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A B S T R A C T

The main cultivation area of the Italian processing tomato is the Southern Capitanata plain. Here, the hardest
agronomic challenge is the optimization of the irrigation water use, which is often inefficiently performed by
farmers, who tend to over-irrigate. This could become unsustainable in the next years, given the negative im-
pacts of climatic changes on groundwater availability and heat stress intensification. The aim of the study was to
identify the most promising agronomic strategies to optimize tomato yield and water use in Capitanata, through
a modeling study relying on an extensive dataset for model calibration and evaluation (22 data sets in
2005–2018). The TOMGRO simulation model was adapted to open-field growing conditions and was coupled
with a soil model to reproduce the impact of water stress on yield and fruit quality. The new model,
TomGro_field, was applied on the tomato cultivation area in Capitanata at 5×5 km spatial resolution using an
ensemble of future climatic scenarios, resulting from the combination of four General Circulation Models, two
extreme Representative Concentration Pathways and five 10-years time frames (2030–2070). Our results showed
an overall negative impact of climate change on tomato yields (average decrease=5–10%), which could be
reversed by i) the implementation of deficit irrigation strategies based on the restitution of 60–70% of the crop
evapotranspiration, ii) the adoption of varieties with longer cycle and iii) the anticipation of 1–2 weeks in
transplanting dates. The corresponding irrigation amounts applied are around 360mm, thus reinforcing that a
rational water management could be realized. Our study provides agronomic indications to tomato growers and
lays the basis for a bio-economic analysis to support policy makers in charge of promoting the sustainability of
the tomato growing systems.

1. Introduction

The global production of fresh and processing tomatoes increased
by 300% during the last four decades (Costa and Heuvelink, 2007),
reaching around 160 million tons in 2017 (Pathak and Stoddard, 2018).
Italy, alongside China, India, Turkey and US, ranks among the top
world tomato producers, and is the first producing country in Europe.
The Italian tomato production accounts for nearly 6million tons and is
mostly concentrated in the Capitanata plain (Southern Italy), which
alone has contributed to 33% of the total national amount in 2018
(ISTAT, 2018). In the last decade, the tomato production in Capitanata
is facing many criticalities including workers exploitation and social
unrests (Scotto, 2016), economic issues for tomato producers due to
legislation changes (Giannoccaro et al., 2011) and environmental

problems connected to the effects of the ongoing climatic changes
(Ventrella et al., 2012), which are expected to be even larger in the
upcoming years (Darand and Mansouri Daneshvar, 2015).

Tomato growing systems are highly intensive in this area, with a
massive application of irrigation water (400–600mm) and chemical
inputs for fertilization and crop protection, with fresh fruits yields
ranging between 80 and 160 t ha−1 (Rinaldi et al., 2011). The growing
season spans between May and August and is characterized by scarce
precipitations (average of 180mm in 1981–2010) and temperatures
often exceeding 40 °C, thus exposing the tomato plant to frequent heat
and water stress during key phenological phases (Giuliani et al., 2019).
Recent studies evidenced that the future climatic scenarios in semi-arid
Mediterranean areas will be even more critical for crops, given the
increase in the frequency and intensity of heat waves and the significant

https://doi.org/10.1016/j.eja.2019.125937
Received 8 June 2019; Received in revised form 14 August 2019; Accepted 27 August 2019

⁎ Corresponding author.
E-mail address: simoneugomaria.bregaglio@crea.gov.it (S. Bregaglio).

European Journal of Agronomy 111 (2019) 125937

1161-0301/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/11610301
https://www.elsevier.com/locate/eja
https://doi.org/10.1016/j.eja.2019.125937
https://doi.org/10.1016/j.eja.2019.125937
mailto:simoneugomaria.bregaglio@crea.gov.it
https://doi.org/10.1016/j.eja.2019.125937
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eja.2019.125937&domain=pdf


rainfall decrease in summer (IPCC, 2007; Giorgi and Lionello, 2008;
Vitale et al., 2010; Rubino et al., 2012). The large demand for irrigation
water as well as the expected restriction of groundwater availability
will force tomato growers to better rationalize the water use to sustain
tomato yields and quality (Costa et al., 2007; Giuliani et al., 2017).

The common irrigation scheduling in current tomato growing sys-
tems comprises of fixed intervals between irrigation supplies without
considering the actual crop water demand (Rinaldi et al., 2011), leading
to over-irrigation and poor water use efficiency (Giuliani et al., 2016).
The adoption of deficit irrigation (DI), which aims at optimizing the
crop water productivity by limiting the water supply to a fraction of
plant evapotranspiration (Zhang and Oweis, 1999; Geerts and Raes,
2009) could bring environmental and economic benefits. DI regimes
indeed deliberately allow tomato crop sustaining some degree of water
deficit, thus accepting small yield loss with an increase of fruits quality
(Nuruddin et al., 2003) and a significant reduction in irrigation water
use (Cantore et al., 2016).

The use of crop modeling to identify effective farmer strategies to
counteract adverse future climatic conditions has become a standard in
climate change impact assessments (Challinor et al., 2013; Asseng et al.,
2015). This research area requires the integration of local-based
knowledge into a modeling framework which proved to be capable to
reproduce the real cropping systems, and the effects of alternative
agricultural management strategies (Beveridge et al., 2018). In the last
years, many research studies have tested and promoted DI strategies on
tomato in open field conditions (Costa et al., 2007; Cantore et al., 2016;
Giuliani et al., 2017), and have simulated the future trends of tomato
production and water use under climate change scenarios (Ventrella
et al., 2017).

In this study we calibrated and evaluated a new tomato simulation
model using an extensive dataset of experiments carried out in open
field conditions. We applied it in current and future climatic scenarios
in order to evaluate for the first time the performances of tomato sys-
tems, testing the factorial combination of site-specific farming strate-
gies. Thus, the aim of the present study is the identification of ready-to-
use agronomic indications leading to the best trade-off in tomato yield,
quality and water use, considering the DI strategy, the cycle length and
the transplanting date.

2. Material and methods

2.1. Experimental trials for model calibration and evaluation

The field trials used for model calibration were carried out in 2017
and 2018 in Capitanata (41°46′N, 15°54′E, 74m above the sea level).
Processing tomato plants (Solanum lycopersicum L.) of cv. Ulisse F1 (S&G
Syngenta Seeds S.p.A., Switzerland), characterized by elongated fruits,
were hand-planted on May 3 (2017) and on April 27 (2018) in coupled
rows spaced at 1.8 m, with plant density of 2.8 plants m−2 (0.50m
between rows, 0.40m on the row). Four DI regimes were applied: DI100,
full irrigation, restoring 100% of the crop maximum evapotranspiration
(ETc); ii) DI75, restoring 75% of ETc; DI75/50, restoring 75% of ETc from
transplanting to fruits breaking colours of the first truss, and 50% of ETc
from fruits breaking colours of the first truss to harvest; DI0, irrigation
only at transplanting and during fertigation. The cloud-based decision
support system Bluleaf™ (Sysman Progetti e Servizi Srl, Rome, Italy),
was used to estimate the amount of water supply of each irrigation
event. This system is based on the data collected by wireless sensors
(AgriSense™, Netsens, Florence, Italy) for real-time acquisition of
weather and soil moisture data at 0.3 m and 0.6 m depth, which are
used to compute daily ETc. Daily reference evapotranspiration (ETo)
was calculated using the Penman-Monteith equation (Allen et al.,
1989), and the crop coefficient (Kc) values were derived in an en-
vironment similar to our experimental site (Tarantino and Onofri,
1991). ETc was estimated as ETo×Kc, following the FAO two-steps
procedure (Allen et al., 1989). A drip irrigation system was used,

composed by a single plastic pipe arranged in the middle of each paired
row, with flow rate of 2 l h–1 and drippers spaced every 0.4m. The
amount of water supplied in each irrigation event was measured by
flow meters placed on the main irrigation lines of the experimental
fields (Table 1).

The trials were arranged in a randomized block experimental design
with four replicates, with each plot covering 30m2. The phenological
stages of post-transplanting (S0), vegetative growth (S1), beginning of
flowering (S2), fruit setting (S3) and fruit ripening (S4) have been re-
corded. In each growing season, nine destructive measurements of
aerial plant organs biomass and leaf area index (LAI) were carried out
on three plants per plot. At each sampling, the tomato plants were di-
vided into leaves, stems and, when present, fruits. LAI was calculated as
the ratio of total leaf area (m2) per unit of ground area (m2) using a leaf
area meter (LI-3000, with conveyor belt assembly, LI-3050; Li-Cor, inc.,
Lincoln, NE, USA). Aerial plant biomass was expressed as plant dry
mass obtained by oven-drying all the plant material at 70 °C until
constant weight. The crop was hand-harvested when the rate of ripe
fruits reached approximately 95%, on August 2 in 2017 and on July 30
in 2018. The fresh fruits yield was measured on six plants per plot, and
the total soluble solids content (Degrees Brix, DB, °Brix) was assessed on
10 fruits plot−1. DB was chosen as the main indicator of tomato quality,
as it is highly correlated with the sweetness and maturity degree (Cahn
et al., 2001), and directly affects fruit acceptability to buyers and
consumers (i.e., the higher the DB, the better the fruit quality). The
fertilization practices and the pest and weed control replicated farmers’
management practices typical of the area, aiming at growing the crop
without any abiotic and biotic stress. Daily values of rainfall (mm),
maximum and minimum air temperature (°C), relative air humidity (%)
and average wind speed (m s-1) were recorded by a weather station
placed close to the experimental fields (Appendix A). An independent
model evaluation was performed using reference data collected on
comparable experimental field trials (2005–2016) performed with the
tomato cv. Ulisse in Capitanata. These experiments were arranged to
test the efficacy of DI regimes, with the measurement of fruit yield (t ha-
1) and DB at harvest (Table 2).

2.2. Adaptation of the TOMGRO greenhouse model to open field conditions

The object-oriented version of the process-based greenhouse tomato
model TOMGRO (Jones, 1991) developed by Louski et al. (2013) was
adapted to reproduce open field conditions to give a new tomato si-
mulation model (TomGro_field). TOMGRO simulates the main pro-
cesses associated with tomato growth and development as driven by air
temperature, solar radiation and CO2 concentration, providing a dy-
namic and deterministic simulation of the number and dry matter of
stems, leaves and fruits. Seven main state variables are organized in
vectors, whose size depends on the number of classes of physiological
age, which was set to 10 in this study; the state variables are the
numbers and dry weight of leaves, stems and fruits, and the leaves area.

Table 1
Irrigation volumes, precipitation and total water received by tomato plants over
the two growing seasons. DIx=deficit irrigation restoring the x percentage of
crop evapotranspiration. Please see main text for full explanation.

Year Irrigation regime Irrigation
volume

Precipitation Total water

mm mm mm
2017 DI100 358 268 626

DI75 276 544
DI75/50 240 508
DI0 45 313

2018 DI100 310 212 522
DI75 238 450
DI75/50 199 411
DI0 35 247
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The increase in the number of plant organs depends on the physiolo-
gical development from one age class to the next and is driven by
hourly temperature and CO2 levels. The model simulates positive
carbon fixation when the production rate of assimilates (source
strength) overcomes the consumption rate (sink strength). The carbon
sink strength of the tomato plant is computed summing the sink
strengths of leaves, stems and fruits, which are based on their potential
increase in dry weight (Jones, 1991). The photosynthetic process is

simulated as net carbon assimilation, with hourly gross photosynthetic
rate computed according to Acock et al. (1978), reduced by main-
tenance respiration losses (based on parameter Q10 and plant organs
requirements) and growth respiration costs (fixed coefficient). The re-
lative sink/source ratio also regulates the partitioning of dry matter into
the different plant organs, with actual growth rates of leaves, stems and
fruits obtained from their potential carbon demand. The full algo-
rithmic description of TOMGRO is provided in the seminal paper,
whereas the schematic description of the processes implemented in
TomGro_field is presented in Fig. 1, which emphasise the modifications
with respect to the original model. TomGro_field was implemented in
the BioMA framework (Donatelli et al., 2014) as an independent soft-
ware component and is available from the authors upon reasonable
request.

The main modifications in TomGro_field addressed i) the re-
production of tomato phenological phases in open field growing con-
ditions, i.e., post-transplanting (S0), vegetative growth (S1), beginning
of flowering (S2), fruit setting (S3) and fruit ripening (S4), using
thermal time accumulation according to the review by Boote et al.
(2012); ii) the simulation of leaves senescence, and the coupling of the
plant model with a tipping-bucket model reproducing the dynamic of
soil water availability and its impact on tomato growth, which were
borrowed by CropSyst (Stockle et al., 1999); iii) the replacement of the
table coefficients correlating state variables and parameter values with
new functions driven by few parameters (Appendix B), following the
approach developed by Stella et al. (2014); iv) the simulation of DB as a
function of soil water availability and crop transpiration, with an im-
pact on the qualitative aspects of tomato production (Cahn et al., 2001).
DB (°Brix, Eq. (1)) has been simulated depending on the cumulated
actual transpiration (ATi, mm) in S3, modulated by the susceptibility to
water stress (fi, unitless, cultivar-specific) and by parameters related to
fruit development, growth and quality.

Table 2
Experimental field trials carried out in 2005–2016 used for independent model
evaluation, with deficit irrigation regime, volume, total solids soluble content
(DB) and fruit yield.

Year Deficit
Irrigation

Irrigation
volume

DB Yield

mm ° Brix t ha−1

2005 DI100 503 5.0 84.54
DI75 382 5.2 85.84
DI75/100/75 440 5.3 91.34
DI50/75/50 331 5.0 79.92
DI50 272 5.8 70.44

2006 DI100 477 4.7 97.15
DI75 365 4.9 78.26
DI75/100/75 420 5.0 73.46
DI50/75/50 311 5.4 83.97
DI50 250 4.8 67.15

2012 DI100 565 5.1 94.97
DI75 375 5.1 60.88

2013 DI100 516 5.1 97.44
DI75 391 6.3 66.65
DI50 208 6.3 51.27
DI0 40 7.7 28.24

2015 DI100 459 5.3 134.14
DI75 360 5.7 105.52

2016 DI100 396 4.7 125.74
DI75 304 5.4 111.58

Fig. 1. Relational diagram of the TomGro_field model: air temperature, potential evapotranspiration (ET0), precipitation, irrigation, radiation and CO2 are driving
variables. Rectangles denote system state variables, valve symbols denote rate variables and ovals denote intermediate or auxiliary variables. Solid lines denote flows
of matter while broken lines are flows of information. The light blue color indicates the modifications to the original model. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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where DBmax (°Brix) is the maximum DB, SDfruitset (days) is the number
of days at which water stress sensitivity is halved; FNnode (unitless) and
TDfruitset (thermal days) are the initial fruit number per node and the
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were derived by a logistic function driven by the number of days after
fruit setting (DAFi), and progressively decrease from 1 (maximum
sensitivity) to 0 (no effect) as the fruit setting progresses.
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2.3. Simulation experiment design

2.3.1. Model calibration and evaluation
TomGro_field was calibrated using the data collected in 2017 and

2018 experiments, before its independent evaluation using the histor-
ical field trials. The thermal time corresponding to the length of phe-
nological phases were firstly calibrated according to field observations,
following the standard methodology in crop modeling (Seidel et al.,
2018; Leolini et al., 2018). Then, the parameters related to growth
processes were adjusted: 11 parameters were measured in the field
trials, 63 were fixed according to literature and 8 parameters were
calibrated using the multi-start downhill simplex algorithm (Nelder and
Mead, 1965; Acutis and Confalonieri, 2006). This automatic optimiza-
tion method creates a simplex, which is a geometrical figure with N+1
vertexes, with N as the number of parameters under evaluation. After
each model run, the objective function is evaluated, and the model
error is progressively minimized until the difference between con-
secutive runs drops below a tolerance range. The average relative root
mean square error (RRMSE, minimum and optimum=0%; max-
imum=+∞, Jørgensen et al., 1986) in reproducing the dynamics of
LAI, fresh fruits weight and dry weight of the plant organs was chosen
as the objective function. We used 10 simplexes at each optimization
run and 1000 iterations, with 0.001 as tolerance range. The DB model
was calibrated on the whole experimental dataset using the Excel
evolutionary solver and the modeling efficiency (EF, minimum=−∞,
maximum and optimum=1, Nash and Sutcliffe, 1970) as objective
function, and then evaluated via leave-one-out cross validation
(LOOCV) according to Cappelli et al. (2018). The model performances
in calibration and evaluation were quantified with standard metrics in
crop modeling studies, i.e., EF, RRMSE and mean absolute error (MAE,
minimum and optimum=0, maximum = + ∞, Schaeffer, 1980).
Table C.1 (Appendix C) reports the values of the parameters, the lit-
erature sources and the ranges used for phenology, growth and fruit
quality calibration. The model capability in reproducing the current
tomato production levels in the area was further evaluated through
spatially distributed simulations on the whole Capitanata plain (Ap-
pendix D, Fig. D.1), using a 5×5 km resolution in the period
1981–2010 (152 grid cells, Fig. 2).

2.3.2. Generation of baseline and future weather scenarios
Current climatic conditions in Capitanata (baseline scenario) were

derived from daily weather series of temperature and rainfall in the
period 1981–2010, which were available at 10×10 km spatial resolu-
tion (Appendix E, Fig. E.1). The available variables were the maximum
and minimum air temperature (° C), precipitation (mm d−1), global
solar radiation (MJm−2 d−1), average wind speed (m s−1) and eva-
potranspiration (mm d−1). Hourly values of weather variables needed
as input by TomGro_field were generated using the CLIMA components
(Donatelli et al., 2005). The water content at saturation, the field ca-
pacity and the wilting point, were derived at 5×5 km resolution from
soil texture and organic matter data (L’Abate et al., 2019) via pedo-

transfer functions (Saxton et al., 1986). Cartographic information re-
lated to orography and elevation in the region (http://www.sit.pu-
glia.it/) were used to select the tomato harvested areas in Capitanata,
setting 200m a.s.l. as the upper-limit threshold. The soil and weather
data were assigned to each grid cell using the geographic coordinates of
centroids (Fig. 2) with QGIS software (v. 3.6.3. https://qgis.org/it/site/
).

We used the CLIMAK weather generator (Danuso, 2002) to re-
produce 30-years (1981–2010) of synthetic baseline weather series
(Appendix E, Fig. E.1), and to generate future climatic scenarios (AR5,
IPCC, 2013; Appendix E, Fig. E.2 and E3). The future scenarios corre-
sponded to plausible impacts of the changes in atmospheric composi-
tion (IPCC, 2013) and referred to four General Circulation Models
(GCMs) realizations of two CO2 Representative Concentration Pathways
in five 10-years time frames, centered on 2030–2070. The GCMs were
selected according to Bregaglio et al. (2017) among the ones included
in the Coupled Model Intercomparison Project (CMIP5, http://cmip-
pcmdi.llnl.gov/cmip5/): the Norwegian Earth System Model (NOResm,
Tjiputra et al., 2013), the Model for Interdisciplinary Research on Cli-
mate (MIROC-ESM, Watanabe et al., 2011), the Hadley Centre Global
Environmental Model version 2 (HadGEM2-ES, Collins et al., 2011),
and the GCM developed by the Goddard Institute for Space Studies
(GISS-ES, Schmidt et al., 2006). The two extremes RCPs proposed by
IPCC were used, 2.6Wm−2 and 8.5Wm−2, to account for the max-
imum variability in radiative increase and CO2 concentration (420
versus 936 cm3 m−3 in 2100). The workflow to generate the future
weather scenarios started with the computation of the monthly average
anomalies (difference between the future and the present value of the
variables; Déqué et al., 2007) of temperature and precipitation for each
time frame corresponding to GCM×RCP combinations (Program for
Climate Model Diagnosis and Intercomparison data portal (https://
pcmdi.llnl.gov/search/cmip5/). These data were used as input to
CLIMAK, which generated 20-years series for each of the 152 grid cells
in Capitanata, considering the combination of 5 time frames
(2030–2070), 4 GCM (NOResm, MIROC-ESM, HadGEM2-ES, GISS-ES)
and 2 RCP (2.6, 8.5) leading to a total of 3040 climatic series.

2.3.3. Climate change impact assessment with adaptation
Spatially distributed simulations were performed in Capitanata

using the baseline and future climatic data as input to TomGro_field.
The annual simulated value of fresh fruit yield and DB were analysed,
as well as their combination in a synthetic yield quality indicator of
tomato production (Yield Quality, YQ, t ha−1), based on local regula-
tions (Framework agreement between producers organizations
and processing industry, 2014, http://www.asipo.it/pdf/
Allegato_Parametri_Qualitativi_2014.pdf, Eq. (3)).

= <YQ
Y if DB
Y DB if DB
Y else

0.825 4.3
(0.25 0.25) 4.3 5.7
1.175

sim sim

sim sim sim

sim (3)

where Ysim (t ha−1) and DBsim (°Brix) represent the yield and DB si-
mulated at harvest. Water productivity (WP) was then computed con-
sidering the ratio between the total water applied to the crop (irrigation
and precipitation) and the YQ indicator (Molden, 2003; Geerts and
Raes, 2009). Four farmer adaptation strategies to climate change were
selected according to place-based knowledge, aiming at their feasible
implementation by tomato growers in Capitanata (Table 3). The stra-
tegies were: alternative DI regimes, the interval between two water
supplies, the cultivation of tomato varieties with different cycle length
and the shift in the transplanting dates.

Eleven DI strategies were tested, corresponding to a 10% increase of
ETc from rainfed (DI0) to full irrigation (DI100). The irrigation interval
was set to 6 days in baseline conditions according to literature and
experimental data, and ± 3 days were tested in future simulations. The
duration of the growing cycle of the cv. Ulisse was varied by ± 10%
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and ± 20% to evaluate its impacts on YQ and WP. The average
transplanting date was derived from the field trials (4 May) and was
changed by ± 1 and ± 2 weeks in the adaptation strategies. A
Principal Components Analysis (PCA) was performed to summarise the
performances of the simulated tomato growing systems under baseline

and climate change conditions, considering the factorial combination of
the adaptation strategies tested. We obtained Principal Components
(PCs) on centred and scaled quantitative variables, through diag-
onalisation of the correlation matrix and extraction of the associated
eigenvectors and eigenvalues. The variables ‘fruit fresh yield’, ‘YQ’,

Fig. 2. Characterization of tomato cropping systems in the Capitanata plain, and input information used to perform spatially distributed simulations. a) tomato
harvested area, b) soil texture in 0.5m soil depth (USDA - Soil Survey Division Staff, 1993), c) average daily temperature (°C) and d) average cumulated precipitation
(mm) during the cropping seasons (May-August) 1981–2010.

Table 3
Synopsis of the adaptation strategies to climate change scenarios in Capitanata tested in the simulations. The total number of combinations of adaptation
strategies in future simulation is 825. DI= deficit irrigation; ETc= actual evapotranspiration (mm); DOY=day of year; ref=reference management practice in
the study area.

DI regime (% ETc) Irrigation turn (days) Cycle length (days) Transplanting DOY

0, 10, 20, 6 (ref.) 93 (ref.) 124, May 4 (ref.)
30, 40,50, 9 (+ 3 days) 102 (+10%) 131, May 11 (+1 week)
60, 70, 80, 3 (- 3 days) 112 (+20%) 138, May 18 (+2 weeks)
90, 100 84 (−10%) 117, April 27 (−1 week)
(11 levels) 74 (−20%) 110, April 20 (−2 weeks)
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‘irrigation’, ‘total cycle length’, ‘brix’, and ‘water productivity’ were set
as active quantitative variables, i.e. used to compute PCs; the GCM,
RCP, time frame, irrigation interval, cycle length and DI strategy were
used as “supplementary” categorical variables, i.e. variables that were
not used in the computation of PCs, and their coordinates were calcu-
lated as the barycenter of the corresponding simulations in the Principal
Component space after the analysis. The FactoMineR R package was
adopted to perform the analysis (Lê et al., 2008). The biplot was drawn
using ggplot2 R Package (Wickham, 2009). A Hierarchical Clustering
on Principal Components (HCPC) was then performed to detect any
data structure and to characterize the impact of the adaptation strate-
gies. The analysis was performed using function HCPC() of the Facto-
MineR package. η^2 was calculated for the active quantitative variables
to measure the between-cluster variance associated with the extracted
clusters and explained by each variable. We then characterised the
Clusters with respect of quantitative and qualitative variables with a v-
test. For quantitative variables, the cluster mean for variable X (xq

¯
) was

tested under the null hypothesis that the distribution of X was the same
across Clusters (Eq. (4)).

=u
x x

( )

q

s
n

N n
N

¯ ¯

1q

q2

(4)

where nq is the number of simulations in cluster q, N the total number
of genotypes, s the global standard deviation. The value of u is then
compared to the corresponding quantile of the normal distribution;
therefore, an absolute value higher than 1.96 indicate p < 0.05 and
then a discriminating variable to describe the cluster; the sign indicates
the direction of the difference from the global mean. For qualitative
supplementary variables, the aim was to characterise the Clusters by
investigating the frequencies of categorical variables within each
cluster. A 2 test was at first performed between each categorical
variable and the cluster variable. Frequencies Nqj (number of in-
dividuals of the group q in the category level j) of each level of the
significant categorical variables were distributed as an hypergeometric
distribution with the parameters N n, ,j

n
N

q (where nj is the number of
individuals that have taken the category j). The p-values were calcu-
lated and then transformed to the correspondent value in quantile of
the Gaussian distribution with positive/negative sign indicating that
the frequency of the category within the examined cluster is sig-
nificantly higher/lower than the overall distribution. We performed
these analyses using catdes() function of FactoMineR R package under R
3.2.3 environment (R Core Team, 2017).

3. Results

3.1. Model adequacy in reproducing current tomato growing systems

3.1.1. Model calibration and evaluation
The simulated dynamics of fruits fresh weight (t ha−1), LAI

(m2m−2), dry weight of plant organs (gm−2) and soil water content
(m3m−3) in the field trials carried out on 2017–2018 are shown in
Fig. 3, along with measured field data and evaluation metrics computed
for each DI regime tested.

TomGro_field correctly reproduced the measured dynamics of the
plant variables considered in calibration under alternative DI regimes
(Fig. 3), with MAE for phenological phases ranging from 3 days (S4) to
12.4 days for flowering (S2). Measured and simulated dynamics of fresh
fruit weight within DI regime were similar in the two growing seasons,
with TomGro_field simulating a steeper increase and a higher yield in
2018 in rainfed condition (DI0), and an opposite situation under full
irrigation (DI100). The magnitude of increase in fresh fruits weight due
to DI regimes was matched by the simulations, with the ratio between
the average yields in DI0 (37.9%) and DI75 – DI75/50 (83.2%) with

respect to DI100 close to field measurements (36.7% and 80.9%, re-
spectively). The evaluation metrics confirmed the high accuracy of si-
mulations across DI regimes (EF > 0.93), with MAE always below
60 t ha−1 and RRMSE ranging from 21.4% (DI0) to 31.7% (DI75). Si-
mulated LAI was higher in 2018 in all treatments except in DI0 trials,
coherently with measurements. TomGro_field matched the measured
LAI dynamics, with a steeper increase in the post-transplanting phase
and a peak at the end of June, ranging from 1.38 –1.4m2m−2 in DI0 to
2.1–2.35m2m−2 in DI100, followed by a smooth decline due to leaves
senescence. The MAE was always lower than 0.26m2m−2, with posi-
tive EF values (0.63–0.84) and RRMSE ranging between 37% in DI75
and 64.5% in DI0. The model correctly simulated the increase in the dry
weight of leaves and stems during the growing season, with 2018
leading to almost double dry weight in DI100 than in 2017. Corre-
sponding model performances were positive, with RRMSE ranging be-
tween 25.7% in DI75 to 38.3% in DI0, EF in the range 0.9 (DI0) – 0.95
(DI75) and MAE below 30 gm−2. In spite of being excluded from cali-
bration, the simulation of soil water content confirmed the accuracy of
TomGro_field in reproducing the plant water uptake across DI regimes,
with very low RRMSE (always below 7%) and positive EF (> 0.64). The
model reproduced a steeper SWC decline in 2017 in DI0, as well as the
refilling of soil water content due to drip irrigation events occurred in
the other DI regimes. After calibration, TomGro_field was evaluated
using fresh fruit weight data collected in field experiments carried out
in 2004–2015 to test the impact of alternative DI regimes on tomato
production (Fig. 4). The model results in evaluation were positive, with
the only exception of 2015 where simulations showed a clear under-
estimation of fresh fruits weight in DI75 and DI100. In all the other years,
the model errors were lower, with RRMSE ranging from 6.7% in 2016
(DI75 and DI100) to 20.7% in 2013 (DI0, DI50, DI75 and DI100).

The accuracy in simulating phenological development and water
dynamics in the soil-plant system laid the foundation for an accurate
simulation of tomato fruit quality. The comparison between measured
and simulated DB is presented as scatterplots in the supplementary
material (Appendix F, Fig. F.1). TomGro_field succeeded in reproducing
DB at the end of the season, with slightly better results in calibration
(RRMSE=5.46%, MAE=0.24°Brix, EF=0.82 and R2=0.82) than in
evaluation (RRMSE=6.92%, MAE=0.29° Brix, EF=0.71 and
R2=0.72). Although the model accurately reproduced the response of
fruit quality to different DI regimes, a saturation effect was observed at
full irrigation regime (DI100), with an underestimation of DB in five
cases out of eight.

3.1.2. Model application in Capitanata area
The spatially distributed application of TomGro_field in the tomato

areas in Capitanata is presented in Fig. 5, using baseline conditions as
input. Simulations were performed using eleven DI regimes, ranging
from DI0 to DI100 using a 10% ETc interval. The same geographic area
was then adopted to perform the simulations under climate change
scenarios.

The simulated fruit yield under rainfed conditions reached peaks of
16-18 t ha−1 in the eastern part and lowest production in the western
areas. The increase in the supply of irrigation water increased tomato
yield up to 51-54 t ha−1 in DI50 and 94-110 t ha−1 in DI100 and high-
lighted a north-south decreasing gradient in tomato fruit production
(Fig. 5). The simulation of fruit quality revealed an opposite pattern,
with highest DB values (7.6–7.8 °Brix) in the lowest yielding areas
under D0 regime; conversely, the lowest DB data (4.0–4.1 °Brix) were
obtained in the top producing areas of DI100. YQ showed similar geo-
graphical patterns than fruits yield, although with smoothed differences
across the simulated area (Fig. 5). The amount of irrigation water al-
most reflected the spatial patterns of annual rainfall and varied in the
range 515–540mm under full irrigation (DI100), with highest values in
the north-west and in the central parts of Capitanata, i.e. the drier and
warmer zones (Fig. 2).
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3.2. Future trends in tomato productions

The YQ distribution in future weather scenarios (5 time frames,
2030–2070), considering the two RCPs (2.6 and 8.5), the four GCMs
(GISS, HADGEM, MIROC and NORESM) and different irrigation stra-
tegies (eleven, from DI0 to DI100) are shown as boxplots in Fig. 6, along
with average YQ simulated in baseline conditions (horizontal red line).
The simulated variability is generated by the spatial application of the
model in the Capitanata plain (152 cells), and by the 20 years con-
sidered for each combination of GCM×RCP× time frame×DI re-
gime.

The projected impacts of climate change without adaptation are
generally negative on tomato production and fruit quality. The average
YQ reductions in all DI strategies varied according to the different
GCMs in the range −5.02% (GISS) and −10.84% (MIROC). These si-
mulations did not reveal any clear time trend, as the average reductions
compared to baseline conditions were constant across time frames, and
ranged between −6.2% (2050) and −8.1% (2040). The simulated YQ
according to the two extreme RCPs led to a similar yield decrease with

respect to baseline (about −7%). Major differences between current
and future simulations emerged across DI strategies: while YQ simu-
lated under DI < DI30 was higher in future simulations than in baseline
conditions (+9.3%), YQ reductions (−12%) were simulated in the
intermediate DI regimes (>DI30,<DI70). We focused the analysis on
the DI regimes equal or higher than DI50, assumed as the minimum
water amount used by tomato growers in current conditions. The
average relative changes (%) of irrigation amounts (mm), fruits yield
(t ha−1), YQ (t ha−1) and WP (kgm−3) in 2030 and 2070 compared to
baseline (absolute values) are reported in Table 4.

Simulation results showed very limited variations in the current and
future irrigation amounts, the former ranging from 263mm (DI50) to
506mm (DI100). The simulated WP ranged between 13.2 kgm−3

(DI100) and 15.3 kgm−3 (DI60 and DI70) in baseline conditions, with
fruits weight comprised between 50.6 t ha−1 (DI50) and 96.2 t ha-1

(DI100). YQ (DI50 = −13%; DI100= −8%) showed lower variability
than fruits weight at low DI regimes (DI50 = −16%; DI100= −8%)
because of the positive impacts of low irrigation amounts on DB. In the
same conditions, the simulated tomato systems obtained similar

Fig. 3. Model performances in reproducing the experimental trials used in calibration in 2017 (blue) and 2018 (orange). The evaluation metrics computed on the
different deficit irrigation regimes (columns) are reported in the plots; they are the relative root mean square error (RRMSE), the modeling efficiency (EF) and the
mean absolute error (MAE). Model calibration focused on fruits fresh weight (t ha−1), leaf area index (m2m−2), and plant dry weight (g m−2). The dynamics of
simulated and measured soil water content (m3m−3) are also reported in the bottom row of plots. Simulated data are indicated by lines, measured data by points
with error bars corresponding to the standard deviation in field samplings. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).
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performance across time frames (2030–2070), with a larger reduction
of WP (9% in 2030, 11% in 2070), fresh fruits weight (16% in 2030,
17% in 2070) and YQ (13% in 2030 and 2070) at low DI regimes,
especially in DI50. The lowering of the performances was less marked
under DI100, with relative changes with respect to baseline always
smaller than -10% for all the indicators considered, and large simila-
rities between 2030 and 2070.

3.3. Identifying sustainable irrigation strategies

PCA was performed to summarise the data using a multivariate
approach and simultaneously consider all the indicators of tomato
growing systems performances, i.e., the fresh fruit yield, DB, total cycle
length, YQ, irrigation amounts and WP. We considered the first two
components for interpretation, explaining 87.6% of the total variance.
The correlation coefficients were calculated between the Principal
Components (PCs) and each simulated and categorical variable
(Table 5) and the associated p-values (α=0.05) computed to rank the

variables according to their relevance.
The first component (PC1) accounted for 61.8% of total variance

and summarised all the quantitative variables, with correlations ran-
ging from 0.48 (DB) to 0.98 (YQ) and suggesting a high degree of
multicollinearity (Table 5). Simulations performed with DI≥DI80 and
adopting varieties with longer cycle length (+10, +20%) were at po-
sitive coordinates on PC1; these were opposed, at negative coordinates,
by simulations with short cycle varieties (−10%; −20%) and lower
irrigation rates (Fig. 7a). MIROC confirmed to be the worst-case sce-
nario (Appendix G), as its barycenter was at significant negative co-
ordinate on this axis (-0.32) thus suggesting an adverse effect mainly on
YQ. The other GCM×RCP combinations showed a negligible effect on
the variability of outputs as their barycenters were at coordinates
slightly different from zero.

The second Principal Component (PC2) explained 25.8% of the total
variance (Table 5) and was positively correlated with DB and total cycle
length, and negatively with all the other variables (YQ, Yield, Irriga-
tion, WP). This structure summarised an inverse correlation, i.e. higher

Fig. 4. Model performances in reproducing fruits fresh weight in the field trials used for independent evaluation. The evaluation metrics computed for each
experimental year are reported on the plots; these are the relative root mean square error (RRMSE, %) and the mean absolute error (MAE, t ha−1). The measured data
under the various deficit irrigation strategies (gradient of colors from red, rainfed, to full irrigation, blue) are plotted as points with error bars corresponding to
standard deviation, whereas bars correspond to the simulated data. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).
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DB associated with longer cycle length but with lower yields and WP
(Fig. 7a). The supplementary categorical variables were correlated with
PC2 similarly to PC1 (Table 5); even in this case, MIROC was the only
GCM meaningfully associated with this PC (0.21), indicating an in-
creased DB and reduced WP but lower Yield (Appendix G). RCP and
time frame affirmed again to have low impact on the variability of
outputs. Along PC2, simulations performed with DI < DI70 and vari-
eties with standard or long cycle (0% − +20%) were at positive co-
ordinates. A hierarchical clustering algorithm was applied on the ex-
tracted PCs (Hierarchical Clustering on Principal Components, HCPC)
to detect any inner structure in the data and to provide an overview of
the performances of the different adaptation strategies. Six clusters
were selected to maximise the relative loss of inertia. The data plotted
in PCs space, colour-coded by cluster are presented in Fig. 7b. The

obtained partition was characterised referring to the original qualita-
tive and quantitative variables, using an alpha level α= 0.05 for all the
statistical tests.

The six clusters defined in the PC biplot (Fig. 7b), showed a clear
distinction between the simulations performed with variable cycle
length, and a horizontal gradient corresponding to alternative DI re-
gimes. The complete characterization of the six clusters is provided in
Appendix G. The other adaptation strategies did not reveal any clear
pattern within the clusters, as well as the different combinations of RCP,
GCM and time frames, as already discussed in the PCA results. The
amount of variance between-clusters explained by each of the original
variables was assessed by calculating η2, revealing that all the variables
except water productivity (η2= 0.58) explained a comparable amount
of the variability among clusters (0.71< η2> 0.85). Cluster 1 (C1) and

Fig. 5. Spatially distributed simulations of fresh fruit yield (Yield, t ha−1), fruit quality (°Brix), YieldQuality (t ha−1, please see text) and irrigation amount
(Irrigation, mm) in Capitanata under baseline scenario. Results are presented as the average of the values simulated at the end of the season in the period 1981–2010
for the three deficit irrigation regimes DI0, DI50, DI100.
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Cluster 3 (C3) were similar in their composition and presented simu-
lations performed with low irrigation amounts, with main differences in
the duration of crop cycle. C1 comprised tomato varieties with shorter
cycle length (−10% and −20%, mean simulated growing
season=74.5 days), whereas C3 grouped simulations in which the
duration of phenological phases was equal or greater (+10%, +20%,
simulated growing season= 93 days) than the standard cv. Ulisse. The
main adaptation strategies characterising these two clusters combined a
DI regime below DI70 (83% in C1, 89.7% in C3), shorter irrigation in-
terval (3 days, 45% in C1 and 54.9% in C3) and postponed

transplanting dates (May 18=24.9% in C1 and 30.4% in C3). The
average irrigation amounts in these clusters were significantly lower
than the overall mean (249mm in C1 and 310mm in C3, overall
mean=377mm), which were associated to poor performances both in
terms of YQ (34 t ha−1 in C1 and 45.2 t ha−1 in C2) and WP (11 kgm−3

in C1 and 11.5 kgm−3 in C2). Cluster 2 (C2) was mainly composed by
earlier tomato varieties than the cv. Ulisse (−20%, 66.8% of simula-
tions, length= 73.3 days), and DI80 (31%) and DI70 (23.7%), with long
irrigation interval (9 days, 39.2%) and anticipated transplanting date
(April 27, 41%). The average YQ in this cluster was lower than the

Fig. 6. Simulated data of yield quality (t ha−1) in future simulations without the implementation of adaptation strategies. Simulation results correspond to the two
Representative Concentration Pathways (RCP, columns) 2.6 and 8.5 (columns), the four GCMs (GISS, HADGEM, MIROC, NORESM, rows), and the five time frames
(2030–2070). They are reported for the eleven deficit irrigation regimes (x-axis, from rainfed to full irrigation). The boxplots correspond to the variability in the 20
years of simulations and in the 152 cells covering the tomato harvested area in Capitanata.

M.M. Giuliani, et al. European Journal of Agronomy 111 (2019) 125937

10



average (55.8 t ha−1 vs. 65.3 t ha−1), mainly due to low DB
(X̄C2 =4°Brix) associated with good levels of average fresh fruit yield
(67.7 t ha−1) and irrigation amounts lower than the average
(X̄C2 =328mm). The best performances of the simulated tomato
growing systems were grouped in clusters 4 (C4), 5 (C5) and 6 (C6),
despite main differences in the adaptation strategies implemented. C4
grouped simulations performed with standard (59.7%) or short-dura-
tion cultivars (-10%; 35.1% of the simulations), and DI80 (18.1%), DI90
(36%) and DI100 (37.6%). The main irrigation intervals in this cluster
were 6 days (35.4%) and 9 days (35.3%). The corresponding mean YQ
was slightly higher than the average (69.1 t ha−1), due to high fresh
fruit weight (X̄C4 =80.6 t ha−1) but low brix values (X̄C4 =4.1), de-
termined by large irrigation amounts (444mm, water footprint
=13.4 kgm−3). The main adaptation strategies characterizing C5 and
C6 were the adoption of varieties with longer cycle length than the cv.
Ulisse (simulated growing season=96 days in C5 and 101 days in C6)
coupled with an anticipated transplanting date, whereas they differed
in the DI regimes. C5 grouped simulations performed according to an
overall water saving strategy (DI50= 15.6%, DI60= 33.9%,
DI70= 30.8%), adopting varieties with longer cycle length
(+10%=41.9%; +20%=38.6%), an anticipated transplanting date
(April 20= 38.5%, April 27=14%) and a short-medium irrigation
interval (3 and 6 days= 52.4%). The resulting average YQ was sig-
nificantly higher than the average (70.8 t ha−1), with high DB
(6.3°Brix) and average irrigation amounts of 367.6mm (average
WP=15.6 kgm−3). Finally, C6 grouped simulations performed with
DI≥ 80% ETc (DI80= 25.9%, DI90= 31.2%, DI100= 32.3%), longer
cycle length (+10%=46.3%, +20%=52.7%) and anticipated

transplanting date (April 20=47.3%, April 27= 20.2%), with mostly
3 days (37.1%) and 6 days (36.8%) of irrigation interval. This cluster
corresponded to the highest average YQ (93.1 t ha−1), with favorable
DB (6.1°Brix) and amounts of fresh fruit yield (104.4 t ha−1,
WP=17.2 kgm−3), although associated with large irrigation volumes
(516mm).

4. Discussion

4.1. Rationale for model development

This work fits into the context of the many research activities which
have been developed in recent years to sustain tomato yields in
Mediterranean area through simulation modeling. The common pur-
pose of these studies is to foster the strategic design of the future tomato
growing systems considering the expected increased frequency, dura-
tion and intensity of heat stress and drought events, which could dra-
matically reduce the stocks of water resources in the upcoming years
(Ronco et al., 2017). Our methodological approach has some peculia-
rities with respect to available literature, the main ones represented by
i) the use of a specific model targeting both quantitative and qualitative
aspects of tomato yield, ii) its calibration with data collected in dedi-
cated field trials and the subsequent evaluation on an independent
dataset of long-term experiments, and iii) the evaluation of the future
yield trends of simulated tomato growing systems according to alter-
native adaptation strategies, which were derived according to local-
based knowledge. A new tomato simulator, TomGro_field, has been
derived from the original TOMGRO greenhouse model (Jones et al.,
1991) with the purpose of accounting for the impact of soil water
availability during crop growth, with a feedback on the qualitative
aspects of tomato productions, synthesized by the DB (Chen et al.,
2008). Acutis et al. (2009) forced the STAMINA model (Acutis et al.,
2007) with leaf area index data from a Geographic Information System
to develop a decision support system to schedule tomato irrigation in
Capitanata plain. Rinaldi et al. (2011) calibrated and evaluated the
AquaCrop model (Raes et al., 2009) for tomato crop with field data, and
applied it on a long-term simulation experiment to evaluate the agro-
nomic and economic performance of alternative management scenarios.
Ventrella et al. (2017) used the CROPGRO model (Scholberg et al.,
1987) in order to estimate the green and blue water (BW; crop eva-
potranspiration deriving from irrigation) requirements of industrial
tomato under alternative climate change scenarios towards the opti-
mization of water use efficiency. Our rationale implied the definition of
a new model for open field tomato aiming at reproducing the under-
lying system using an approach specifically developed to simulate the
target crop. TomGro_field provides a detailed representation of the
plant growth and phenological development (Boote et al., 2012), while
simplifying the definition of the crop parameters needed for its in-
itialization. The impact of soil water availability on crop growth is a
central topic in this work, borrowed from the management-oriented

Table 4
Performances of the simulated tomato growing systems under baseline and future conditions in 2030 and 2070, considering deficit irrigation regimes above 50% of
crop evapotranspiration (ETc). Average values are reported for each time frame considered, with absolute values for the baseline and relative change for the future
conditions. Irr. = irrigation water, Y= fresh fruits weight; YQ=yield quality, WP=water productivity.

Deficit irrigation Baseline 2030 2070

Irr. Y YQ WP Irr. Y YQ WP Irr. Y YQ WP
% ETc mm t ha−1 t ha−1 kgm−3 % with respect to baseline % with respect to baseline

50 263 50.6 53.5 14.9 0 −16 −13 −9 −1 −17 −13 −11
60 312 65.2 62.4 15.3 1 −14 −11 −8 0 −15 −12 −11
70 360 79.2 69.9 15.3 1 −12 −9 −7 1 −12 −10 −9
80 409 90.2 75.4 14.9 1 −10 −8 −6 1 −10 −9 −9
90 457 95.0 78.5 14.2 1 −8 −8 −6 1 −10 −9 −9
100 506 96.2 79.5 13.2 1 −8 −8 −6 2 −9 −9 −9

Table 5
Correlation coefficients between simulated variables and the first two Principal
Components (PC) with an indication about the significance of differences from
0, and the amount of variance explained by each PC. Significance codes: ***=
p< 0.001, ns = not significant. The PCs were computed using 21,606 simu-
lations as input data.

Variable PC1 PC2

Quantitative active variables
Fresh fruit yield 0.83*** −0.53***
Degree Brix 0.48*** 0.87***
Total cycle length 0.75*** 0.63***
Yield quality (YQ) 0.98*** −0.15***
Irrigation 0.84*** −0.12***
Water productivity 0.74*** −0.28***
Qualitative categorical variables
Deficit irrigation regime 0.32*** 0.37***
Shift in cycle length 0.51*** 0.48***
Transplanting date 0.08*** 0.03***
GCM 0.005*** 0.005***
RCP <10−5 ns < 10−5ns

Time frame <10−5 ns < 10−5 ns

Irrigation interval 0.004*** 0.009***
Explained variance 61.8% 25.8%
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CropSyst model (Stockle et al., 1999), which has been extensively used
to assess the impact of alternative irrigation practices in cereals (e.g.,
maize, Nana et al., 2014) and industrial crops (tomato, Onofri et al.,
2009; potato, Montoya et al., 2018). The simulation of crop evapo-
transpiration, which drives the plant demand in our simulations, is
based on leaf and soil critical water potential, as parameterized by
Onofri et al. (2009), which applied the same model on tomato systems
in Perugia, Central Italy. We provide here a new function to simulate
the qualitative aspects of tomato fruits using DB as a proxy of fruit
quality. The new model considers the beneficial effects of moderate
water stress conditions during ripening phase on tomato quality (Chen
et al., 2008), and demonstrated to be capable of capturing DB varia-
bility measured in the field experiments. The evaluation metrics used to
quantify the model accuracy in reproducing field reference data in ca-
libration and evaluation, as well as the results of spatialized spatially-
distributed simulations, proved the adequacy of TomGro_field in char-
acterizing the impact of alternative DI regimes. Moreover, the avail-
ability of a modular version of the seminal TOMGRO model (Louski
et al., 2013) simplified the transfer of model source code into the
BioMA platform, whose architecture proved to maximize the reusability
and extendibility of agricultural system models, while fostering the
substitution of process models with alternative options facilitating the
contribution from domain specialists (Donatelli et al., 2014). The
BioMA implementation eased model application to other tomato dis-
tricts, i.e. with different agro-climatic conditions and cultivars. Such an
application in other areas and/or to other varieties should be preceded
by a novel calibration of phenology, growth, soil water and fruit quality
modules, in turns requiring multi-year and multi-variable field data
collection under contrasting pedo-climatic conditions.

4.2. Future trends in tomato production

In this study, the future simulations with no agronomic adaptation
indicate an overall decrease of tomato yield and quality with respect to
current conditions. These results agree with previous studies, despite

we obtained smaller yield reductions than in Ventrella et al. (2017),
who reported 20% tomato yield decrease in the same area. In that
study, the simulated BW and BW requirement (i.e. the ratio between
BW and yield) in the future increased up to 30% and 40% respectively
compared to the baseline. The differences with respect to our study
include the crop model used, the time period considered (2070–2099),
the management strategy tested and the climatic projections, which
were characterized by a very large temperature increase (average
+5 °C, IPCC SRES AR4). Despite the decrease in irrigation water use
efficiency projected by Ventrella et al. (2017) was approximately four
times higher than our simulations, the differences between the two
studies decreases when comparable scenarios were considered (i.e.
RCPs AR5 MIROC_8.5 versus SRES AR4 A5), due to the marked simi-
larity in temperature (+5/6 °C on average) and precipitation (up to
-40% decline) projections. Our future climatic scenarios were derived
by the factorial combination of two extreme RCPs and four GCMs,
which were the same adopted in Bregaglio et al. (2017), and five time
frames (decades from 2030 to 2070). The resulting ensemble of climatic
projections did not explore the whole variability in terms of plausible
future climatic predictions, despite the four GCMs chosen in this study
were widely used in crop modeling studies (Burke et al., 2015) and
grouped in separate clusters according to temperature and precipitation
data (Zubler et al., 2016), with GISS and NorESM presenting the largest
dissimilarity.

4.3. Adaptation to climate change scenarios

The fundamental message emerging from the test of alternative DI
strategies, variable cycle length, and shifts in transplanting dates is that
farmer management will be a key factor for the future sustainability of
the tomato sector in the Mediterranean area. We identified a spectrum
of candidate adaptation strategies capable to preserve the competi-
tiveness and sustainability of the tomato growing systems. PCA sug-
gested that the performances of tomato growing systems were mostly
affected by the DI regime and by the cycle length, followed by the

Fig. 7. A – PCA biplot of individuals combined with variables. Each grayscale point corresponds to one out 21,606 simulations. Colored points show the barycenters
of the combined categorical variables ‘Cycle length’ (shape) and ‘Deficit irrigation’ (blue tone). B – PCA biplot with points color-coded according to cluster clas-
sification; clusters with the most promising strategies influencing Water Productivity and Yield Quality were labeled to summarise the most frequent categories of
‘Deficit Irrigation’ and ‘Shift in cycle length’ within the Cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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transplanting date and the irrigation interval. DI regimes have been
successfully tested as valuable strategies in dry regions where water is
the main limiting factor to crop cultivation (English, 1990; Fereres and
Soriano, 2007). The most promising strategies to optimize tomato yield
and quality in the future will be the application of moderate DI regimes
(DI60-DI70) on tomato varieties with long cycle length (+10%, +20%
with respect to cv. Ulisse), that should be transplanted early (20–27
April). The simulated increase in the amount of irrigation water (DI80-
DI100) led to benefits for tomato yield levels, while requiring larger
irrigation amounts than in current conditions, contrarily to the pro-
jected restriction in groundwater availability. Our results are limited to
the agronomic management, and should be integrated by a multi-actor,
socio-economic analysis involving public and private stakeholders.
Such a research project should target the analysis of the future trends in
water availability and tomato prices, explicitly considering the cost of
farmer inputs (i.e. seed, fuel, water, and fertilizers). Additional efforts
are needed for the purpose, as well as further developments of Tom-
Gro_field to account for the effect of fertilization and of other qualita-
tive aspects of tomato productions (fruit color, firmness and titratable
acidity). Another aspect that needs further evaluation is the assessment
of the sensitivity of the new TomGro_field model to parameter changes.
There is a limited literature on this topic, mostly focused on a simplified
version of the original TomGro model (Vazquez-Cruz et al., 2014), and
on the outputs uncertainty as a function of variable environmental
conditions (Cooman and Schrevens, 2004; Dimokas et al., 2012). Our
rationale here has been (i) to set the majority of the parameters ac-
cording to their literature values (77% of the total number), then (i) to
maximize the number of parameters which could have been effectively
measured in the field experiments (13% of the total number), while
limiting the automatic calibration to the remaining parameters (10% of
the total number). This choice was driven by the need to carry out a
complex workflow from beginning to end, constituted by the model
calibration with detailed field experiments, the model evaluation with
historical datasets, the application of the model under a set of climate
change scenarios and finally the identification of the best adaptation
strategies to sustain tomato cultivation in the area of interest. The ex-
ecution of a robust assessment of the model sensitivity, which would
include all the parameters of the new TomGro_field model and its ap-
plication in contrasting pedo-environmental conditions, would deserve
a dedicated scientific paper. Such a work will be of major interest in
light of the spatialized application of the model over large areas, be-
cause it will allow selecting the parameters on which a user has to focus
during calibration, especially in situations where a limited set of field
experiments is available, differently from the modelling work presented
here.

5. Conclusions

We conducted a crop modeling study to assess the performances
of current and future tomato growing systems in Capitanata, con-
sidering basic farmers adaptation strategies under an ensemble of
climate change scenarios. The main innovation in our rationale is the
development of a model specific for open field tomato considering
the beneficial effects of moderate water stress during ripening phase
on fruit quality, which demonstrated to reproduce the data collected
in field conditions. Relative to the future trends in tomato produc-
tion, the simulations with no agronomic adaptation indicate an
overall decrease of tomato yield and quality with respect to current
situation. The farmer management emerged as the key factor to
foster the future sustainability of the tomato sector in the
Mediterranean area, by means of alternative DI strategies, variable
cycle length, and shifts in transplanting dates. The most promising
strategies to optimize tomato yield and quality in the future will be
the application of moderate deficit irrigation regimes (DI60-DI70) on
tomato varieties with longer cycle length and the anticipation of 1–2
weeks in transplanting dates.

Our simulations envisaged the potential of the Capitanata plain to
continue sustaining the Italian tomato production, and identified the
most promising strategies to improve irrigation water use. These basic
agronomic practices could now be considered by tomato growers in the
area, as well as by the public bodies in charge of designing the future
tomato systems.
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