Kima KH. 2015. Influence of pulsed electric field and heat treatment on *Emblica officinalis* juice inoculated with *Zygosaccharomyces bailii*. Food Bioprod Process 95:146–54.
- Barba FJ, Esteve MJ, Frigola A. 2010. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J Agric Food Chem 58:10070–5.
- Baysal AH, Icier F. 2010. Inactivation kinetics of *Alicyclobacillus acidoterrestris* spores in orange juice by ohmic heating: effects of voltage gradient and temperature on inactivation. J Food Prot 73:299–304.
- Belletti N, Kamdem SS, Patrignani F, Lanciotti R, Covelli A, Gardini F. 2007. Antimicrobial activity of aroma compounds against *Saccharomyces cerevisiae* and improvement of microbiological stability of soft drinks as assessed by logistic regression. Appl Environ Microbiol 73:5580–6.
- Belletti N, Kamdem SS, Tabanelli G, Lanciotti R, Gardini F. 2010. Modeling of combined effects of citral, linalool and β -pinene used against *Saccharomyces cerevisiae* in citrus-based beverages subjected to a mild heat treatment. Int J Food Microbiol 136:283–9.
- Bevilacqua A, Campaniello D, Speranza B, Sinigaglia M, Corbo MR. 2013. Control of *Alicyclobacillus acidoterrestris* in apple juice by citrus extracts and a mild heat-treatment. Food Control 31:553–9.
- Bhat S, Singh Saini C, Kumar M, Sharma HK. 2016. Effect of thermal and alternate thermal processing on bottle gourd (*Lagenaria siceraria*) juice. J Food Process Pres <u>https://doi.org/10.1111/jfpp.12911</u>.
- Bilek SE, Bayram SK. 2015. Fruit juice drink production containing hydrolyzed collagen. J Funct Foods 14:562–9.
- Brauch JE, Buchweitz M, Schweiggert RM, Carle R. 2016. Detailed analyses of fresh and dried maqui (*Aristotelia chilensis* (Mol.) Stuntz) berries and juice. Food Chem 190:308–16.
- Bukvicki D, Gottardi D, Tyagi AK, Veljic M, Marin PD, Vujisic L, Guerzoni ME, Vannini L. 2014. *Scapania nemorea* liverwort extracts: investigation on volatile compounds, *in vitro* antimicrobial activity and control of *Saccharomyces cerevisiae* in fruit juice. LWT Food Sci Technol 55:452–8.
- Caminiti IM, Noci F, Munoz A, Whyte P, Morgan DJ, Cronin DA. 2011. Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. J Food Chem 124:1387–9.
- Caminiti IM, Noci F, Morgan DJ, Cronin DA, Lyng JG. 2012. The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food Bioprod Process 90:442–8.
- Cerrillo I, Fernández-Pachón MS, Collado-González J, Escudero-López B, Berná G, Herrero-Martín G, Martín F, Ferreres F, Gil-Izquierdo A. 2015. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Food Hum Nutr 70:153–9.
- Chaikham P. 2015. Comparison of high hydrostatic pressure and thermal processing on physicochemical and antioxidant properties of Maoberry (*Antidesma thwaitesianum* Müell. Arg.) juice. Int Food Res J 22:1993–2001.
- Chaikham P, Apichartsrangkoon A. 2012. Comparison of dynamic viscoelastic and physicochemical properties of pressurized and pasteurized longan juices with xanthan addition. Food Chem 134:2194–200.
- Chaikham P, Baipong S. 2016. Comparative effects of high hydrostatic pressure and thermal processing on physicochemical properties and bioactive components of Mao Luang (*Antidesma bunius* Linn.) juice. Chiang Mai J Sci 43:851–62.
- Chaikham P, Chunthanom P, Apichartsrangkoon A. 2013. Storage stability of pennywort juice as affected by high pressure and thermal processing. Int Food Res J 20: 3069–76.

Char CD, Guerrero SN, Alzamora SM. 2010. Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food Bioprocess Tech 3:752–61.

Charlton K, Kowal P, Soriano MM, Williams S, Banks E, Vo K, Byles J. 2014. Fruit and vegetable intake and body mass index in a large sample of middle-aged australian men and women. Nutrients 6:2305–19.

Chen C, Zhao W, Yang R, Zhang S. 2012. Effects of pulsed electric field on colloidal properties and storage stability of carrot juice. Int J Food Sci Technol 47:2079–85.

Chen D, Xi H, Guo X, Qin Z, Pang X, Hu X, Liao X, Wu J. 2013a. Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innov Food Sci Emerg Technol 19:85–94.

Chen D, Pang X, Zhao J, Gao L, Liao X, Wu J, Li Q. 2015a. Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage. Innov Food Sci Emerg Technol 32:16–28.

Chen J, Tao XY, Sun AD, Wang Y, Liao XJ, Li LN, Zhang S. 2014. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int J Food Prop 17:1419–27.

Chen X, Qin W, Ma L, Xu F, Jin P, Zheng Y. 2015b. Effect of high-pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT - Food Sci Technol 62:927–33.

Chen Y, Yu LJ, Rupasinghe HPV. 2013b. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review. J Sci Food Agric 93: 981–6.

Chueca B, Ramírez N, Arvizu-Medrano SM, García-Gonzalo D, Pagán R. 2016. Inactivation of spoiling microorganisms in apple juice by a combination of essential oils' constituents and physical treatments. Food Sci Technol Intl 22:389–98.

Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M. 2014. Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Compr Rev Food Sci F 13:1192–206.

Cruz-Cansino NS, Ramírez-Moreno E, León-Rivera J, Delgado-Olivares L, Alanís-García E, Ariza-Ortega JA, Manríquez-Torres JJ, Jaramillo-Bustos DP. 2015. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (*Opuntia ficus indica*) juice after thermoultrasound treatment. Ultrason Sonochem 27:277–86.

Cui Y, Lv W, Liu J, Wang B. 2012. Effect of different ending fermentation technologies on microbial-stability of Italian Riesling low alcohol sweet white wine. Adv Mat Res 393–5:1165–8.

da Silva LMR, Mai GA, da Costa Gonzaga ML, de Sousa PHM, Teixeira de Figueiredo EA. 2011. Effect of heat treatment on microbiological properties of mixed tropical fruits nectars. J Food Technol 9:124–8.

da Silva NKV, de Sousa Sabino LB, de Oliveira LS, de Vasconcelos Torres LB, de Sousa PHM. 2016. Effect of food additives on the antioxidant properties and microbiological quality of red guava juice. Rev Ciênc Agron 47:77–85.

Dadasaheb DW, Vasudish CR, Premavalli KS. 2015. Studies on effect of irradiation on functional properties of two ready-to-drink appetizer beverages and their shelf lives. Nutr Food Sci 45:388–99.

Darvishi H, Hosainpour A, Nargesi F, Khoshtaghaza MH, Torang H. 2011. Ohmic processing: temperature dependent electrical conductivities of lemon juice. Mod Appl Sci 5:209–16.

Darvishi H, Khostaghaza MH, Najafi G. 2013. Ohmic heating of pomegranate juice: electrical conductivity and pH change. J Saudi Soc Agric Sci 12:101–8.

de Carvalho JM, Maia GA, da Fonseca AV, de Sousa PH, Rodrigues S. 2015. Effect of processing on physicochemical composition, bioactive compounds and enzymatic activity of yellow mombin (*Spondias mombin* L.) tropical juice. J Food Sci Tech 52:1182–7.

De Marchi F, Aprea E, Endrizzi I, Charles M, Betta E, Corollaro ML, Cappelletti M, Ferrentino G, Spilimbergo S, Gasperi F. 2015. Effects of pasteurization on volatile compounds and sensory properties of coconut (*Cocos nucifera* L.) water: thermal vs. high-pressure carbon dioxide pasteurization. Food Bioprocess Tech 8:1393–404.

de Oliveira PAAC, de Silva IG, de Souza ML, Furtado CM, da Silva RF. 2011. In natura açaí beverage: quality, pasteurization and acidification. Ciênc Tecnol Aliment 31:502–7.

de Oliveira TLC, Ramos ALS, Ramos EM, Piccoli RH, Cristianini M. 2015. Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends Food Sci Tech 45:60–85.

de Sousa PHM, Maia GA, de Azeredo HMC, Ramos AM, de Figueiredo RW. 2010. Storage stability of a tropical fruit (cashew apple, acerola, papaya, guava and passion fruit) mixed nectar added caffeine. Int J Food Sci Technol 45:2162–6.

Deboni TM, Bündchen M, Junior CV, Hotza D, Piletti R, Quadri MGN. 2014. Effect of the processing steps on cactus juice production. Food Bioprocess Technol 7:990–1000.

Demirdöven A, Baysal T. 2015. Effects of electrical pre-treatment and alternative heat treatment applications on orange juice production and storage. Food Bioprod Process 94:443–52.

Dereli U, Türkyilmaz M, Yemiş O, Özkan M. 2015. Effects of clarification and pasteurization on the phenolics, antioxidant capacity, colour density and polymeric colour of black carrot (*Daucus carota* L.) juice. J Food Biochem 39:528–37.

Dhumal SS, Karale AR, More TA, Nimbalkar CA, Chavan UD, Jadhav SB. 2015. Preparation of pomegranate juice concentrate by various heating methods and appraisal of its physicochemical characteristics. Acta Hortic 1089: III International Symposium on Pomegranate and Minor Mediterranean Fruits. Tai'an (Shandong Province) (China), September 20—24, https://doi.org/10.17660/ActaHortic.2015.1089.65

Dima F, Istrati D, Garnai M, Serea V, Vizireanu C. 2015. Study on obtaining vegetables juices with high antioxidant potential, preserved by ohmic pasteurization. J Agroaliment Proc Technol 21:67–74.

Djas M, Bober M, Henczka M. 2011. New methods for inactivation of *Alicyclobacillus acidoterrestris* spores in apple juice concentrate. Chall Mod Technol 2:46–9.

Elez Garofulić I, Režek Jambrak A, Milošević S, Dragović-Uzelac V, Zorić Z, Herceg Z. 2015. The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (*Prunus cerasus* var. Marasca) juice. LWT - Food Sci Technol 62:894–900.

Elik A, Yanık DK, Maskan M, Göğüş F. 2016. Influence of three different concentration techniques on evaporation rate, colour and phenolics content of blueberry juice. J Food Sci Technol 53:2389–95.

Emamifar A, Kadivar M, Shahedi M, Solimanian-Zad S. 2012. Effect of nanocomposite packaging containing ag and zno on reducing pasteurization temperature of orange juice. J Food Process Pres 36:104–12.

Escudero-López B, Cerrillo I, Gil-Izquierdo Á, Hornero-Méndez D, Herrero-Martín G, Berná G, Medina S, Ferreres F, Martín F, Fernández-Pachón MS. 2016. Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. Int J Food Sci Nutr 67:779–88.

Espina L, Somolinos M, Pagán R, García-Gonzalo D. 2010. Effect of citral on the thermal inactivation of *Escherichia coli* O157:H7 in citrate phosphate buffer and apple juice. J Food Prot 73:2189–96.

Espina L, Somolinos M, Ait-Ouazzou A, Condón S, García-Gonzalo D, Pagán R. 2012. Inactivation of *Escherichia coli* O157:H7 in fruit juices by combined treatments of citrus fruits essential oils and heat. Int J Food Microbiol 159:9–16.

Espina L, Condón S, Pagán R, García-Gonzalo D. 2014. Synergistic effect of orange essential oil or (+)-limonene with heat treatments to inactivate *Escherichia coli* O157:H7 in orange juice at lower intensities while maintaining hedonic acceptability. Food Bioprocess Technol 7:471–81.

Esteban MD, Palop E. 2011. Nisin, carvacrol and their combinations against the growth of heat-treated *Listeria monocytogenes* cells. Food Technol Biotechnol 49:89–95.

Farhadi Chitgar M, Aalami M, Maghsoudlou Y, Milani E. 2016. Comparative study on the effect of heat treatment and sonication on the quality of barberry (*Berberis vulgaris*) juice. J Food Process Pres https://doi.org/10.1111/jfpp.12956.

Fernandes AG, dos Santos GM, da Silva DS, de Sousa PHM, Maia GA, de Figueiredo RW. 2011. Chemical and physicochemical characteristics changes during passion fruit juice processing. Ciênc Tecnol Aliment 31:747–51.

Firouzabadi FB, Noori M, Edalatpanah Y, Mirhosseini M. 2014. ZnO nanoparticle suspensions containing citric acid as antimicrobial to control *Listeria monocytogenes, Escherichia coli, Staphylococcus aureus* and *Bacillus cereus* in mango juice. Food Control 42:310–4.

Francou A, Hebel P, Braesco V, Drewnowski A. 2015. Consumption patterns of fruit and vegetable juices and dietary nutrient density among french children and adults. Nutrients 7:6073–87.

Gabriel AA, Estilo EEC. 2015. Influences of malic acid and nisin supplementations on the decimal reduction times of *Escherichia coli* O157:H7 in mildly-heated young coconut liquid endosperm. Food Control 50:645–51. Gabriel AA, Albura MP, Faustino KC. 2015. Thermal death times of acid-habituated *Escherichia coli* and *Salmonella enterica* in selected fruit beverages. Food Control 55:236–41.

- Gajera RR, Joshi DC. 2014. Processing and storage stability of bottle gourd (*L. siceraria*) base blend juice. Agric Eng Int: CIGR J 16:103–7.
- Gao G, Zhao L, Ma Y, Wang Y, Sun Z, Liao X. 2015. Microorganisms and some quality of red grapefruit juice affected by high-pressure processing and high temperature short time. Food Bioprocess Technol 8:2096–108.

Gao J, Rupasinghe HPV. 2012. Nutritional, physicochemical and microbial quality of ultrasound-treated apple-carrot juice blends. Food Nutr Sci 3:212–8.

García-García R, Escobedo-Avellaneda Z, Tejada-Ortigoza V, Martín-Belloso O, Valdez-Fragoso A, Welti-Chanes J. 2015. Hurdle technology applied to prickly pear beverages for inhibiting *Saccharomyces cerevisiae* and *Escherichia coli*. Lett Appl Microbiol 60:558–64.

Giner MJ, Hizarci Õ, Martí N, Saura D, Valero M. 2013. Novel approaches to reduce brown pigment formation and colour changes in thermal pasteurized tomato juice. Eur Food Res Technol 236:507–15.

- Gironés-Vilaplana A, Huertas J-P, Moreno DA, Periago PM, García-Viguera C. 2016. Quality and microbial safety evaluation of new isotonic beverages upon thermal treatments. Food Chem 194:455–62.
- Gonçalves LCP, Di Genova BM, Dörr FA, Pinto E, Bastos EL. 2013. Effect of dielectric microwave heating on the colour and antiradical capacity of betanin. J Food Eng 118:49–55.
- Gonzalez ME, Barrett DM. 2010. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J Food Sci 75:R121–30.
- Guevara L, Antolinos V, Palop A, Periago PM. 2015. Impact of moderate heat, carvacrol, and thymol treatments on the viability, injury, and stress response of *Listeria monocytogenes*. Biomed Res Int 2015:548930.

Gouma M, Gayán E, Raso J, Condón S, Álvarez I. 2015. Influence of dimethyl dicarbonate on the resistance of *Escherichia coli* to a combined UV-Heat treatment in apple juice. Front Microbiol 6:501.

Guo M, Wu J, Xu Y, Xiao G, Zhang M, Chen Y. 2011. Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide. Eur Food Res Technol 232:803–11.

He Z, Tao Y, Zeng M, Zhang S, Tao G, Qin F, Chen J. 2016. High pressure homogenization processing, thermal treatment and milk matrix affect *in vitro* bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem 200:107–16.

Hirsch AR, Knauss (née Resch) A, Carle R, Neidhart S. 2011. Impact of minimal heat-processing on pectin methylesterase and peroxidase activity in freshly squeezed Citrus juices. Eur Food Res Technol 232:71–81.

Hojjatpanah G, Fazaeli M, Emam-Djomeh Z. 2011. Effects of heating method and conditions on the quality attributes of black mulberry (*Morus nigra*) juice concentrate. Int J Food Sci Technol 46:956–62.

Huang W, Bi X, Zhang X, Liao X, Hu X, Wu J. 2013. Comparative study of enzymes, phenolics, carotenoids and colour of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov Food Sci Emerg Technol 18:74–82.

Hurtado A, Picouet P, Jofré A, Guàrdia MD, Ros JM, Bañón S. 2015. Application of high pressure processing for obtaining "fresh-like" fruit smoothies. Food Bioprocess Technol 8:2470–82.

Hurtado A, Guàrdia MD, Picouet P, Jofré A, Ros JM, Bañón S. 2017. Stabilization of red fruit-based smoothies by high pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J Sci Food Agr 97:770–6.

Igual M, García-Martínez E, Camacho MM, Martínez-Navarrete N. 2010. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem 118:291–9.

Igual M, García-Martínez E, Camacho MM, Martínez-Navarrete N. 2011. Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov Food Sci Emerg Technol 12:153–62.

Jachna TJ, Hermes VS, Flôres SH, Rios AO. 2016. Bioactive compounds in pindo palm (*Butia capitata*) juice and in pomace resulting of the extraction process. J Sci Food Agric 96:1216–22.

Jakób A, Bryjak J, Wójtowicz H, Illeová V, Annus J, Polakovič M. 2010. Inactivation kinetics of food enzymes during ohmic heating. Food Chem 123:369–76.

Jayachandran LE, Chakraborty S, Rao PS. 2015. Effect of high pressure processing on physicochemical properties and bioactive compounds in litchi based mixed fruit beverage. Innov Food Sci Emerg Technol 28:1–9. Jayachandran LE, Chakraborty S, Rao PS. 2016. Inactivation kinetics of the most baro-resistant enzyme in high pressure processed litchi-based mixed fruit beverage. Food Bioproc Technol 9:1135–47.

Jiang B, Mantri N, Hu Y, Lu J, Jiang W, Lu H. 2015. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures. Food Sci Technol Int 21:392–9.

Jiménez-Aguilar DM, Escobedo-Avellaneda Z, Martín-Belloso O, Gutiérrez-Uribe J, Valdez-Fragoso A, García-García R, Torres JA, Welti-Chanes J. 2015. Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (*Opuntia ficus-indica*) beverages. Food Eng Rev 7:198–208.

Jiménez-Sánchez C, Lozano-Sánchez J, Marti N, Saura D, Valero M, Segura-Carretero A, Fernández-Gutiérrez A. 2015. Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations. Food Chem 182:282–91.

Jiménez-Sánchez C, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A. 2017. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: techniques and applications. Crit Rev Food Sci Nutr 57:501–23.

Kamdem SS, Belletti N, Magnani R, Lanciotti R, Gardini F. 2010. Effects of carvacrol, (E)-2-hexenal, and citral on the thermal death kinetics of *Listeria monocytogenes*. J Food Prot 74:2070–8.

Kathiravan T, Kumar R, Lakshmana JH, Kumaraswamy MR, Nadanasabapathi S. 2014a. Pulsed electric field processing of functional drink based on tender coconut water (*Cococus nucifera* L.) - nannari (*Hemidesmus indicus*) blended beverage. Croat J Food Sci Technol 6:84–96.

Kathiravan T, Nadanasabapathi S, Kumar R. 2014b. Standardization of process condition in batch thermal pasteurization and its effect on antioxidant, pigment and microbial inactivation of Ready to Drink (RTD) beetroot (*Beta vulgaris* L.) juice. Int Food Res J 21:1305–12.

Katiyo W, Yang R, Zhao W, Hua X, Gasmalla MAA. 2014. Optimization of combined pulsed electric fields and mild temperature processing conditions for red apple juice polyphenol oxidase and peroxidase inactivation. Adv J Food Sci Technol 6:638–46.

Kawase KYF, Luchese RH, Coelho GL. 2013. Micronized benzoic acid decreases the concentration necessary to preserve acidic beverages against Alicyclobacillus. J Appl Microbiol 115:466–74.

Kaya Z, Yildiz S, Ünlütürk S. 2015. Effect of UV-C irradiation and heat treatment on the shelf life stability of a lemon – melon juice blend: multivariate statistical approach. Innov Food Sci Emerg Technol 29: 230–9.

Kechinski CP, Guimarães PVR, Noreña CPZ, Tessaro IC, Marczak LDF. 2010. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J Food Sci 75:C173–6.

Keenan DF, Rößle C, Gormley R, Butler F, Brunton NP. 2012. Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT – Food Sci Technol 45:50–7.

Khallaf-Allah AE-RM, Sobhy HM, Assous MTM, Abbas MS, Ibrahim AM. 2015. Synergistic effect of nisin and cinnamaldehyde against *Alicyclobacillus acidoterrestris* in orange nectar. Res J Pharm Biol Chem Sci 6:61–72.

Khandpur P, Gogate PR. 2015. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason Sonochem 27:125–36.

Kim SA, Rhee MS. 2015. Synergistic antimicrobial activity of caprylic acid in combination with citric acid against both *Escherichia coli* O157:H7 and indigenous microflora in carrot juice. Food Microbiol 49:166–72.

Koh JH, Kim Y, Oh JH. 2010. Chemical characterization of tomato juice fermented with Bifidobacteria. J Food Sci. 75:C428–32.

Kongkachuichai R, Charoensiri R, Yakoh K, Kringkasemsee A, Insung P. 2015. Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem 173:836–46.

Koshani R, Ziaee E, Niakousari M, Golmakani M-T. 2014. Optimization of thermal and thermosonication treatments on pectin methyl esterase inactivation of sour orange juice (*Citrus aurantium*). J Food Process Pres 39:567–73.

Lee B, Seo JD, Rhee JK, Kim CY. 2016. Heated apple juice supplemented with onion has greatly improved nutritional quality and browning index. Food Chem 201:315–9.

Lee JY, Kim SS, Kang DH. 2015. Effect of pH for inactivation of *Escherichia* coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice by ohmic heating. LWT - Food Sci Technol 62:83–8.

Li H, Zhao L, Wu J, Zhang Y, Liao X. 2012. Inactivation of natural microorganisms in litchi juice by high-pressure carbon dioxide combined with mild heat and nisin. Food Microbiol 30:139–45.

Liu F, Li R, Wang Y, Bi, X, Liao X. 2014. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innov Food Sci Emerg Technol 22:22–30.

Liu RH. 2013. Dietary bioactive compounds and their health implications. J Food Sci 78(Suppl 1):A18–25.

Liu Y, Hu X, Zhao X, Song H. 2012. Combined effect of high-pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innov Food Sci Emerg Technol 13:112–9.

López-Sanz S, Montilla A, Moreno FJ, Villamiel M. 2015. Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice. Food Chem 183:64–71.

Luis-Villaroya A, Espina L, García-Gonzalo D, Bayarri S, Pérez C, Pagán R. 2015. Bioactive properties of a propolis-based dietary supplement and its use in combination with mild heat for apple juice preservation. Int J Food Microbiol 205:90–7.

Majumdar TK, Wadikar DD, Vasudish CR, Premavalli KS, Bawa AS. 2011. Effect of storage and physio-chemical, microbiological and sensory quality of bottled gourd-basil leaves juices. Am J Food Technol 6:226–34.

Marsh AJ, Hill C, Ross RP, Cotter PD. 2014. Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci Technol 38:113–24.

Marszałek K, Mitek M, Skąpska S. 2011. Application of high hydrostatic pressures (HHP) to stabilize strawberry juices and nectars. Zywnosc: Nauka, Technologia, Jakosc 1:112–23.

Marszałek K, Krzyżanowska J, Woźniak L, Skąpska S. 2016. Kinetic modelling of polyphenol oxidase, peroxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT – Food Sci Technol. https://doi.org/10.1016/j.lwt.2016.11.018.

Martín-Belloso O, Sobrino-López A. 2011. Combination of pulsed electric fields with other preservation techniques. Food Bioprocess Technol 4:954–68.

Math RG, Nagender A, Nayani S, Satyanarayana A. 2014. Continuous microwave processing and preservation of acidic and non acidic juice blends. Int J Agr Food Sci Technol 5:81–90.

Mena P, Martí N, Saura D, Valero M, García-Viguera C. 2013a. Combinatory effect of thermal treatment and blending on the quality of pomegranate juices. Food Bioprocess Tech 6:3186–99.

Mena P, Vegara S, Martí N, García-Viguera C, Saura D, Valero M. 2013b. Changes on indigenous microbiota, colour, bioactive compounds and antioxidant activity of pasteurised pomegranate juice. Food Chem 141:2122–9.

Mercali GD, Gurak PD, Schmitz F, Marczak LD. 2015. Evaluation of non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba (*Myrciaria cauliflora*) juice. Food Chem 171: 200–5.

Mert M, Buzrul S, Alpas H. 2013. Effects of high hydrostatic pressure on microflora and some quality attributes of grape juice. High Pressure Res 33:55–63.

Mertz C, Brat P, Caris-Veyrat C, Gunata Z. 2010. Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (*Solanum betaceum* Cav.). Food Chem 119:653–9.

Mgaya-Kilima B, Remberg SF, Chove BE, Wicklund T. 2014. Influence of storage temperature and time on the physicochemical and bioactive properties of roselle-fruit juice blends in plastic bottle. Food Sci Nutr 2:181–91.

Miller FA, Silva CLM. 2012. Thermal treatment effects in fruit juices. In: Rodrigues S, Fernandes FAN, editors. Advances in fruit processing technologies. e-book edition. Boca Raton, Fla.: CRC Press. p. 363–83. ISBN: 978-1-4398-5153-1.

Mytton OT, Nnoaham K, Eyles H, Scarborough P, Ni Mhurchu C. 2014. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. BMC Public Health 14:886.

Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O. 2010. Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT – Food Sci Technol 43:872–81. Moussa-Ayoub TE, Jaeger H, Knorr D, El-Samahy S, Rohn S, Kroh LW. 2011. Impact of traditional and innovative technologies on some characteristics and bioactive compounds of *Opuntia macrorhiza* juice. Procedia Food Sci 1:1410–6.

Nayak PK, Rayaguru K, Radha Krishnan K. 2016. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J Sci Food Agric https://doi.org/10.1002/jsfa.7878.

Ngang JJ, Nyegue MA, Ndoye FC, Tchuenchieu Kamgain AD, Sado Kamdem SL, Lanciotti R, Gardini F, Etoa FX. 2014. Characterization of mexican coriander (*Eryngium foetidum*) essential oil and its inactivation of *Listeria monocytogenes in vitro* and during mild thermal pasteurization of pineapple juice. J Food Prot 77:435–43.

Nwachukwu E, Ezeigbo CG. 2013. Changes in the microbial population of pasteurized soursop juice treated with benzoate and lime during storage. Afr J Microbiol Res 7:3992–5.

Odriozola-Serrano I, Puigpinós J, Oliu GO, Herrero E, Martín-Belloso O. 2016. Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by *Saccharomyces cerevisiae* growth based assays. LWT – Food Sci Technol 74:55–61.

Oliveira A, Pintado M, Almeida DPF. 2012. Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT - Food Sci Technol 49:202–7.

Pala CU, Toklucu AK. 2011. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J Food Compos Anal 24:790–5.

Palgan I, Muñoz A, Noci F, Whyte P, Morgan DJ, Cronin DA, Lyng JG. 2012. Effectiveness of combined pulsed electric field (PEF) and manothermosonication (MTS) for the control of *Listeria innocua* in a smoothie type beverage. Food Control 25:621–5.

Pareek S, Paliwal R, Mukherjee S. 2011. Effect of juice extraction methods and processing temperature-time on juice quality of Nagpur mandarin (*Citrus reticulata* Blanco) during storage. J Food Sci Technol 48:197–203.

Park I-K, Kang D-H. 2013. Effect of electropermeabilization by ohmic heating for inactivation of *Escherichia coli* O157:H7, *Salmonella enterica* Serovar *Typhimurium*, and *Listeria monocytogenes* in buffered peptone water and apple juice. Appl Environ Microbiol 79:7122–9.

Parker TL, Esgro ST, Miller SA, Myers LE, Meister RA, Toshkov SA, Engeseth NJ. 2010. Development of an optimised papaya pulp nectar using a combination of irradiation and mild heat. Food Chem 118:861–9.

Pei J, Yue T, Yuan Y. 2014. Control of *Alicyclobacillus acidoterrestris* in fruit juices by a newly discovered bacteriocin. World J Microbiol Biotechnol 30:855–63.

Peng J, Mah JH, Somavat R, Mohamed H, Sastry S, Tang J. 2012. Thermal inactivation kinetics of *Bacillus coagulans* spores in tomato juice. J Food Prot 75:1236–42.

Pérez-Ramírez IF, Castaño-Tostado E, Ramírez-de León JA, Rocha-Guzmán NE, Reynoso-Camacho R. 2015. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (*Hibiscus sabdariffa* L.) beverage. Food Chem 172:885–92.

Piasek A, Kusznierewicz B, Grzybowska I, Malinowska-Pańczyk E, Piekarska A, Azqueta A, Collins AR, Namieśnik J, Bartoszek A. 2011. The influence of sterilization with EnbioJet[®] Microwave Flow Pasteurizer on composition and bioactivity of aronia and blue-berried honeysuckle juices. J Food Comp Anal 24:880–8.

Profir A, Vizireanu C. 2013. Effect of the preservation processes on the storage stability of juice made from carrot, celery and beetroot. J Agroaliment Proc Technol 19:99–104

Queirós RP, Rainho D, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA. 2015. High pressure and thermal pasteurization effects on sweet cherry juice microbiological stability and physicochemical properties. High Pressure Res 35:69–77.

Rabie MA, Soliman AZ Diaconeasa ZS, Constantin B. 2015. Effect of pasteurization and shelf life on the physicochemical properties of physalis (*Physalis peruviana* L.) juice. J Food Process Pres 39:1051–60.

Radziejewska-Kubzdela E, Biegańska-Marecik R. 2015. A comparison of the composition and antioxidant capacity of novel beverages with an addition of red cabbage in the frozen, purée and freeze-dried forms. LWT – Food Sci Technol 62:821–9.

Ramachandran P, Nagarajan S. 2014. Quality characteristics, nutraceutical profile, and storage stability of aloe gel-papaya functional beverage blend. Int J Food Sci https://doi.org/10.1155/2014/847013

Rathod AS, Shakya BR, Ade KD. 2014. Studies on effect of thermal processing on preparation of bael fruit RTS blended with Aonla. Int J Res Eng Adv Tech 2:1–6.

Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. 2011. Effect of thermal and non-thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res Int 44:1875–87.

Rayman A, Baysal T. 2011. Yield and quality effects of electroplasmolysis and microwave applications on carrot juice production and storage. J Food Sci 76:C598–605.

Rekhy R, McConchie R. 2014. Promoting consumption of fruit and vegetables for better health. Have campaigns delivered on the goals? Appetite 79:113–23.

Rodríguez-Roque MJ, de Ancos B, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J Funct Foods 14:33–43.

Rodríguez-Roque MJ, de Ancos B, Sánchez-Vega R, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O. 2016. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food Funct 7:380–9.

Rodríguez-Verástegui LL, Martínez-Hernández GB, Castillejo N, Gómez PA, Artés F, Artés-Hernández F. 2016. Bioactive compounds and enzymatic activity of red vegetable smoothies during storage. Food Bioprocess Technol 9:137–46.

Saeeduddin M, Abid M, Jabbar S, Wu T, Hashim MM, Awad FN, Hu B, Lei S, Zeng X. 2015. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT – Food Sci Technol 64:452–8.

Saikia S, Mahnot NK, Mahanta CL (2015). A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Sci Technol Int 22:288–301.

Salazar-González C, San Martín-González MF, Vergara-Balderas FT, López-Malo A, Sosa-Morales ME. 2014. Physical-chemical and microbiological stability during refrigerated storage of microwave-pasteurized guava nectar. Focusing Modern Food Ind 3:43–51.

Salvia-Trujillo L, Morales-de la Peña M, Rojas-Graü MA, Martín-Belloso O. 2011. Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control 22:1639–46.

Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O. 2015. Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg Technol 29:70–7.

Sangeeta, Singh Hathan B, Khatkar BS. 2013. Studies on stability of sugarcane juice blended with anola juice at refrigerated and room temperature. Int J Agr Food Sci Technol 4:1027–36.

Santhirasegaram V, Razali Z, George DS, Somasundram C. 2015. Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (*Mangifera indica* L.) juice. Food Bioprod Process 94:313–21.

Shaheer CA, Hafeeda P, Kumar R, Kathiravan T, Kumar D, Nadanasabapathi S. 2014. Effect of thermal and thermosonication on anthocyanin stability in jamun (*Eugenia jambolana*) fruit juice. Int Food Res J 21:2189–94.

Šimunek M, Jambrak AR, Petrović M, Juretić H, Major N, Herceg Z, Hruškar M, Vukušić T. 2013. Aroma profile and sensory properties of ultrasound-treated apple juice and nectar. Food Technol Biotechnol 51:101–11.

Šimunek M, Jambrak AR, Dobrović S, Herceg Z, Vukušić T. 2014. Rheological properties of ultrasound treated apple, cranberry and blueberry juice and nectar. J Food Sci Technol 51:3577–93.

Sinchaipanit P, Kerr WL, Chamchan R. 2013. Effect of sweeteners and hydrocolloids on quality attributes of reduced-calorie carrot juice. J Sci Food Agr 93:3304–11.

Sinchaipanit P, Ahmad M, Twichatwitayakul R. 2015. Kinetics of ascorbic acid degradation and quality changes in guava juice during refrigerated storage. J Food Nutr Res 3:550–7.

Singh R, Singh D, Bhatt F. 2014. Development, quality evaluation and shelf life studies of whey guava beverage. Int J Curr Eng Technol 4:2171–5.

Skąpska S, Marszałek K, Woźniak L, Zawada K, Wawer I. 2016. Aronia dietary drinks fortified with selected herbal extracts preserved by thermal pasteurization and high pressure carbon dioxide. LWT - Food Sci Technol. in press.

Somavat R, Mohamed HMH, Sastry SK. 2013. Inactivation kinetics of *Bacillus coagulans* spores under ohmic and conventional heating. LWT – Food Sci Technol 54:194–8.

Song WJ, Sung HJ, Kang DH. 2015. Inactivation of *Escherichia coli* O157:H7 and *Salmonella* Typhimurium in apple juices with different soluble solids content by combining ozone treatment with mild heat. J Appl Microbiol 118:112–22.

Srivastav S, Roy S. 2014. Changes in electrical conductivity of liquid foods during ohmic heating. Int J Agric Biol Eng 7: 133–8.

Stratakos AC, Delgado-Pando G, Linton M, Patterson MF, Koidis A. 2016. Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chem 190:622–8.

Sun X, Baldwin EA, Plotto A, Manthey JA, Duan Y, Bai J. 2016. Effects of thermal processing and pulp filtration on physical, chemical, and sensory properties of winter melon juice. J Sci Food Agric 97: 543–50.

Suna S, Tamer CE, Çopur ÖU, Ali Turan M. 2013. Determination of antioxidant activity, total phenolics and mineral contents of some functional vegetable juice. Int J Food Agric Environ 11:213–8.

Sun-Waterhouse D, Bekkour K, Wadhwa SS, Waterhouse GIN. 2014. Rheological and chemical characterization of smoothie beverages containing high concentrations of fibre and polyphenols from apple. Food Bioprocess Technol 7:409–23.

Surek E, Nilufer-Erdil D. 2014. Changes in phenolics and antioxidant activity at each step of processing from pomegranate into nectar. Int J Food Sci Nutr 65:194–202.

Swada JG, Keeley CJ, Ghane MA, Engeseth NJ. 2016. Relationship between pulp structure breakdown and nutritional value of papaya (*Carica papaya*) and strawberry (*Fragaria x ananassa*) nectars using alternative thermal and non-thermal processing techniques. J Sci Food Agric 96:2514–23.

Swami Hulle NR, Rao PS. 2016. Effect of high pressure and thermal processing on quality changes of Aloe vera-litchi mixed beverage (ALMB) during storage. J Food Sci Tech 53:359–69.

Tennant DR, Davidson J, Day AJ. 2014. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Brit J Nutr 112:1214–25.

Tola YB, Ramaswamy HS. 2014. Thermal destruction kinetics of *Bacillus licheniformis* spores in carrot juice extract as influenced by pH, type of acidifying agent and heating method. LWT - Food Sci Technol 56:131–7.

Tomas M, Toydemir G, Boyacioglu D, Hall R, Beekwilder J, Capanoglu E. 2015. The effects of juice processing on black mulberry antioxidants. Food Chem 186:277–84.

Torkamani AE. 2011. Impact of PEF and thermal processing on apple juice shelf life. Iranian J Microbiol 3:152–5.

Traffano-Schiffo MV, Balaguer N, Castro-Giráldez M, Fito-Suñer PJ. 2014. Emerging technologies in fruit juice processing. In: Falguera V, Ibarz A, editors. Juice processing: quality, safety and value-added opportunities. e-book edition. Boca Raton, Fla.: CRC Press. p. 197–216. ISBN: 978-1-4665-7734-3.

Tribst AAL, Franchi MA, de Massaguer PR, Cristianini M. 2011. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment. J Food Sci 76:M106–10.

Tumpanuvatr T, Jittanit W. 2012. The temperature prediction of some botanical beverages, concentrated juices and purees of orange and pineapple during ohmic heating. J Food Eng 113:226–33.

Tyagi AK, Gottardi D, Malik A, Guerzoni ME. 2013. Anti-yeast activity of mentha oil and vapours through *in vitro* and *in vivo* (real fruit juices) assays. Food Chem 137:108–14.

Tyagi AK, Bukvicki D, Gottardi D, Tabanelli G, Montanari C, Malik A, Guerzoni ME. 2014a. Eucalyptus essential oil as a natural food preservative: *in vivo* and *in vitro* antiyeast potential. BioMed Res Int 2014:1–9.

Tyagi AK, Gottardi D, Malik A, Guerzoni ME. 2014b. Chemical composition, *in vitro* anti-yeast activity and fruit juice preservation potential of lemon grass oil. LWT - Food Sci Technol 57:731–7.

Uçan F, Ağçam E, Akyildiz A. 2016. Bioactive compounds and quality parameters of natural cloudy lemon juices. J Food Sci Technol 53:1465–74.

Uckoo RM, Jayaprakasha GK, Somerville JA, Balasubramaniam VM, Pinarte M, Patil BS. 2013. High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (*Citrus paradisi* Macfad) juice. Innov Food Sci Emerg Technol 18:7–14.

Vega S, Saucedo D, Rodrigo D, Pina C, Armero C, Martinez A. 2016. Modeling the isothermal inactivation curves of *Listeria innocua* CECT 910 in a vegetable beverage under low-temperature treatments and different pH levels. Food Sci Technol Int 22:525–35. Velázquez-Estrada RM, Hernández-Herrero MM, Rüfer CE, Guamis-López B, Roig-Sagués AX. 2013. Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innov Food Sci Emerg Technol 18:89–94.

Vieira MC, Silva CLM. 2014. Stability of cupuaçu (*Theobroma grandiflorum*) nectar during storage. Int J Food Stud 3:160–74.

Walkling-Ribeiro M, Noci F, Cronin DA, Lyng JG, Morgan DJ. 2010. Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. LWT - Food Sci Technol 43:1067–73.

Wang C, Mao M, Hu F, Yu Y, He J, Zhu S. 2013. Comparison of sensory quality between subjective evaluation and instrument detection for cucumber juice with high pressure processing and heat treatment. Trans Chin Soc Agr Eng/Nongye Gongcheng Xuebao 29:278–86.

Wang C, Lin Y, Ramaswamy HS, Ge L, Hu F, Zhu S, Yu Y. 2015. Storage stability of chinese bayberry juice after high pressure or thermal treatment. J Food Process Preserv 39:2259–66.

Wang Y, Liu F, Cao X, Chen F, Hu X, Liao X. 2012. Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innov Food Sci Emerg Technol 16:326–34.

Wilkes K, Howard LR, Brownmiller C, Prior RL. 2014. Changes in chokeberry (*Aronia melanocarpa* L.) polyphenols during juice processing and storage. J Agric Food Chem 62:4018–25.

Wong YM, Siow LF. 2015. Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (*Hylocereus polyrhizus*) juice and concentrate as models. J Food Sci Technol 52:3086–92.

Woodward GM, Mccarthy D, Pham-Thanh D, Kay CD. 2011. Anthocyanins remain stable during commercial blackcurrant juice processing. J Food Sci 76:S408–14.

Wootton-Beard PC, Ryan L. 2011. Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res Int 44:3135–48.

Worametrachanon S, Techarang J, Chaikham P, Chunthanom P. 2014. Evaluation of quality changes of pressurized and pasteurized herbal-plant beverages during chilled storage. Int Food Res J 21:2077–83.

Xinfeng G. 2014. Experimental study on concentrating apple juice by microwave. Adv J Food Sci Technol 6:544–6.

Xu H, Hao Q, Yuan F, Gao Y. 2015a. Nonenzymatic browning criteria to sea buckthorn juice during thermal processing. J Food Process Eng 38:67–75.

Xu YX, Zhang M, Fang ZX, Sun JC, Wang YQ. 2014. How to improve bayberry (*Myrica rubra* Sieb. et Zucc.) juice flavour quality: effect of juice processing and storage on volatile compounds. Food Chem 151: 40–6.

Xu Z, Lin T, Wang Y, Liao X. 2015b. Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time treatment. Innov Food Sci Emerg Technol 31:28–36.

Yadav VT. 2015. Effect of heat processing on β carotene and ascorbic acid content of carrot-fruit juice blended nectar. Bioscan 10:699–703.

Yang ZY, Ren JN, Dong M, Tai YN, Yang SZ, Shao JH, Pan SY, Fan G. 2015. Changes in the physicochemical characteristics, free and bound aroma compounds in the raspberry juice during storage. J Food Process Technol 39:2834–43.

Yu Y, Wu J, Xiao G, Xu Y, Tang D, Chen Y, Zhang Y. 2013a. Combined effect of dimethyl dicarbonate (DMDC) and nisin on indigenous microorganisms of litchi juice and its microbial shelf life. J Food Sci 78:M1236–41.

Yu Y, Xiao G, Wu J, Xu Y, Tang D, Chen Y, Wen J, Fu M. 2013b. Comparing characteristic of banana juices from banana pulp treated by high pressure carbon dioxide and mild heat. Innov Food Sci and Emerg Technol 18:95–100.

Yu Y, Xu Y, Wu J, Xiao G, Fu M, Zhang Y. 2014. Effect of ultra-high pressure homogenisation processing on phenolic compounds, antioxidant capacity and anti-glucosidase of mulberry juice. Food Chem 153:114–20.

Yuk HG, Sampedro F, Fan X, Geveke DJ. 2014. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas–liquid metal contactor. J Food Process Preserv 38:630–8.

Zacconi C, Giosuè S, Marudelli M, Scolari G. 2015. Microbiological quality and safety of smoothies treated in different pressure–temperature domains: effects on indigenous fruit microbiota and *Listeria monocytogenes* and their survival during storage. Eur Food Res Technol 241:317–28.

Zhang L, Zhou J, Liu H, Khan MA, Huang K, Gu Z. 2012. Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. Eur Food Res Technol 235:637–45.

Zhang Y, Gao B, Zhang M, Shi J, Xu Y. 2010. Pulsed electric field processing effects on physicochemical properties, flavour compounds and microorganisms of longan juice. J Food Process Preserv 34:1121–38.

Zhao L, Wang S, Liu F, Dong P, Huang W, Xiong L, Liao X. 2013. Comparing the effects of high hydrostatic pressure and thermal pasteurization combined with nisin on the quality of cucumber juice drinks. Innov Food Sci Emerg Technol 17:27–36.

Zheng H, Lu H. 2011. Use of kinetic, Weibull and PLSR models to predict the retention of ascorbic acid, total phenols and antioxidant activity during storage of pasteurized pineapple juice. LWT - Food Sci Technol 44:1273–81.

Zheng X, Yu Y, Xiao G, Xu Y, Wu J, Tang D, Zhang Y. 2014. Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innov Food Sci Emerg Technol 23:61–7.

Zou H, Lin T, Bi X, Zhao L, Wang Y, Liao X. 2016. Comparison of high hydrostatic pressure, high-pressure carbon dioxide and high-temperature short-time processing on quality of mulberry juice. Food Bioprocess Tech 9:217–31.

Zulueta A, Barba FJ, Esteve MJ, Frígola A. 2013. Changes in quality and nutritional parameters during refrigerated storage of an orange juice–milk beverage treated by equivalent thermal and non-thermal processes for mild pasteurization. Food Bioprocess Tech 6:2018–30.