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A B S T R A C T

The feasibility of using spectral profiles for the estimation of the shelf life of the rocket leaves was evaluated
using a multivariate accelerated shelf life testing (MASLT) approach. Spectral changes over time were modeled
by using principal component analysis (PCA) and as variation to the conventional method, partial least squares
(PLS) method. Kinetic charts were built fitting the first principle component (PC1) and the first latent variable
(LV1) scores versus time. In both cases, the kinetics were described by a first order reaction, obtaining R2 values
of 0.73, 0.94 and 0.95 for samples stored at 5, 10 and 15 °C, respectively. The spectra of samples judged un-
acceptable were used for the calculation of the cut-off value, estimated to be 3.955, leading to shelf life esti-
mations of 9.8, 4.3 and 3.1 days for PCA based MASLT at the three temperatures, respectively. For PLS based
MASLT the shelf life was 9.4, 4.5 and 3.3 days for samples stored at the three respective temperatures.
Conclusively, shelf-life was correctly estimated by conventional MASLT using PCA and also with the newly
proposed technique using PLS.

1. Introduction

A significant increase has been observed in the consumption of
minimally processed ready-to-eat foods in the last decades (Artés et al.,
2009). This rapid rise in the consumption is a result of consumer pre-
ference for healthy, fresh, convenient, highly nutritive and appetizing
food products (Ma et al., 2017; Oliveira et al., 2015).

Rocket leaves (Diplotaxis tenuifolia) are popular leafy vegetables
especially in the Mediterranean countries, mostly preferred by con-
sumers because of their pungent smell and strong flavour. Moreover,
they are a rich source of health-promoting phytonutrients such as fla-
vonoids, fiber, vitamin C and glucosinolates (Martínez-Sánchez et al.,
2006; Cavaiuolo and Ferrante, 2014; Nurzyńska-Wierdak, 2015;
Amodio et al., 2016). Normally rocket leaves are sold in packages after
minimal processing operations including washing and drying due to
which they are also prone to rapid degradation. Particularly, yellowing
caused by chlorophyll degradation, wilting, and the production of off-
odors are the main source of deterioration (Koukounaras et al., 2006,
2007; 2009; Nielsen et al., 2008). The shelf life of rocket leaves ranges
between 7 and 14 days depending upon the raw material, handling,
processing and especially the temperature of storage (Toivonen and

Brummell, 2008).
At the market shelves, the consumer criteria for the selection of the

leafy vegetables as rocket is the fresh appearance and green color
(Løkke et al., 2012) and repurchase of the product depends on the
quality at the consumption stage often evaluated by color, texture and
flavor (Barrett et al., 2010). Freshness and green color are quick in-
dicators of the fact that the product can sustain under prescribed con-
ditions for a certain time.

The shelf life determination of any food product is usually con-
ducted by monitoring the quality parameters most associated with time
by developing kinetic models for deterioration under market and ex-
treme conditions using accelerated shelf life testing methods (ASLT)
(Labuza, 1982; Hough et al., 2006). In case of ASLT approach, the
samples are subjected to severe storage conditions other than the
market storage conditions and shelf life charts also known as kinetic
charts are developed (Hough et al., 2006). Various studies have proved
that ASLT approach is a useful tool for the rapid estimation of shelf life
of fresh-cut produce, as apple (Amodio et al., 2015b), melons (Amodio
et al., 2012) even with the use of other empirical models as the Weibull
model used for kinetic fitting on fresh-cut melons (Amodio et al., 2013)
and fresh rocket leaves (Amodio et al., 2015a).
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Degradation process of food products and particularly of fresh-cut
produce is a multivariate phenomenon depending from several pre-
harvest handling and storage factors, impacting on many quality at-
tributes (Routray and Orsat, 2014; Torres-Contreras et al., 2014;
Fernando Reyes et al., 2007). In this regard, chemiometric tools such as
principal component analysis (PCA) which operate by data di-
mensionality reduction, measurement correlation and noise compres-
sion (Bro and Smilde, 2014; Brereton, 2009) may be usefully integrated
into ASLT to formulate a new procedure named Multivariate Shelf Life
Testing (MASLT) aimed to include several quality attributes at the same
time (Labuza, 1982; Pedro and Ferreira, 2006).

The first step in MASLT procedure involves the kinetic description of
the important degradation reactions based on the PC scores resulting
from a PCA model, assuming that degradation reactions are the main
sources of variation in the data set, and that PCA will explain the time-
related phenomena. Usually, these are calculated using the zero order,
first order and second order kinetics (Odriozola-Serrano et al., 2009;
Amodio et al., 2015b). Secondly, the temperature dependence of the
rate constants is defined using the Arrhenius equation and the third step
involves the calculation of shelf life. The MASLT approach has suc-
cessfully been applied to various food products such as broccoli puree
(Kebede et al., 2015), low-fat UHT milk (Richards et al., 2014), sun-
flower oil (Upadhyay and Mishra, 2015) and tomato paste (Pedro and
Ferreira, 2006). This method was applied for the first time on fresh-cut
produce by Derossi et al. (2016), who obtained an accurate description
of the degradation phenomena occurring during the storage of fresh-cut
lettuce at three different temperatures, monitoring several sensorial,
physical and chemical changes over time. In the same way, MALST
method was applied to estimate the shelf-life of fresh-cut pineapples
(Amodio et al., 2016). Shelf-life estimation obtained with MALST
method have been proved to be more reliable than ASLT, but generally,
the application of these studies by processors is limited by the scarce
possibility of carrying out specific quality analysis and collecting data.
Therefore, many companies are looking for a possible alternative
system for the evaluation of the quality and shelf-life in a faster, simple
and eventually non-destructive way. In this regard, hyperspectral
imaging is a fast, reliable, objective, economical and non-destructive
means of data collection. This technique is a combination or integration
of imaging and spectroscopic techniques for the quantitative prediction
of physical and chemical characteristics of the food samples as well as
their spatial distribution.

Every product has, in fact, a specific spectral signature, which is a
function of the structure of the sample, the moisture content, the par-
ticle size, the temperature of the sample and most importantly of its
chemical composition (Workman and Shenk, 2004). In case of the green
leaves, Vis-NIR region retains all the information related to leaf pig-
ments such as chlorophyll, anthocyanin and carotenoid content (Mishra
et al., 2017), characterized by a strong absorption by these leafy

pigments, particularly chlorophyll which are responsible for photo-
synthetic activity in plants (Feret et al., 2008). When spectral profiles
are collected over time they can be used for the estimation of the
quality changes and shelf life of the food products during storage
(Gowen et al., 2008; Rajkumar et al., 2012; Løkke et al., 2013). Some
applications include monitoring of the ripening of tomatoes (Polder and
Heijden, 2010), or banana (Rajkumar et al., 2012), hence providing a
promising opportunity for the collection of the information related to
the quality of a product in the form of spectral responses as they retain
most of the information related to the overall quality.

Standing to these considerations, spectral data and hyperspectral
imaging may be usefully integrated into MASLT in shelf-life research
studies. Therefore, the objective of the present work was to use the
MASLT technique for the estimation of the shelf life of rocket leaves
using the spectra as a quality attribute. In addition an alternative
method based on the use of partial least squares regression (PLSR) and
latent variables (LV) instead of PCA and PC scores was also proposed.

2. Materials and methods

2.1. Experimental design and spectral acquisition

Washed and dried rocket leaves (Diplotaxis tenuifolia) were received
in the postharvest laboratory of University of Foggia, after being pro-
cessed in a commercial company. Drying was conducted with a drying
tunnel, heating the product at 30 °C for 5min, and achieving about 95%
of added water reduction. Upon arrival the rocket leaves were stored at
5 °C. Representative samples of 100 g were packed in plastic clamshells
and stored at three different temperatures (5 °C, 10 °C and 15 °C) in a
humidified (99% RH) flow of air. Ten replicates were prepared for each
storage temperature. Samples were taken for image acquisition and
sensory analysis at 0, 3, 6, 8 and 10 days of storage.

A hyperspectral line scan scanner (Version 1.4, DV srl, Padova,
Italy) equipped with a spectrograph, in the visible-near infrared (Vis-
NIR) range of 400–1000 nm with a spatial resolution of 1000x2000
pixels and a spectral resolution of 5 nm was used to acquire the images.
Twenty leaves were taken for each replicate in a single image and self-
developed MATLAB (2012b, version 8.0.0.783) code was used for ex-
tracting the mean spectra of these leaves producing one spectrum per
replicate. For the extraction of the mean spectrum, the original image
was thresholded and the best contrast between the object and the
background was found. Image thresholding was performed using the
Otsu method, on the image depicting the best contrast between the
foreground and background, corresponding to 795 nm for the Vis-NIR
and 1495 nm for the NIR. A 2D binary image (mask) was obtained, with
0 value for the background and 1 for the leaves. This mask was imposed
to extract the mean spectra of the pixels corresponding to the leaves. A
total of 150 spectra were acquired, 50 from each storage temperature

Fig. 1. a) Mean spectra based on days of storage Day0 (red), Day3 (green), Day6 (blue), Day8 (black), Day10 (Violet); b) Mean spectra based on temperatures of
storage 5 °C (green), 10 °C (blue), 15 °C (red). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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during 5 different days of acquisition (Fig. 1). Fig. 1a shows the mean
spectra based on days of storage and 1b demonstrates the changes in the
mean spectra based on the storage temperature plotted in PLS toolbox
(version 7.5.2) supported by MATLAB.

In these figure, the characteristic Vis-NIR reflectance spectra of the
rocket leaves resulting from the leaf biochemical compounds such as
chlorophyll, anthocyanins, carotenoids, water and cellulose in the wa-
velength range of 400–1000 nm can be observed. In case of green leafy
vegetables, the interaction between the plant leaves and electro-
magnetic radiation yields reflectance spectra in the Vis-NIR region
which are mainly representative of the photosynthetic pigments such as
chlorophyll and carotenoids (Mohd Asaari et al., 2018). Visually, a
green plant spectral curve can be observed in the raw spectra with
550 nm reflectance peak and 680 nm absorbance peak caused by
chlorophyll, a major color related pigment (Kong et al., 2016). The
sharp rise in the spectra from 700 nm corresponds to the red edge re-
sulting from two special optical properties of plant tissue, the high in-
ternal leaf scattering resulting in large NIR reflectance and low red
reflectance as a result of chlorophyll absorption (Horler et al., 1983).

2.2. Sensory analysis

Rocket leaves were evaluated by a panel of experts for changes in
appearance, including freshness, color and dehydration, during the
storage period. Since appearance is the most important quality attribute
for the selection of the product at the retail sites for the consumers, the
appearance scores were given a scale from 0 to 5 and these sensory
evaluations were carried out on each acquisition day. In case of ap-
pearance scores, rocket leaves with uniform dark green color with fresh
and turgid appearance were given score 5, fresh rocket leaves with a
slight loss of turgidity obtained an appearance score of 4, rocket leaves
with a significant loss of turgidity and an apparent loss of color (limit of
marketability) were set at an appearance score of 3, leaves with sig-
nificant senescence with the passage of storage time having wrinkled
and yellowish blades received an appearance score of 2 and the spoiled
rocket leaves with severe wilting, significant yellowing and decay
symptoms were given a score value of 1 (Amodio et al., 2015b).

2.3. Multivariate accelerated shelf life testing (MALST) approach

An elaboration of the MASLT algorithm used in this study is pre-
sented, and for the sake of convenience, conventional algebraic sym-
bology is followed, where matrices will be represented by boldface
upper case letters, vectors with bold face lower case letters, scalar
quantities with italic lower case, italic subscripts denote case letters and
sequences.

In the first step, a matrix X (mxn) wherem=150 and n=121, was
formulated representing the quality changes in the rocket attributes at
three different storage temperatures (5, 10 and 15 °C) with m being the
number of data points collected during storage on Days 0, 3, 6, 8 and 10
respectively with 10 replicates from each storage temperature and n
being the vector of variables or spectra in a wavelength range of
400–1000 nm (Fig. 2). Auto-scaling the data is a necessary considera-
tion when various univariate quality attributes with different scales are
simultaneously under study (Pedro and Ferreira, 2006; Derossi et al.,
2016) and in case where spectral profiles are serving as property at-
tributes, normalization of the data is important for which mean cen-
tering was done.

Secondly, PCA was performed on the data matrix X after data mean
centering (Fig. 3). PCA describes the data by projecting it on a new set
of axis in the multivariate space. Principal components are linear
combinations of the original variables and each one accounts for the
direction of maximum variability in the data (Bro and Smilde, 2014).
The loading plots of the time related PCs were observed for the selec-
tion of the best variables and the elimination of those who did not
contribute to any information in the PCA model. For each storage

temperature, the scores matrix (S) of every ith time related PC were
plotted against the storage time to formulate kinetic plots also known as
shelf life charts, describing the changes of the PC scores as a function of
time. For these time related PCs, reaction order and multivariate kinetic
parameters were determined. After the estimation of the multivariate
constants, the Arrhenius equation (Labuza, 1982) was used for esti-
mating their temperature dependence for each kinetic model.

Quality degradation kinetics can be represented by equation (1):

− =

dQ
dt

kQn
(1)

Where Q is the measured quality attribute, t represents time, n is the
reaction order and k is the reaction or degradation rate.

The reaction rates are significantly temperature dependent, higher
the storage temperature the faster the degradation. Therefore, to as-
sociate or describe the temperature dependence of the degradation
rates, Arrhenius equation is used.

= −k k E
RT

ln( ) ln T
a

ref (2)

Where, Ea is the activation energy, R is the universal gas constant with
a constant value of 8.314 J/mol, Tref is the reference temperature
usually in shelf life studies is the market shelf temperature of any food
product.

The most important and significant aspect of the MASLT technique
is the selection of the cut-off criteria for the property under study. In
case of study evaluating different quality parameters, individual re-
ference limits are chosen for each quality index, and cut-off criteria (tc)
is calculated as the maximum acceptable value of the vector t (Pedro
and Ferreira, 2006; Derossi et al., 2016).

t= xa*L (3)

tc = Max(t) (4)

Where xa is the row vector containing the auto-scaled values of the
reference limits of each quality attribute that define the threshold of
acceptability of the product, while L is the loading matrix of the time-
related PCs at the market storage conditions.

In this study, the spectra of samples judged unacceptable was used
for the calculation of the cut-off value. For visualization of degradation
with the passage of storage time for leaves stored at different tem-
peratures, 5 random leaves were collected from the replicates of each
acquisition time and were processed in Hypertools (Mobaraki and
Amigo, 2018). The images were spatially binned, masked and aug-
mented with each row representing a single acquisition time (Fig. 5).

Fig. 2. Data matrix (mxn) with Time=m, Wavelength= n at the 3 storage
conditions (5, 10, 15 °C).
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2.4. Partial least squares regression (PLSR)

A slight modification of the MALST algorithm was also proposed in
this study by developing PLS models for the spectra against time of
storage. PLSR works by maximizing the covariance between the linear
functions of the information included in the X (mxn) matrix and the
corresponding vector of storage time in the m (ter Braak and de Jong,
1998; Dunn et al., 1989). Random subset cross validation was applied

in this case. Firstly, a PLS model to predict days of storage was devel-
oped after mean centering the X data and auto-scaling m using the PLS
toolbox. Then the LVs were taken as properties and were plotted against
time to formulate shelf life charts. The rest of the procedure remained
the same as the conventional MASLT application. In this case, only
mean centering was done for data normalization. The model reliability
was accessed by the values of R2 calibration and R2 cross validation and
also by the root mean square errors.

Fig. 3. PC scores plots in the wavelength range of 400–800 nm: a) PC1 vs PC2 for days of storage (0, 3, 6, 8, 10); b) PC1 variation w.r.t time of storage at 5 (green
ellipse), 10 (blue ellipse) and 15 °C (red ellipse) respectively; c) Loadings PC1 (red) PC2 (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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3. Results and discussion

3.1. Principal component analysis and PC relationship with time

PCA of the normalized data in the wavelength range of
400–1000 nm resulted in two PCs covering maximum variance in the
data where, PC1 accounted for only 88.24% of the total variability over
the entire wavelength range constituting 121 variables. After removing
the variables not contributing to the model from the preliminary PCA
(MacGregor and Kourti, 1995; Saavedra et al., 2013), a total of 2 PCs
accounted for 98.99% of the total variability in the data in the wave-
length range of 400–800 nm. In this case, PC1 explained maximum
variability of 96.27% followed by the PC2 which accounted for only
2.72% of the total data variability (Fig. 3).

Plot of PC1 vs PC2 scores clearly indicated as the main source of
variance on PC1 was related to time (Fig. 3a). Fig. 3b depicts the change
in the PC1 scores for the samples stored at three different temperatures
over the storage time. The degradation rate of the rocket leaves stored
at 5 °C is much lower than those stored at 10 °C and 15 °C, which as
expected, indicates that storage temperature had a significant impact
on the shelf life of the rocket leaves. Temperature is, in fact, the most
important factor affecting the quality of fresh produce. Low tempera-
ture is essential to maintain an optimal product quality because it re-
duces several physiological activities, such as transpiration, which
causes weight loss, and respiration. Senescence can induce chemical
and enzymatic changes that may cause tissue softening, pigment loss,
ripening and discoloration (Brosnan and Sun, 2001). Moreover, low
temperature also reduces the growth rate of spoilage microorganisms
on surfaces of vegetable tissues (Rediers et al., 2009; Ukuku and Sapers,
2007). These changes in the PC scores may be directly related to the leaf
pigments which are responsible for the color in the rocket leaves since
the spectra responses vary with the change in color of the leaves in the
Vis-NIR range, as a result of the loss of chlorophyll over the storage
period.

As shown in the sample score plot in Fig. 3b, spectral signatures of
the leaves at each acquisition time varied with the temperature of
storage. From Fig. 3a and b it can also be observed that up to day 3 all
the samples at the three different storage temperatures possessed

similar scores and therefore similar quality attributes. Regarding ap-
pearance, in fact, until day 3 all the leaves possessed a visual score
value above 3 and were still marketable, as can be seen in Fig. 4.
Starting from day 6 of storage, significant quality differences can be
observed in the samples stored at different temperatures.

Therefore, PC scores possess the capability to mark the days of
storage during which significant quality changes occur for the samples
stored at different storage temperatures. Also in the case of samples
stored in modified atmosphere packaging at 5, 10 and 15 °C, differences
in appearance score were higher starting from the 6th day of storage
(Amodio et al., 2015b), as well as difference in the overall sensorial
quality. In the same study, it was found that appearance scores limited
the shelf life of the leaves stored at 5 °C, estimated in 7.3 days while an
increase in the temperature affected the loss of ascorbic acid more than
the appearance and off-odor scores.

Fig. 3c depicts the importance of the variables for the model; all the
loadings of the PC1 model above the threshold contributed weight to
the model. Since the considered wavelength range is 400–800 nm, this
is mainly accounting for the color changes related to the pigments of
the rocket leaves such as chlorophyll and carotenoids. The spectral
profiles in the NIR region from 800 to 1000 nm are mostly related to the
changes in dry matter and textural properties. Moreover, the mid NIR
region is usually depicting changes based on the water content as this
region is based on the high influence by water (Sánchez et al., 2011).

As for leaf pigments, chlorophyll compounds absorb in the blue and
red regions, corresponding to the wavelength peak at 430 and 670 nm
for Chlorophyll a, and 460 and 640 nm for chlorophyll b. Carotenoid
peak ranges from 470 to 530 nm, whereas anthocyanins has a max-
imum absorbance at 530 nm. Based on previous research works both
the carotenoid and chlorophyll absorbance decreased with the storage
time due to the senescence of the leaves (Gitelson and Merzlyak, 1994;
Ferrante et al., 2004). Fig. 1a shows lowest reflectance values in the
region from 650 to 670 nm for samples at Day0, which means that the
leaves possess significant chlorophyll content which with the passage of
storage time decreased resulting in higher reflectance (low absorption)
values at the end of storage period. This transition from the green to
yellow color as a result of chlorophyll breakdown, associated to se-
nescence, results in increased reflectance values.

Fig. 4. Changes in the appearance scores of fresh rocket leaves stored at 5 °C (green), 10 °C (blue) and 15 °C (red) over time. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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From Fig. 4 it can be observed that leaves stored at 15 °C showed the
highest degradation, followed by samples at 10 °C and 5 °C.

Fig. 5 represents the variability of the PC Scores in the leaves stored
at 5, 10 and 15 °C. As can be seen, the color changes in each row (each
acquisition time) at 5 °C are not visually different, but in case of 10 and
15 °C higher changes can be observed. As for 10 °C, starting from the

3rd row corresponding to the 6th day of storage, slight changes in the
score colors can be observed. In case of 15 °C, the leaves in row 3 are
clearly showing a significant variation of the score values when com-
pared to those at 5 °C and 10 °C. This is totally comparable to the PCA
results of the spectra in Fig. 3b where the score sample plot depicts
maximum score changes at 15 °C. So Fig. 5 is an image visualization of

Fig. 5. Variability in PC1 scores at various storage intervals a) 5 °C b) 10 °C c)15 °C in a wavelength range of 400–800 nm.
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the trend of the score changes, obtained using randomly chosen leaves
which has been expressed in Fig. 3b for the samples stored at the three
temperatures. The differences in Fig. 5a, b and 5c can be directly re-
lated to the quality of the leaves. While Fig. 3b shows a plot of the

samples against the time related PC1, Fig. 5 shows the relative maps of
the leaves stored at all the three different temperatures over a time span
of 10 storage days. The PC1 score values correspond to the color
changes in the leaves from dark green to yellow over the storage period,

Table 1
First order kinetic parameters of PC1 scores as a function of time for fresh rocket leaf samples stored at 5, 10 and 15 °C using equation A=A0*e(-kt).

Wavelength Range 400–800 nm

Temperature Estimate Std. error t-value p-level Conf limits R2

5 °C A0 3.849 0.030 126.570 0.000001 3.753–3.947 0.73
km 0.008 0.004 1.825 0.16 −0.006–0.022

10 °C A0 3.831 0.043 87.299 0.000003 3.692–3.971 0.94
km 0.033 0.006 4.870 0.01 0.011–0.055

15 °C A0 3.776 0.071 52.478 0.00001 3.547–4.005 0.95
km 0.058 0.011 5.276 0.01 0.023–0.094

Table 2
Estimated parameters of the Arrhenius models describing the temperature dependence of the multivariate degradation rates, km, of PC1 score kinetics for fresh rocket
leaf samples stored at 0, 10 and 15 °C.

Wavelength range (400–1000 nm)

PC# Variance explained (%) Pretreatment Storage Temperature (°C) Multivariate rate constant (km) Acceleration factor (αm) Activation Energy (Ea)

1st 88.92 Mean Centering 05 0.0024 … 120.91
10 0.0085 3.54
15 0.0147 6.13

Wavelength range (400–800 nm)

PC# Variance explained (%) Pretreatment Storage Temperature (°C) Multivariate rate constant (km) Acceleration factor (αm) Activation Energy (Ea)

1st 96.37 Mean Centering 05 0.0022 … 124.88
10 0.0082 3.73
15 0.0143 6.5

Fig. 6. PC1 scores as a function of time for rocket leaves stored at 5 °C (green), 10 °C (blue) and 15 °C (red). Red full-line represent the shelf-life cut-off value. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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which can also be depicted in the PC scores plot along the PC1 axis in
Fig. 3a. According to Fig. 3b all the samples at Day1 of storage have the
same score values hence they possess the same freshness and green
color as can also be observed for the samples of Day1 for all samples in
Fig. 5. Since the degradation rate at different temperatures is different,
clear quality changes (transition from dark green towards yellowish
color) were observed for the samples stored at 10 °C and 15 °C after 6
days of storage, especially for the samples stored at 15 °C.

3.2. Multivariate modeling and shelf life estimation

Table 1 shows the results obtained by applying non-linear fitting to
PC1 scores against time; based on R2 values, results of first order fitting,
particularly when a pre exponential factor was also included in the
equation, were better than those of the zero order reactions. First order
kinetics explained the PC1 score changes with time with an R2 of 0.73 at
5, 0.94 at 10, and 0.95 at 15 °C for the variables in the range of
400–800 nm. The reason for this low value of R2 in case of 5 °C can be
attributed to the fact that the degradation rate at this temperature was
slower as compared to 10 and 15 °C. A0 refers to the pre exponential
factor, and was estimated in similar values among different tempera-
tures, being 3.849, 3.831 and 3.776, respectively at 5, 10 and 15 °C.

Looking also at the confidence values for A0 values, it can be con-
cluded that all the samples had the same quality attributes upon the
beginning of the shelf life estimation and that the variance of overall
quality of the fresh samples did not affect the degradation kinetics. On
the other hand, a progressive increase in the value of the multivariate
rate constants is seen with the increasing temperature which at 5 °C
increased with a value of 0.008d−1, at 10 °C with a value of 0.033d−1

and at 15 °C it increased with a value of 0.058d−1. From the confidence
intervals, a significant difference can be observed between samples
stored at 5 and 15 °C, with an increase of ∼7.2 fold in the degradation
rate of the appearance scores. Derossi et al., 2016 found higher multi-
variate rate constants with values increasing with the increasing tem-
perature for fresh-cut lettuce stored in MAP at 0, 5 and 15 °C, but this
may be explained with the higher sensitivity of lettuce to browning and
quality degradation due to mechanical damages induced with the cut-
ting (Murata et al., 2004) and to the effect of modified atmosphere
which at higher temperature may result in improper gas composition
and in off-flavor development (Mastrandrea et al., 2017). On the other
side, observed values for km at 5 and 15 °C were very similar to the

value obtained by Amodio et al. (2015b) when fitting color score ki-
netic, evaluated sensorially, with the same scale system from 5 to 1.
These authors reported values of 0.019 and 0.047, at 5 and 15 °C, re-
spectively, fitting the kinetic curve with a Weibull model. Considering
that shape factor values were not very different from 1 (1.34), a rough
comparison of the constant can be done, and thus it can be hypothe-
sized that observed variations were closely related to the color changes.
The decrease in the values of the PC scores with the passage of storage
time in the wavelength range of 400–800 nm is indicative of the tran-
sition from green color to yellowish as a result of the loss of chlorophyll
which at 15 °C was the highest (Fig. 5c) followed by 10 °C (Fig. 5b) and
5°C (Fig. 5a) and color changes can only be observed in the region from
550 to 700 nm.

The multivariate kinetic parameters (km, αm, Ea) calculated using PC
scores as properties after various data pretreatments and utilizing two
different spectral ranges, are shown in Table 2. These kinetic para-
meters were obtained after the exponential fitting of the time related PC
scores with time of storage using equation A=A0*e(-kt).

From Table 2 it can be seen that the dependence of the rate constant
(km) on the temperature of storage is clearer in case of mean centered
data both for the 121 variables used (400–1000 nm) and 81 variables
(400–800 nm) after the spectral cropping. Other data pre-treatments
were applied, but a clear difference between the rate constants could
not be observed in those cases, since, by extensively preprocessing the
data, the baseline effects related to the product degradation cannot be
observed (Pedro and Ferreira, 2009), therefore the spectral data were
only normalized.

In case of the full wavelength range, the rate constant changed from
0.0024d−1 to 0.0085d−1 and 0.0147d−1, respectively for 5, 10, and
15 °C, depicting the change in the rate constants with respect to tem-
perature. Similarly, after the omission of the undesired variables, the
variance explained by PC1 increased but still there was not a significant
difference between the rate constant and acceleration factor values
from those of the total 121 variables under study. The activation energy
calculated for 121 variables was 120.91 kJ/mol whereas for 81 selected
variables it was 124.88 kJ/mol. Also in this case the comparison with
value found by Derossi et al. (2016) for fresh-cut lettuces, confirmed
that degradation reactions in rocket leaves were much slower than for
fresh-cut lettuce, requiring much higher Ea.

In Fig. 6, PC1 scores for each temperature were plotted against time
in order to estimate the shelf-life. The cut off criterion was calculated

Fig. 7. PLS regression model for prediction of days of storage in the wavelength range of 400–800 nm; Day0 (red), Day3 (green), Day6 (blue), Day8 (light blue), Day
10 (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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based on the number of days needed to reach score 3, corresponding to
the marketability limit, applied to the kinetic at 15 °C. This is in line
with the MASLT theory of using the maximum acceptable values among
shelf-life limit of considered attributes. The spectrum of the un-
acceptable sample as vector xa and the loadings of the time related PC
were taken and using equation (4) the cutoff criteria was calculated to
be 3.955. These appearance score values were in agreement with the
studies conducted by Amodio et al. (2015b) and Mastrandrea et al.,
2017 in which the rocket leaves reached the limit of marketability

(appearance score 3) on the third day of storage when stored at 15 °C.
Estimated values of shelf life were similar to those reported by

Amodio et al. (2015b) and were lower when compared to values re-
ported by Koukounaras et al. (2007), but this can be due to the dif-
ference in raw material, possibly related with the cultivar, the season,
and the number of cutting (Seefeldt et al., 2012; Koukounaras et al.,
2007; Martínez-sánchez et al., 2008). Moreover this study was con-
ducted in humidified air flow storage of the leaves and the same leaves
were followed over time, being more prone to mechanical damage

Fig. 8. LV plots in the wavelength range of 400–800 nm; a) LV1 vs LV2 score variability for days of storage (0, 3, 6, 8, 10); b) LV loadings LV1 (red) LV2 (blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 3
First order kinetic parameters of LV1 scores as a function of time for fresh rocket leaf samples stored at 5, 10 and 15 °C using equation A=A0*e(-kt).

Wavelength range (400–800 nm)

Temperature Estimate Std. error t-value p-level Conf. limits R2

5 A0 3.849 0.029 128.814 0.000001 3.754–3.944 0.74
km 0.008 0.004 1.919 0.15 −0.005–0.021

10 A0 3.831 0.044 86.470 0.000003 3.689–3.972 0.94
km 0.033 0.006 4.842 0.01 0.011–0.054

15 A0 3.775 0.072 51.784 0.00001 3.543–4.007 0.95
km 0.058 0.011 5.218 0.01 0.023–0.095
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during image acquisitions.
Generally shelf-life of wild rocket leaves stored at 0 °C was extended

to about 3 days if compared to storage at 4 °C and 6 days compared to
storage at 7 °C (Hall et al., 2013). Amodio et al. (2015b) reported value
of 7.3, 5.8 and 3.7 days for samples stored at 0, 5 and 15 °C, respec-
tively, when appearance score was used as marketability limit. In the
same study, the shelf life was of 12.6, 10.4 and 3.1 when calculated on
texture score, and even higher if calculated on the ascorbic acid losses.
The authors, showed, in fact that appearance score was the limiting
factor for shelf life at 0 and 5 °C, but that at 15 °C, ascorbic acid content,
followed by the texture, were more critically contributing to the mar-
ketability, because the degradation rates of these attributes increased
with temperature more than the appearance and off-odor. These find-
ings confirm the needing of a multivariate approach for shelf-life esti-
mation. When MALST method was applied on fresh-cut lettuce, it was
found that the degradation of samples stored at 15 °C was mainly at-
tributed to the off-odor rather than to the appearance score and color
score, which, on the other hand, were the most determinant for samples
stored at 0 and 5 °C, respectively (Derossi et al., 2016).

3.3. PLSR for the estimation of days of storage and shelf life

This method is a slight modification of the MASLT approach. In this
case instead of doing a PCA, a PLS model was developed for the pre-
diction of days of storage from the spectra acquired during the storage
period at all three storage temperatures. The spectra were mean cen-
tered and PLS regression model for days of storage in the full wave-
length range resulted in an Rcal

2 of 0.86 and Rcv
2 of 0.83 with the RMSC of

1.32 and RMSECV of 1.48. The first latent variable (LV) accounted for
88.82% of the covariance and the second LV described 8.31% of the
covariance in the data. Variables having minimal or negligible weight
in the PLS model as shown in the loading plots were removed, resulting
also in this case, in the elimination of the variables from 800 to
1000 nm. PLS regression model for prediction of days of storage was
developed again with 81 variables from 400 to 800 nm after data
normalization (Fig. 7).

LV1 explained 96.25% of the covariance, whereas LV2 only ac-
counted for 2.69% of the covariance in the data. The plot of LV1 versus
LV2 shows the variability of the LV scores along the LV1 axis (Fig. 8a).
The cause of this variability can be found in the differences of the Y
values due to the different storage temperatures. Fig. 8b depicts the
loadings of LV1 and LV2.

Fig. 9. LV1 scores as a function of time Fig. 6. PC1 scores a for rocket leaves stored at 5 °C (green), 10 °C (blue) and 15 °C (red). Red full-line represent the shelf-life
cut-off value. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Estimated parameters of the Arrhenius models describing the temperature dependence of the multivariate degradation rates, km, of LV1 score kinetics for fresh rocket
leaf samples stored at 0, 10 and 15 °C.

Wavelength range (400–800 nm)

LV# Co-variance explained (%) Pretreatment Storage Temperature (°C) Multivariate rate constant (km) Acceleration factor (αm) Activation Energy (Ea)

1st 96.25 Mean Centering 05 0.0023 … 121.95
10 0.0082 3.57
15 0.0143 6.22
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Compared to the PCA in Fig. 3a a similar dependence of LV values
with time of storage can be observed; the changes in the spectral
properties are evident in this case as well. For this reason, this can also
be considered as a new MASLT approach and its results can be com-
pared to the conventional MASLT based on PCA. As expected, LV1 was
found to be time related and the loadings of LV1 and PC1 possessed
negligible difference. Both the LV1 and PC1 loading profiles hold si-
milarity with the mean centered spectral profiles, hence explaining
maximum covariance and variance, respectively.

If compared to Table 1, the results obtained by applying non-linear
fitting to the LV1 against time using the first order kinetics are not
significantly different as the PC scores approach in the conventional
MASLT studies (see Table 3). LV1 score changes with time resulted in
an R2 of 0.74 at 5 °C, slightly higher than the R2 obtained in the case of
PC scores at the same storage temperature, 0.94 at 10 °C and 0.95 at
15 °C, similar to those of the PC approach. The A0 values for all three
temperatures is almost similar in this case and negligibly different from
those of the PC scores for each storage temperature. Moreover, the
multivariate rate constant values are exactly the same in both cases,
with the increasing temperature which at 5 °C was 0.008d−1, at 10 °C
was 0.033d−1 and at 15 °C was 0.058d−1. If compared to the A0 values
in Table 1 it can be seen that the results of the PLS regression coupled
with the MASLT analysis are the same as the conventional MASLT ap-
proach. Also in this case the negligible differences in the A0 values
signify that the leaves in the start of the analysis had the same quality
attributes which deteriorated with the passage of time at different rates
stored at different temperatures.

The kinetic charts were developed for the LV scores at each storage
temperature against the days of storage (Fig. 9).

If compared to Fig. 6, in which the PC1 scores were plotted as a
function of time, it can be observed that the results are not very dif-
ferent. Equation (4) was used for the calculation of cutoff criteria using
the unacceptable spectrum and the loadings matrix of the time related
LVs, and this cutoff criteria possessed negligible difference from that of
the PC scores approach. The estimate of shelf life in this case for sam-
ples stored at all three temperatures had minute differences but was
slightly better if compared to the PCA, since values of 3.3, 4.5 and 9.4
days were closer to the experimental values at 5, 10 and 15 °C, obtained
with sensory evaluation.

Comparing Figs. 6 and 9, as well as Table 4 and Table 2, it is clear
that LV can be used as an alternative approach for the shelf life esti-
mation in the MASLT method since the differences in the values of the
rate constants, of the activation energy, as well as of shelf-life estima-
tion are not different. The advantage of using this approach instead of
using a PCA is that it would be much more flexible for further valida-
tion experiments. In fact, while PCA distribution of variables may be
more sensitive to other sources of variation, a PLS prediction model
based on days of storage will be more robust since PLS takes into
consideration the covariance between the spectral profiles and the
predictor values. Hence, the co-variability of the spectra with respect to
days of storage are more accurately represented by PLS. This will fa-
cilitate the comparison of data obtained with new samples, just by
plotting them versus the regression line plot, without the need of re-
running a PCA every time, and also the adding of new calibration data
into the model.

4. Conclusions

For the first time a multivariate approach using the spectral fin-
gerprints for the estimation of the shelf life of fresh cut rockets was
used. The changes in the spectra with the passage of storage time for the
samples stored at three different temperatures served as the property
under study. Comparing the MASLT approach with the conventional
ASLT methods the use of PCA yielded valuable information regarding
the variables contributing towards the weight in the model and ac-
counting for the quality losses of the product. It was highlighted that

the wavelength range of 550–700 nm held great significance while es-
timating shelf life based on appearance scores. The conventional
MASLT approach using the PC scores was also compared with a new
method using PLS and LV for the development of the kinetic or shelf life
charts. Comparing both the approaches it was concluded that no sig-
nificant difference exist between the results yielded by both the tech-
niques. On the other side, the PLS model can be more robust as com-
pared to a PCA model with the allowance of new samples to be added in
the calibration and can serve as a tool for better validation. MASLT
approach with PLS, if implemented ocan enable the processors to better
estimate the shelf life of their products and access the market with
better product quality by improving the logistics.
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