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EXTENDED ABSTRACT 
‘Rocket’ is a collective name to indicate many species of green leaves belonging to Brassicacea family 

and are significantly consumed in the Mediterranean countries either as stand-alone salads or mixed with 

other vegetables. They are well known for their pungent smell, bitter flavor and high nutritional value. 

Rocket leaves are commercially grown as perennial and annual species, the former known as perennial 

wall rocket also known as wild rocket (Diplotaxis tenufolia(L.) DC.) and the latter named annual garden 

rocket (Eruca satvia Mill.). The Diplotaxis tenufolia plant can achieve a height of 80 centimeters (cm) 

and is characterized by a tap root and lengthy leaves. A typical leaf of Diplotaxis tenufolia is fleshy, 

oblong and deeply lobed, possessing sharp apexes. On the other hand, Eruca satvia Mill. grows to achieve 

a height of 40 cm possessing lyrate-pinnatifid leaves, having an enlarged terminal lobe and smaller lateral 

lobes with a rosette shaped arrangement of the leaves. Eruca satvia Mill. species as compared to the 

Diplotaxis tenufolia possesses a thin tap root and is characterized by a rigid unbranched stem. Both the 

species manifest similar morphological and nutritive aspects possessing a characteristic bitter taste based 

on the account of glucosinolates present.  

In the modern era, the consumer awareness regarding food safety, origins of the produce, nutritional 

value and demand for minimally processed fresh produce has led the food industry to explore rapid, 

reliable and cost effective methods for the evaluation of food products and their shelf-life since the 

conventional destructive analysis methods are time consuming, expensive, targeted and labor intensive. 

In this regard, non-destructive methods are gaining significant popularity which are assisting the food 

industry for the early fruits defect detection, fruits and vegetable classification on the basis of variety, 

maturity stage and origin and for the prediction of main internal constituents, mainly soluble solids and 

acids, and physical properties like firmness. On the industrial scale a significant weightage is given 

towards achieving fresh produce with superior quality in terms of vitamins, antioxidant activity, phenols 

and secondary metabolites. 

Rising concerns regarding the nutritional composition led many research works to evaluate the feasibility 

of the spectral profiles in the visible near infrared range (Vis-NIR), near infrared range (NIR) and 

hyperspectral images (HSI) for prediction and mapping of desired compounds in fresh produce. It is 

important to mention that non-destructive techniques cannot completely replace the conventional 
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methods but can serve to assist these techniques saving time, expenses and labor. On the other hand, the 

non-destructive methods need no sample preparation once the model is developed making the prediction 

process quick. In this research work non-destructive techniques have been illuminated with respect to 

their potentiality in rocket leaves with special emphasis on hyperspectral imaging for the quality 

assessment of the fresh-cut rocket leaves accompanied by a basic introduction of the non-destructive 

image analysis techniques. 

In the first research work the feasibility of using spectral profiles for the estimation of the shelf life of 

the rocket leaves was evaluated using a multivariate accelerated shelf life testing (MASLT) approach. 

Spectral changes over time were modeled by using principal component analysis (PCA) and as variation 

to the conventional method, partial least squares (PLS) method. Kinetic charts were built fitting the first 

principle component (PC1) and the first latent variable (LV1) scores versus time. In both cases, the 

kinetics were described by a first order reaction, and the model performance was evaluated by the R2 

values which ranged between 0.73 to 0.95 for samples stored at three different temperatures, one of them 

being the market temperature while the rest were categorized as accelerated temperatures which are 

usually higher than the market temperature. The cut-off value was calculated by judging the unacceptable 

spectra of samples at the accelerated temperature, as a result of which the shelf life of rocket leaves was 

estimated using the MASLT approach. The shelf life estimation was done using PCA based MASLT 

conventionally used as well as using a newly introduced methodology i.e. PLS based MASLT yielding 

encouraging results in both cases particularly in case of the PLS based MASLT.  

On the other hand, since the literature regarding quality evaluation of rocket leaves or any other leafy 

vegetables over time shows that the potential of hyperspectral imaging in the visible and near infrared 

regions has not been investigated pursing the aim of prediction and mapping of internal constituents. 

Hence hyperspectral imaging data was evaluated employing Partial Least Squares regression (PLSR) for 

the prediction of Vitamin C, ascorbic acid (AA), dehydroascorbic acid (DHAA), antioxidant activity and 

phenols in wild rocket (Diplotaxis tenuifolia) over a storage span of 12 days at 5oC. Hyperspectral images 

of the wild rocket leaves were acquired in the Vis-NIR (400-1000nm) and the NIR (900-1700nm) ranges 

using different data pretreatments and wavelength selection techniques. The model reliability was 

checked by the root mean square error (RMSE) and R2 values. Among the predicted parameters Vitamin 
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C, AA, antioxidant activity and phenols were predicted satisfactorily in the NIR range. The prediction 

maps for the parameters were calculated to follow the changes over the storage period yielding more 

reliable results in the NIR range. All the results indicated that hyperspectral imaging combined with 

multivariate data possess the capability to provide reliable information regarding the shelf life estimation 

of the rocket leaves as well as for the prediction and mapping of the internal constituents.  
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Chapter 1  

THE USE OF NON DESTRUCTIVE TECHNIQUES TO ASSESS 

NUTRITIONAL CONTENT OF FRUITS AND VEGETABLE 

Maria L. Amodio, Muhammad M. A. Chaudhry, Giancarlo Colelli 

Department of the Science of Agriculture, Food, and Environment, University of Foggia, Via 

Napoli 25, 71100 Foggia (Italy) 

 

1. INTRODUCTION 

The use of non-destructive methods is already widely developed for the early detection of fruit 

defects, for the classification of fruits and vegetable based on variety, maturity stage and origin and for 

the prediction of main internal constituents, mainly soluble solids and acids, and physical properties like 

firmness. In the last year, due to the increasing interest in nutritional compounds, different researches 

were conducted to study the feasibility of using non-destructive methods, mainly Middle, Near and Short 

Wavelength Infrared Spectroscopy for the prediction of nutritional compounds in fruits and vegetable. 

Among different classes of bioactive compounds, prediction models were developed for phenolics 

including anthocyanins, flavonoids and antioxidant activity in whole fruits and vegetables or in fruit 

extracts, and vitamin C or dietary fiber content in wheat. The advantage of using spectroscopic 

techniques even in the case in which better results are obtained preparing tissue extracts is still 

considerable, since the reference analytical methods normally require expensive equipment, people 

expertise and are time consuming. The latter may be the case of bigger fruits as summer squash or melons 

where the presence of a thick peel make difficult the internal prediction of nutritional constituents. On 

the other side, referring to compounds very sensitive to thermal or light degradation, when non-

destructive techniques are applied on whole fruits and vegetables, the problem of the oxidation related 

to the process of extraction is over passed. Sample preparation time in this case greatly decreases and the 

requested time for the analysis is very short once a predictive model has been developed.  
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2. NON-DESTRUCTIVE TECHNIQUES FOR QUALITY EVALUATION OF FRUITS AND 

VEGETABLES 

2.1. VIS-NIR spectroscopy  

NIR spectroscopy is categorized among the simplest non-destructive techniques as it requires no 

sample preparation and permits several constituents to be measured simultaneously. NIR spectroscopy 

is based on the absorption of electromagnetic radiation in the wavelength range of 780–2500 nm (Huang 

et al., 2008). The sample is irradiated with a NIR source; as the irradiation passes through the sample, it 

gets absorbed and scattered causing a change in its spectral characteristics (McClure 2003; Cozzolino et 

al., 2006; Nicolai et al., 2007). This change is a function of the structure of the sample, the moisture 

content, the particle size, the temperature of the sample and, most importantly, of its chemical 

composition. The cell wall interfaces and suspended particles (mitochondria, chloroplasts and starch 

granules etc.) are one of the major causes of irradiation scattering in fruits and vegetables (McGlone et 

al., 1997; Lammertyn et al., 1998; Lammertyn et al., 2000; McGlone et al., 2002; Nicolai et al., 2007). 

Large sets of overtones and combination bands along with complex chemical composition result in highly 

convoluted NIR spectrum which, if properly elaborated, may allow to extract relevant information about 

the sample (Massart et al., 1988). The overtones can be considered as harmonics in which a series of 

absorptions are produced by every fundamental as a multiple of frequency. Factors such as tissue 

heterogeneity, instrumental noise, wavelength dependent scattering effects and ambient effects increase 

the complexity of the spectra.  

To understand the concept of NIR one must be familiar with the phenomenon of energy absorption in 

the visible and mid-IR regions. The following Figure 1 shows the electromagnetic radiation spectrum of 

the visible, NIR and mid-IR region. 
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Figure 1. Electromagnetic radiation spectrum of the visible, NIR and mid-IR region. 

 

When the light energy and the material come into contact, energy is absorbed at resonant frequencies 

due to atomic and molecular interactions; the electrons absorb energy and jump from a lower to higher 

orbit, in the visible region; energy is absorbed in the mid-IR region at the resonant frequencies by the 

bounded molecules who vibrate in different directions due to different movements as stretching, bending 

and rotation. Chemical bonds such as C-C, C-H, C-N, C-O, N-H and O-H can be suitably characterized 

by using the mid-IR region, after the sample is prepared to get sufficient light through it. Absorbance in 

the NIR spectra mostly occur due to the O-H (water, alcohol), N-H (protein) and C-H (oils, fats, 

hydrocarbons) chemical bonds whereas also some other bonds exhibit overtones in the region. The part 

of radiation that is not absorbed by the sample is in part reflected or transmitted; thus, depending on the 

instrument design and on the sample structure different applications using reflectance, transflectance, 

transmittance, and interactance may be developed. 

For each acquisition mode, the position of the optical detector and the light source are different (see 
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Figure 2). In case of the reflectance mode, the detector captures the light reflected from the surface of 

the material and this technique is mostly utilized to detect the external quality features of the sample such 

as shape, size, color, texture and defects. This mode is advantageous when less penetration is required, 

for example, if the chemical to be analyzed lies just beneath the peel as in case of anthocyanin in 

blueberries. Diffuse reflectance infrared Fourier transform spectroscopy is used for powder samples 

without preparation.  

The transflectance mode is used for the measurement of spectra of very thin and clear samples whose 

characteristics are very different from that of fruits and vegetables. A demonstration of the transflectance 

phenomenon is given in the Figure 2.  

In transmittance mode, the internal information of the sample is acquired; the detector is placed in the 

opposite direction with respect to the light source to capture the light transmitted through the sample, 

hence detecting the concentration of materials or internal defects in the sample (Schaare and Fraser 

2000). The region of 800-1100nm in the spectrum is usually utilized for diffuse transmission 

measurement acquisition.  

The light source and the detector are parallel to each other in interactance mode, enhancing its 

capability to detect deeper information of the sample with reduced surface effects. Interactance is 

preferred over transmittance due to the reason that it is less effected by thickness of the sample as 

compared to the latter for which a special set up is also required for preventing specular reflection to 

enter into the detector (Nicolai et al., 2007).  
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Figure 2: Examples of reflectance, transflectance, transmission and interactance configurations 

 

2.2 Hyperspectral imaging 

Hyperspectral imaging is a combination or integration of imaging and spectroscopic techniques for 

the quantitative prediction of physical and chemical characteristics of the food samples as well as their 

spatial distribution. Researchers working on the non-destructive analysis of food are interested in 

attaining spectral information, and spatial information, as to know a distribution of a quality attribute or 

of multi-constituents, or to detect small size objects not visible in the RGB. Out of these desired factors, 

spectroscopy if taken alone has the capacity to measure spectral and multi-constituent information only, 

whereas conventional imaging exclusively provides data regarding spatial information and detectability 

of objects with small size. Combined hyperspectral imaging serves to provide information of all the 

aforementioned factors simultaneously. The spectral measurement tells us ‘what’ is in the food sample, 

whereas, the image provides us the answer to the question ‘where’; the hyperspectral image provides us 

the entire picture, i.e. ‘what and where’ at the same time (Wu and Sun 2013).  

Hyperspectral images consist of a stack of images of the same object at different spectral wavelength 

bands, known as multispectral imaging, hyperspectral imaging and ultra-spectral imaging, according to 

the considered number of wavelengths (spectral range and resolution) (Ariana and Lu 2008). A spectral 

cube is a three dimensional cube that contains spectral and spatial information simultaneously. The 
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information of the wavelengths i.e. the spectral information, is contained in the form of voxels (vector 

pixels) and the spatial information exists in a two dimension-image of x rows and y columns Figure 3.  

 

Figure 3. Example of hypercube showing the stack of λ images (dimension x x y). 

 

In this hypercube, each spectral pixel corresponds to a spectral signature (or spectrum) of the 

corresponding spatial region, recording the entire measured spectrum of the imaged spatial points (Figure 

4). Therefore, the measured spectrum indicates the ability of the sample in absorbing or scattering the 

exciting light, representing the inherent chemical properties of a sample. As a result, the technology 

provides us with unprecedented detection capabilities, which otherwise cannot be achieved with either 

imaging or spectroscopy alone. Hyperspectral imaging techniques have received much attention for food 

quality and safety evaluation and inspection. Many approaches and applications have shown the 

usefulness of hyperspectral imaging in the food industry (Sun 2010).  
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Figure 4. Reconstructed hyperspectral image and representation of the spectra extracted by a 

region of interest (by Amodio et al., unpublished). 

 

The imaging instruments used for the hyperspectral imaging consist of a light source, a wavelength 

dispersion device, area detector and then a storing device for further processing. The light sources are 

different depending upon the type of samples to be tested and can be recognized as halogen lamps, light 

emitting diodes (LEDs) and lasers. Halogen lamps are mostly used to illuminate the Vis-NIR and NIR 

spectral regions. The light emitting diodes are considered to be an excellent light source due to low cost, 

small size, low energy consumption, low heat generation, robustness and insensitivity to vibration. Lasers 

are also used as a light source due to the reason that they are directional monochromatic light sources 

which are mostly used for the purpose of excitation in the application of fluorescence and Raman 

spectroscopic measurements. The tunable light sources allow the direct area scanning to obtain both 

spectral and spatial information of sample by setting the wavelength dispersion device in the illumination 

light path instead of the imaging light path. 

The wavelength dispersion devices contain filter wheels, imaging spectrographs, tunable filters, 

Fourier transform imaging spectrometers and single shot imagers. The wavelength dispersion devices 

disperse the broadband light into different wavelengths. The light is efficiently transmitted by the 

bandpass filters at a particular wavelength whereas the light at the other wavelengths is eliminated. An 

imaging spectrograph most commonly operates in the line scanning mode (Figure 5), instantaneously 

disperses the broadband light into different wavelengths using a diffraction grating and generates a 
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spectrum for each point on the scanned line. Point scanning and area scanning are other examples of 

scanning mode (Figure 5). Detectors include charge coupled devices (CCD) detectors and 

complementary metal oxide semiconductor (CMOS) detectors. They quantify the intensity of the 

received light by converting the incident photons into the electrons (Wu and Sun 2013).  

 

 

Figure 5. Types of scanning modality 

 

Hyperspectral imaging technique has been used to detect defect and physiological disorders as 

bitter pit, bruises, surface defects and contaminations in apple fruits (Mehl et al., 2004; Peri et al., 2005; 

Xing et al., 2005;), and in pickling cucumber (Ariana and Lu 2010), for the citrus fruit inspection (Moltó 

et al., 2010.), to predict the sugar content distribution in melons (Sugiyama and Tsuta 2010), for 

measuring ripening of tomatoes (Polder and van der Heijden 2010), for quality evaluation of mushroom 

(Gowen et al., 2010.), to monitor ripening on banana (Rajkumar et al, 2012), to identify hidden bruise 

on kiwifruits and for many other applications requiring spatial information.  

 

2.3 Chemiometric tools 

The purpose of a NIR prediction model is to relate the spectral information of the learning samples to 
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their quality parameters as measured using a reference method. After the development and proper 

validation, the model can be used for further prediction of quality attributes of other unknown samples. 

The extraction of relevant information from the acquired spectra, requires a preliminary process to 

separate the chemical information from physical variations, obtained by applying mathematical pre-

treatments of spectral signals. The spectroscopic signals usually contain ‘noise’ (unwanted effects) which 

may be due to instrumentation used for spectral acquisition, changes in various environmental factors 

and signal variations due to sample nature. The most commonly used pretreatments to remove scattering, 

are multiplicative scatter correction (MSC), Standard Normal Variate (SNV), and Detrend (DT) (Shenk 

and Westerhaus 1995; Heise and Winzen 2002; Naes et al., 2002; Nicolai et al., 2007) and derivatives 

(Savitzky and Golay 1964).  

The next step is the development of a calibration equation to relate spectral to chemical features for 

the prediction of quality parameters of unknown samples (Williams and Sobering 1996; Guthrie et al., 

2005; Guthire et al., 2006). This process involves regression techniques in addition to spectral pre-

processing methods (Baardseth et al., 1996; Naes et al., 2002; McClure 2003; Cozzolino et al., 2006; 

Nicolai et al., 2007; Cozzolino et al., 2009).   

The techniques used for this purpose include, Principal Component Analysis (PCA), linear regression 

methods for calibration development (Martens and Naes 1989; Burns and Ciurczak 2007) such as 

Multiple Linear Regression (MLR), the Principal Component Regression (PCR) and the Partial Least 

Squares (PLS) (Perez-Marin et al., 2007).   

The Principal Component Analysis (PCA) is used to reduce the large multivariate data into limited 

number of independent factors (Buning-Pfaue 2003) providing information about the spectra population 

in terms of variables, sample distribution and abnormal sample detection. This technique is aimed to 

describe the maximum variability of the samples by reducing the information contained in all the 

variables to a limited number of principal components (PCs) which can be also used to detect sample 

outliers (samples with different spectral behavior).   

Researchers prefer to involve controllable and easy-to-measure factors to elaborate, regulate, or 

predict the behavior of responses. MLR is used to convert data into information when the factors 

(variables) are in a small number having no significant redundancy (collinearity) and also possessing 
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good relationship to responses. If in some cases where the number of factors are too large i.e. larger than 

the number of observations, the MLR can give a model that fits the sample data well but will fail to 

predict the new data, a phenomenon known as overfitting. Among these large number of factors, there 

are only a few underlying factors that contribute to the variation in the response to a large extent. The 

purpose of the PLS is to extract these underlying factors, so that from these extracted factors (X-scores), 

the Y-scores can be predicted. The regression model is then simplified as the relationship is concentrated 

on the smallest possible number of underlying variables. PLS is, in fact, used when the number of 

variables (factors) is large and possess high collinearity, and when there is a need to take into account 

the reference value of the parameter for each sample along with the spectral information (Westerhaus et 

al., 2004). Here the emphasis is on the prediction of responses rather than understanding the underlying 

relationship between them. PLS regression can be easily extended to simultaneously predict several 

quality attributes. In this case the algorithm is called PLS2 (Naes et al., 2002).   

Normally an internal validation (cross validation) procedure is applied to test the predictive ability of 

the PLS (Shenk and Westerhaus 1995). The collective calibration sample is divided into several sub-

groups (depending on the number of samples); once the equation is developed each validation group is 

predicted by using the model built on the remaining groups. This procedure also prevents model 

overfitting (Williams and Norris 1987; Shenk and Westerhaus 1995), which would give poor results with 

external calibration. 

In Figure 6 are shown the required steps to build a calibration model. 

   

Fig. 6 Steps towards building a calibration model 

The performance of the calibration model is then evaluated by comparing the following statistics as 

the standard error of calibration (SEC), the coefficient of determination between predicted and measured 

parameters (R2), the standard error of cross validation (SECV) and coefficient of determination for cross 

validation (r2) (Williams and Norris 1987). When a model is used for validation on external sample (test 
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set), errors refer to prediction performances, namely standard error of prediction (SEP). 

Despite all this information, it must be taken into consideration that errors are always associated to 

the chemiometric method and can be only partially reduced. These errors may be due to sampling, sample 

preparation, and instrumental noise. Sampling errors are not a function of the underlying process but they 

are the real errors which are significant cause of deviation in the measurements. The sample preparation 

errors can occur during the various stages of the chemical process and errors in all these stages are often 

called ‘uncertainty’. Instrumental noise is another type of error that occurs due to the measurement 

process or instrument because of the various factors influencing instruments such as the effect of 

fluctuating voltages on filters and lamps.  

For hyperspectral imaging the same kind of approach is used, normally a preprocessing of the 

hypercube is followed by the processing (Amigo et al., 2013), as the following example describes the 

data processing to predict phenol distribution in table grapes. In the first operation, image hypercube 

needs to be pre-processed in terms of spatial and spectral direction to eliminate undesirable noise to the 

signals (Brereton 2007) due to non-chemical biases and reduce data set dimensions; this is normally 

performed by applying compression techniques and mathematical pre-treatments to the spectra (a second 

derivative in the example of Figure 7).  
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Figure 7. Example of spectra preprocessing: (A) raw spectra and (B) spectra after 2nd derivative 

transformation (by Amodio et al., unpublished). 

 

On transformed spectra a thresholding algorithm, normally based on a PCA, can be applied in order 

to extract the spectral information related to the pixels of the object (Figure 8). On these spectra after the 

preprocessing, multivariate methods can be applied depending on the scope of the study. In this example 

a quantitative model was applied, whereas qualitative models are alternatively used when a 

discrimination among samples is the objective of the image processing. A PLS model relating spectral 

information to reference values of phenols measured analytically was tested (Figure 9). These models 

can be applied to further samples, including also the image of the whole bunch, as shown in Figure 10 

where the phenol content is represented in a color map from 100 (blue) to 200 mg of Gallic acid. 

Equivalent 100 g-1 (red). 
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Figure 8. Example of image thresholding based on PCA (by Amodio et al., unpublished). 

 

 

Figure 9. Example of output of a PLS model applied for prediction (by Amodio et al., 
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unpublished). 

 

Figure 10. Distribution map of the phenol concentrations in the berries and in the stalk (by 

Amodio et al., unpublished). 

 

3. PREDICTION OF NUTRITIONAL CONTENT OF FRUITS AND VEGETABLES 

Near infrared (NIR) spectroscopy was used in the science of agriculture for the first time by Norris in 

1964 for measurement of grain moisture content. Since then this technique has been successfully utilized 

for the measurement of moisture, protein and fat content of many food and agricultural products (Davies 

and Grant 1987; Irudayaraj et al., 2001). In the initial stage this technology was used mostly for the 

measurement of dry matter (DM) content of onions (Birth et al., 1985), soluble solids content (SSC) of 

PREDICTION AND MAP DISTRIBUTION



19 

 

apples (Bellon-Maurel 1992) and water content of mushrooms (Roy et al., 1993), but at the moment 

current applications are quite different and include the estimation of nutritional compounds (Givens et 

al., 1997), the single organic acid (Ignat et al., 2012) and sugars detection (Rady et al., 2015) and have 

been also used to measure microstructure activities such as internal damage (Clark et al 2003), stiffness 

(Lammertyn et al., 1998) and sensory characteristics of fruits and vegetables (Mehinagic et al., 2004).  

3.1 Prediction of Water content 

IR is strongly absorbed by water and this absorption trend includes the NIR spectrum (730-2300nm). 

In high moisture foods with a water content ranging from 70-90% the absorption bands appear in close 

proximity to wavelengths of pure water (1400-1410nm being the strongest absorption band). For 

quantitative analysis of food water content the NIR bands in the ranges of 1400-1440nm and 1900-

1950nm are mostly applied (Buning-Pfaue 2003). During water content analysis, beside free water 

molecules, there are one or two OH groups engaged in hydrogen bonds which influence the NIR 

absorption. Mixtures and continuum models are the two major classes of models to describe water 

structure (Wicke 1976). 

Only a trace of absorption near 1430nm was observed for free water band in dry fruits such as soybean. 

In pear flesh a sharp absorption band was observed at 1406nm in a dehydrator which decreased in 

intensity as the dehydration process proceeded. The NIR spectrum of potato is in the range of 1100-

2500nm (Buning-Pfaue 2003).  

ElMasry et al., (2007) used hyperspectral imaging in visible and near infrared regions i.e. 400-1000nm 

for the determination of moisture content (MC), SSC and pH in strawberry using PLS and multivariate 

calibration for spectral data analysis. The research concluded that as the strawberries ripened the moisture 

content and relative reflectance in 400-1000nm domain increased. For MC the correlation coefficient (R) 

was 0.90, with a SEC 6.1 and a SEP of 3.9.  

Rajkumar et al., (2012) investigated the relationship between banana maturity stage and MC using 

hyperspectral reflectance imaging (400-1000nm) at three different temperatures of 20, 25 and 30oC and 

developed a linear correlation between the two parameters. They also found out that moisture content 

increased with growing maturity. The coefficient of determination for MC was found to be 0.87.  

Huang et al., (2014) developed regression models to simultaneously predict MC and color of soybeans 

during drying process using hyperspectral imaging technique in which mean reflectance and image 
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entropy parameters (related to the uniformity of pixel intensity in the image) were extracted. After 

establishing PLS models, it was found out that reflectance data provided more reliable results than the 

entropy data. The correlation coefficient valued 𝑅𝑝 = 0.97 and RMSEP=4.7% was obtained for MC 

using reflectance data as compared to 𝑅𝑝 = 0.901 and RMSEP= 9.2% using entropy data.  

Pu and Sun (2015) used NIRS to show that the moisture in the central part of mango fruit is lower 

than in the surrounding flesh. For this purpose, two lab scale HSI systems were used and it was concluded 

that with the increase in MC the value of the mean relative reflectance decreased. Five feature wavebands 

at 908, 1076, 1153, 1405 and 1706 nm were used to develop PLS models (and showed best prediction 

results with 𝑅𝑝
2 = 0.97 and RMSEP=4.6%.  

 

3.2 Soluble solids, acidity and assessment of the maturity stage 

The soluble solids content (SSC) and total acidity (TA) can be predicted by using reflectance, 

transmittance and interactance modes of NIRS and Vis-NIRS. Good calibrations for different fruits can 

be obtained using transmittance mode. Reflectance mode also reaps satisfactory results for the fruit 

surface which is directly illuminated by the source (V Andrew McGlone et al., 2003). NIRS has 

successfully been brought to use for the determination of the soluble solids content (SSC) of many fruit 

species as apples (Iyo and Kawano 2001; Gomez 2001; Zude et al., 2006), kiwifruit (Ying et al., 2005), 

mushrooms (Roy et al., 1993) and citrus fruit (Guthrie et al., 2005; Gomez et al., 2006).  

In case of tomatoes, SSC and TA are major internal quality indices contributing to the flavor (Kader 

1984; Flores et al., 2009). Flores et al., (2009) conducted a research to predict the internal quality 

parameters such as soluble solid content (SSC) and titratable acidity (TA) of the intact tomatoes 

(Lycopersicum esculentum Mill., cv. ‘Raf’) for two consecutive years. This variety is peculiar for its 

distinctive dark-green color and for its shape; moreover, due to its salinity resistance it possesses an 

exquisite flavor rarely found in other varieties. The study focused on the comparison of the new 

generation diode ray instruments with a laboratory scale NIR monochromator. The harvested fruit was 

stored at 10oC and 95% RH. Different wavelength bands and different pretreatments were used to 

develop calibration models. The result concluded that the irregular shaped variety under study was 

accurately predicted by NIR using the spectra collected in the range of 400-1700nm excluding the 
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wavelengths above 1700nm, as they were found unnecessary for the application. The SECV for the 

prediction of SSC was in the range of 0.55-0.74 oBrix and those of TA ranged in between 0.06% to 0.1% 

citric acid (Osborne et al., 1993; Lammertyn et al., 2000).  

The soluble solid contents (SSC) of citrus fruits could be predicted by using partial least square (PLS) 

and modified PLS (MPLS) models.  

V. McGlone et al., (2003) conducted a research to predict the SSC and TA of Citrus reticulata (cv. 

"Miyagawa") known as Satsuma Mandarin using transmission, reflectance and interactance modes 

within spectral windows of 500-1100nm. Direct transmission mode with 700-930nm spectral window 

gave most accurate SSC predictions with R2 value of 0.93 and RMSEP=0.32%. None of the three 

measurement modes provided accurate prediction of TA and the only predictive ability achieved (best 

values being R2~0.65 and RMSEP~0.15%) was afforded indirectly through a correlation with the skin 

chlorophyll changes occurring with fruit maturity. In a more recent study on Satsuma mandarin, 

reflectance in a window of 400-2350nm was used obtaining an RMSEP value of 0.16 and an 𝑅𝑐
2 = 0.94 

(Gomez et al., 2006). 

Also other authors assessed internal quality parameters of mandarin fruit for total soluble solids (SSC) 

and dry matter (DM). By applying modified partial least square (MPLS) model using 720-950 nm 

window in 00 interactance spectroscopy with two scans they obtained an 𝑅𝑐
2 of 0.41 for SSC and 0.91 for 

DM and RMSEP of 0.22% and 0.45% for the above attributes respectively, for 17 different populations. 

They found out that the performance of the calibration model was very satisfactory for the prediction of 

SSC and DM whereas it was unacceptable for juiciness and TA (Guthrie et al., 2005).  

Cayuela (2008) predicted the SSC and TA in oranges by developing PLS models using NIR 

spectrophotometer with a post dispersive reflectance configuration. According to these authors fruit 

samples were kept at 20oC for 24 hours prior to measurements. Destructive techniques were used to get 

the values of SSC, TA and pH using digital refractometer, potentiometric titration of citrus juice and pH 

meter respectively prior to spectral analysis. Spectra were collected in two spectral windows of 

wavelength ranges 578-1090.2nm and 1110-1842.2nm respectively. For SSC the effect of spectral 

acquisition modalities on the efficacy of the model were also investigated and particularly by taking four 

and two spectral measurements along the fruit equator. The results were found to be more reliable for 
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the prediction of the SSC and not very consistent in case of TA and pH because of the low level of these 

parameters in citrus fruit. It was found that PLS models performed better than the MPLS models with 

the best results being 𝑅𝑐
2 = 0.88 and an internal validation SECV of 0.41 for SSC and that the acquisition 

of two spectral measurements gives better results as compared to four spectral measurements. Moreover, 

in this research the typical diffuse spectra of oranges were found in resemblance to those of Satsuma 

mandarins by Gómez et al., (2006).  

Some authors applied hyperspectral imaging in the range 400-1000 nm to predict the SSC, TA, pH, 

and DM in strawberries by selecting 6 wavelengths form the visible NIR region based on the β-coefficient 

of PLS analysis. Both PLS and MLR models gave same correlation coefficients of calibration i.e. 𝑅𝑐 =

between 0.80 for SSC and 0.92 for DM (ElMasry et al., 2007). In the same work the images were also 

used to classify fruits according to their maturity stage. The same techniques and spectral range (500-

1000nm) was also used to predict SSC and firmness of blueberries (Leiva-Valenzuela et al., 2013). For 

these high-value crops implementing a sorting line for soluble solids would, in fact be, highly desirable. 

Schaare and Fraser (2000) compared the reflectance, interactance and interference modes of 

spectroscopic measurements for estimation of SSC of Actinidia chinensis (yellow fleshed Kiwifruits). 

According to this research the interactance mode spectra were found to give the most accurate results for 

SSC estimation (also the results were valid for estimation of flesh color and density). SSC were predicted 

with a SEP of +0.80oBrix with correlation coefficient R2=0.93. Whole fruit densities and flesh hue angles 

were also predicted. Moreover on kiwifruits (Moghimi et al., 2010), combined Vis-NIR in the 

wavelength range of 400-1000nm and chemiometric techniques to predict SSC and TA. The prediction 

performance showed 𝑅2values of 0.93 and 0.94 and RMSEP of 0.26oBrix and 0.076 for both parameters 

respectively. 

Pu et al., (2016) studied the prediction of SSC, pH and maturity discrimination in lychees by 

employing shortwave NIR in the range of 600-1000nm and longwave NIR in the range of 1000-2500nm. 

This research concluded that spectral set in the longwave NIR region performed better having values 

𝑅𝑝 = 0.88 and RMSEP=0.91 oBrix for SSC and 𝑅𝑝 = 0.74 and RMSEP=0.29 for pH.  

Some studies related to hard green mangos tried to index the eating quality of the fruits in terms of 

SSC (Subedi et al., 2007). PLSR models were optimized (for second derivative of absorbance spectra) 
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for SSC and DM in terms of short wave NIR wavelength range. The SSC models showed an 𝑅𝑣
2 = 0.92 

with SEP of 0.67 and bias of 1.25%.  

Moreover, another study by (Rungpichayapichet et al., 2016) developed calibration models for mango 

ripening index, SSC, TA, and firmness using diffuse reflectance spectra (700-1100nm) and PLSR. It was 

found out that using combined data of a few years for calibration greatly enhanced the prediction 

accuracy. All desired parameters were very suitably predicted by establishing prediction models from 

three year data with a 𝑅2 value of 0.9 and SEP of 1.2% for SSC and 𝑅2 =0.74 and SEP=0.38% for TA.   

Marques et al., (2016) conducted a study for the evaluation of hand held NIR spectrometer based on 

linear variable filter technology (LVF) for quality control analysis of mango ‘Tommy Atkins’ by building 

calibration models using PLSR for determination of SSC, TA, dry matter (DM) and pulp firmness. The 

spectrophotometer was found feasible to determine the quality parameters giving the coefficient of 

determination values 0.92 and 0.50 for SSC and TA respectively, and RMSEP of 0.55oBrix for SSC and 

0.17% citric acid.  

These techniques may also be a valid support to enhance efficiency of cultivar breeding as for apple 

fruit phenotypes. Pre-storage and post-storage (0.5oC, 6-10 weeks) NIR spectra of fruit were recorded 

and in the case of SSC and DM, the genetic correlation between observed and predicted performance 

was as high as 0.91 for SSC and 0.95 for DM (Kumar et al., 2015).   

Moreover a desired objective of these predictive models is that they should be extended to as much 

pre-harvest conditions as possible, and therefore when testing different varieties, a multi-cultivar model 

is often compared to individual ones as in the case of plums (Louw and Theron 2010). These authors 

developed multivariate prediction models using FT-NIRS (800-2700nm) for SSC, TA, weight, sugar to 

acid ratio and firmness in three different cultivars of African plums. ‘Pioneer’ and ‘Laetitia’ cultivar 

specific models had a better predictability capacity as compared to ‘Angeleno’ model and it was 

concluded that multi cultivar models outperformed single cultivar models on 𝑅2 values. Bureau et al., 

(2009) used spectra of 598 fruits from 8 different cultivars of apricot at different maturity stages to predict 

a general model for SSC, TA and other attributes and found a high correlation for SSC and TA, whereas 

other quality attributes were not satisfactorily predicted. These models were, in fact, applied for the 

prediction of other 279 fruits giving a prediction error of less than 8% of fresh weight for SSC and about 
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15% for TA. Yang et al., (2014) developed a robust model on sugar beet with 890 samples (820 in 

calibration and 79 in prediction) over 28 varieties which showed coefficient of determination value i.e. 

𝑅2 for calibration models of sugar content of 0.908 and RMSECV of 0.38.    

On the other side in some cases the variety discrimination is also important, and therefore there are 

studies aimed to detect variety other than to predict other quality attributes as for pears where the authors 

discriminated 3 varieties by means of hyperspectral imaging (Li et al., 2016) and artichokes where 2 

varieties were correctly classified (Amodio et al, unpublished). The results of this paper can be utilized 

to develop simple, low-cost and efficacious equipment in the further study. 

In another study aimed to determining SSC and firmness of intact ‘Aurora-1’ peaches and to 

discriminate among harvest date and maturity stage the authors concluded that for SSC, the model 

obtained from validation set 𝑅𝑀𝑆𝐸𝑃 = 1.08%, R2= 0.59 showed better performance than when applied 

on independent data set (𝑅𝑀𝑆𝐸𝑃 = 1.04%, R2= 0.45) and that no segregation of the samples was 

obtained for harvest season and maturity stage (Nascimento et al., 2016).     

Generally, results on fruits demonstrate that soluble solids can be predicted with good accuracy 

encouraging the implementation of online systems to monitor this and eventually other quality attributes. 

In this case, it should be considered that other acquisition variables may affect the final results as for 

instance the distance from the light source and the position of the fruit as investigated on apple fruits for 

the prediction of SSC (Liu et al., 2007). The apples were equilibrated by placing them at 19oC and 68% 

RH for two days. The distances of 0, 2, 4, and 6 mm were taken under consideration. Variance analysis 

was employed to obtain statistical analysis of FT-NIRS followed by development of calibration models 

using PLS. Best calibration model gave 𝑅2 = 0.84 and SEP of 0.77. The research concluded that the 

different distances had different effect on the performance of the calibration models. 

Moreover, in cases of cut products, model developed directly on the slices can give better prediction 

accuracy as found for sugar beet (Pan et al., 2015) for which SSC, moisture and sucrose content was 

predicted. With the same idea, Lu et al. (2000) developed a model after acquisition to predict the sugar 

content and firmness, finding that the prediction of sugar content for peeled apples was better than for 

unpeeled apples, where the RMSE increased by 0.17 oBrix, on an average. Flores et al. (2008) conducted 

a study to access the SSC of the intact and cut melons and watermelons using a NIR diode array 
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spectrometer for data of two consecutive years. In case of cut melons the SECV was 0.60oBrix and 𝑅2 =

0.88, whereas, in case of cut water melons, the values of above parameters were 0.49o Brix, with R2 of 

0.76, but some uncertainty in the prediction results may be accepted for a crop like this, where the 

prediction of internal sugar content would be very valuable. 

Generally, for melons the variation of SSC along the longitudinal direction may be the major 

limitation in the robustness of the calibration models as pointed out for orange flesh netted melon fruits 

(Cucumis melo L. reticulatus group). The research found out that SSC in the outer mesocarp was 3 units 

higher at the stylar end of the fruit compared with the stem end, and that SSC in the inner mesocarp was 

higher than in the outer tissue, showing higher uniformity at spatial positions. With increasing maturity 

of the fruit, the linear relationship between the outer 10 millimeter and subsequent middle 10 millimeters 

of thickness of tissue also varied as different R2 values were observed, affecting the performances of the 

calibration model. So for these fruits this variability should be taken into account to set up a performing 

acquisition set-up. 

In addition to SSC and TA, NIR spectroscopy have also been successfully used for prediction of sugar 

and organic acid composition of fruits and vegetables.  

The presence of glucose and sucrose in potatoes was predicted by Rady et al. (2015) using visible 

NIR spectroscopy. Each sample to be tested was a slice of 12.7mm thickness uniformly cut from all 

tubers. PLSR demonstrated that strongly correlated models were built for glucose (correlation coefficient 

as high as 0.97 for ‘Russet Norkotah’ and 0.81 for ‘Frito Lay’ cultivar as compared to those of sucrose 

which showed less correlation performance. The results depicted high classification errors for sucrose 

(30% for RN and 34% for FL).  

Fernández-Novales et al., (2009) concluded NIR spectroscopy as a promising technique for 

determination of reducing sugar content during grape ripening, winemaking and aging. NIR spectra of 

146 samples were collected in the region of 800-1050nm. Spectra were interpreted and calibrations were 

developed using PCA, PLS and MLR regression. The values of 𝑅2, SECV and RMSECV for the PLS 

model in full spectral range were 0.98, 13.62g/l and 13.58g/l, respectively.  
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3.3 Macro and micronutrients: vitamins, phenolic, antioxidant activity 

Despite the high content of water in fruits and vegetables, whose peaks predominated over the ones 

of  low concentration constituents causing reduction in prediction accuracy, as their spectra may overlap 

with water (Nicolai et al., 2007), many studies have been conducted to estimate the content of minor 

constituents including phytochemicals.  

Research has been conducted to estimate the total antioxidant activity using infrared spectroscopy 

coupled with chemiometric predictive models. In context of antioxidant activity, infrared spectroscopy 

has garnered interest due to the reduced time required for the analysis, the enhanced precision and the 

simple sample preparation, no requirement for reagents and extraction steps (Lu and Rasco 2012). 

Various spectroscopic methods have, in fact, been used for the determination of the Vitamin C content, 

carotenoids, folates, phenols, and generally for the antioxidant capacity of fruits and vegetables, as also 

for fiber content. Liu et al., (2015) Liu et al., (2015) 

Liu et al., (2015) used multispectral imaging in combination with chemiometric methods for 

measurement of lycopene and phenolic compounds content in intact tomatoes and concluded that the 

models developed with back propagation neural network (BPNN) gave the best performance. For 

lycopene and total phenolic content prediction, the residual predictive content (RPD) was 4.59 and 9.33, 

respectively.  

Rungpichayapichet et al., (2015) compared the NIRS and color measurement to predict β-carotene 

content in Mango and found out that long wave NIR served the prediction purpose better as compared to 

the short wave NIR. The coefficient of determination 𝑅2 > 0.8 and standard error of prediction of 11.6-

20.2 retinol equivalents RE 100g-1 edible part EP were obtained by NIRS calibration.  

De Nardo et al., (2009) declared attenuated total reflectance (ATR) spectroscopy combined with 

multivariate analysis as a reliable and effective technique for rapid quantification of lycopene and β-

carotene in tomato juices. High performance liquid chromatography (HPLC) was used as a reference 

method. Unique marker bands were shown by infrared spectra at 968cm-1 for β-carotene and 957cm-1 for 

lycopene. Multivariate spectral data analysis gave r values of >0.9 between the ATR-IR predicted and 

HPLC reference values. Standard error of cross-validation (SECV) values of 0.5 and 0.04 mg/100g of 

juice for lycopene and β-carotene were given.  

Yang et al., (2015) used various models for the development of relationship between anthocyanin 
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content in pericarp and HSI information. 3-D images of lychee were acquired in the range of 350-1050nm 

from HSI system. For data dimensionality reduction and selection of optimal wavelength in relation to 

anthocyanin content, successive projection algorithm (SPA) and stepwise regression (SWR) algorithm 

was used. To develop a quantitative relationship between the anthocyanin content in the pericarp and 

HSI information in both optimal wavelength sets, radial basis functional neural network (RBF-NN) was 

used to fuse together SPA-RBF-SVR and SWR-RBF-SVR models.  

 Ferrer-Gallego et al., (2011) measured the phenolic compounds in the grapes and grape skin using 

NIR spectroscopy technique in the wavelength range of 1100-2498nm. The ratio performance deviation 

(RPD) was found to be 4.8, 2.1, 5.8 and 4.2 for anthocyanins, phenolic acids, flavanols, and flavonols in 

intact grapes, respectively. RPD values for the same parameters in case of grape skin were found to be 

4.4, 6.3, 13.6, and 12.7 respectively. The study concluded that in order to obtain best results the use of a 

fiber-optic probe is recommended for directly recording the spectra of intact grapes.  

Hyperspectral imaging and FT-NIR have also been used to predict phenolic content and antioxidant 

activity of fresh-cut artichokes, with FT-NIR giving more accurate results particularly for phenols which 

were predicted with an RMSEP of 18 mg/100g (Amodio et al., unpublished). 

 Ignat et al., (2012) conducted a study to non-destructively estimate the ascorbic acid content of 

bell peppers during various stages of growth in reflectance mode obtaining Vis-NIR (477-950nm) and 

NIR (850-1888nm) spectra. The destructive analysis of the three cultivars showed that the ‘Ever Green’ 

variety possessed the highest content of ascorbic acid of 148.1mg/100g as compared to ‘No.117’ and 

‘Celica’. The PLS models predicted the ascorbic acid contents of all three cultivars with a cross validation 

error of 15.1-18.9mg/100g (RPD=2-2.4). In the same way another work evaluated the ability of NIR to 

predict ascorbic acid, chlorophyll a and b, and total phenolic compounds in the exocarp and mesocarp 

tissues, respectively of summer squash concluding that NIRS could be used for screening purposes 

(Blanco-Diaz et al., 2014).  

 Pissard et al., (2013) collected the spectra of three different varieties of apples collected for three 

consecutive years in the range of 400-2500nm using NIR reflectance mode for the prediction of Vitamin 

C and polyphenolic content. The research concluded that good prediction precision for vitamin C was 

achieved using NIR with a SEP of 4.9mg 100-1g FW and R2 = 0.8. In case of total polyphenol content 
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these values were obtained to be 140µg g-1 FW and R2 = 0.94. Therefore, the quality of the apples was 

successfully predicted using NIRS.  

Also for nutritional compounds NIR spectroscopy can be used to screen different genotypes with 

the purpose of selecting cultivar with high nutritional values. One example is a study on Cassava root 

where more than 3000 samples were used to predict total carotenoids, and β-carotene and dry matter, 

with determination coefficients higher than 0.92. In the same study NIRS also distinguished the roots 

with high or low cyanogenic potential (R2: 0.86).  

 Sinelli et al., (2008) developed predictive models for blueberry to evaluate the content of total 

phenols (RMSEP = 0.18mg catechin/g), total flavonoids (RMSEP = 0.25mgcatechin/g) and total 

anthocyanins (RMSEP= 0.22mg catechin/g), whereas for ascorbic acid model performance were lower. 

Also for nutritional compounds NIR spectroscopy can be used to screen different genotypes with the 

purpose of selecting cultivar with high nutritional values. One example is a study on Cassava root where 

more than 3000 samples were used to predict total carotenoids, and β-carotene and dry matter, with 

determination coefficients higher than 0.92. In the same study NIRS could also distinguish roots with 

high or low cyanogenic potential (R2: 0.86).  

Research work has also been done to predict the fiber content in various cereal products, barley 

cultivars and Brazilian soybean (Kays and Barton 2002; Kays et al., 2005; Ferreira et al., 2015).  

Ferreira et al., (2015) accessed the total dietary fiber in ground Brazilian soybeans employing 

FT-NIR spectroscopy in the range of 1000-2500nm using diffuse reflectance. The best prediction results 

were obtained using PLSR model and the R2 value was found to be 0.80 with a RMSEP=0.86, 

conforming the reliability of NIRS technology for accurate prediction of total dietary fiber   

Moreover, fiber content have been predicted on ground cereals. Kays et al., (2005) investigated 

the total dietary fiber (TDF) content of barley cultivars using NIRS reflectance and transmission modes 

for whole polished and grounded grains. For polished whole grains, MPLS models were developed in 

the transmission spectral range of 850-1048nm obtaining SECV of 10.4 and R2 value of 0.82. In case of 

ground barley samples, reflectance spectroscopy was employed in the wavelength range of 1104-2494 

nm getting better prediction with SECV of 5.2 and an R2 of 0.96. Hence, the reflectance mode gave better 

results than the transmission mode due to enhanced amount of information in the wavelength region 
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utilized. Also Kays and Barton (2002) used the NIRS to predict the soluble and insoluble dietary fiber 

grounded cereals. It was concluded by the research that insoluble dietary fibers were predicted more 

accurately as compared to the soluble dietary fibers. The values of SECV and R2 for insoluble dietary 

fiber were 1.5% and 0.98, respectively, whereas the same values for soluble dietary fibers were 1.15% 

and 0.82.  

Beside the application of spectroscopy on intact fruits and vegetable these techniques may also 

be used as destructive methods on juices, pastes and powders made from horticultural products or on 

chemical tissues extracts prepared as in the conventional analytical methods, since even in this way the 

measurement of nutritional content would be much faster and less expensive (in time and resources) than 

the conventional reference method. Interesting results on fruit paste have been reported for profiling 

tomato carotenoids having good accuracy for β-carotene content (𝑅2𝐶𝑉 of 0.89 and RMSECV=0.174µg 

g-1and for all-trans lycopene content ( 𝑅2𝐶𝑉 = 0.75 and RMECV=6.88µg g-1) (Deak et al., 2015).  

 Bureau et al., (2013) tested attenuated total reflectance FT-IR on 284 and 483 samples from two 

successive years and of different cultivars possessing large phenotypic variability. Homogenates of all 

peach fruit samples were also analyzed using ATR-FTIR three methods were used to determine sugar 

and organic acid composition, namely, colorimetric enzymatic measurement (ENZ), high performance 

liquid chromatography and proton NMR spectroscopy, concluding that ENZ reference data provided best 

correlation with ATR-FTIR data, with best results giving RMSECV in range of 5.8-8.7% for SSC and 

5.9-8.0% for TA.  

 Yang and Irudayaraj (2002) used six different spectroscopic techniques capable of detecting the 

vitamin C content in powdered mixture and solutions of food and pharmaceutical products by comparing 

the efficacy of NIR (0.988), FT-NIR (0.992), FTIR-ATR (0.999), diffuse reflectance (DRIFTS) (0.976), 

Fourier transform infrared-photoacoustic FTIR-PAS (0.988) and FT Raman spectroscopy (0.95). Overall 

prediction error ranged from 0.2 to 3 with best results obtained when using FT-NIR and FT Raman 

techniques. Another example regarding the prediction and localization of glucosinolates on freeze-dried 

broccoli by means of hyperspectral imaging demonstrated good potentiality on these samples 

(Hernandez-Hierro et al., 2014).   
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4. CONCLUSIONS 

Further research perspectives in this field should be focused on simplifying existing models reducing the 

number of wavelength in order to facilitate the implementation of online sorting systems based on 

nutritional content and on exploiting the possibility of using these techniques to develop new methods 

for unexplored nutritional compounds and over a large number of species and cultivar, also to assess the 

impact of pre and postharvest factors on the fate of these compounds. Moreover, also the scope of using 

spectroscopic techniques to assess nutritional content on fruit extracts prepared as for the conventional 

analytic methods would be an interesting perspective to reduce the time of measurements and to allow 

to conduct the analysis without having a chemical laboratory with sophisticated equipment and expert 

technicians. 

Finally, in this chapter the use of these techniques as a classification methods were not deeply 

commented, since the focus was on quantitative methods, but classification algorithms may be applied 

to discriminate fruits and vegetable for their origins, including also the growing practices or for quality 

discrimination with a particular regard to their nutritional quality. 
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1. NEED FOR IMAGE ANALYSIS 

With the rapid changes in lifestyles in the modern era, the demand for the healthy, safe, nutritious, 

authenticated and fresh food products have boosted in the past few decades. The consumers prefer 

convenient, ready to eat (RTE) and high quality food products with known origins. Moreover, awareness 

and concerns of the modern food consumers regarding food fraud, safety scandals and a globalized food 

production have oriented the research in food industries to develop standards for effectively 

interconnecting the systems of food production and distribution (Trienekens and Zuurbier, 2008). Food 

fraud and adulteration, are becoming highly sophisticated, vitalizing the need for high standard control 

on an increasing number of samples. As for fresh fruit and vegetable, product authenticity is the major 

concern both from consumer and processors who are concerned about unfair competition in the market 

(Reid et al., 2006). Location of origin, varieties and system of production are some of the production 

factors that need to be certified. Different labels in Europe, are intended to protect the geographic 

provenience of a product, recognized for its peculiar characteristics, or use of a particular farming 

method; the most important among them being, the protected designation of origin (PDO), protected 

geographical indication (PGI) and traditional specialty guaranteed (TSG). Higher price is in fact paid for 

the guarantees derived from these labels, as for social certification of sustainable production or for 

organically produced crops, thus increasing the risk of frauds. With the rising demand of the fresh cut 

produce, the food processing industries are orienting their research towards finding ways for the rapid, 

cost effective, reliable, nondestructive and low environmental impact techniques for the assessment of 
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quality, adulteration and origin of the food products. 

Traditional techniques, used for food authentication rely on the detection of trace elements (element 

profiling) and isotope ratio, particularly important for the authentication of geographical origin and 

growing system, since plants derive their composition from the soil and the production system applied 

and also the ratio of stable isotopes varies with climatic conditions, geographical origin, and soil type. 

Moreover, rare-earth elements are directly linked to the geology of the area and are a powerful 

discriminating factor for geographical origin. Liquid and gas chromatography (LC and GC), eventually 

coupled with mass spectroscopy (MS), Nuclear Magnetic Resonance (NMR), Isotope Ratio Mass 

Spectrometry (IRMS), Multi Collector – Inductively Coupled Plasma – Mass Spectrometry (MC-ICP-

MS), Thermal Ionization Mass Spectrometry (TIMS), Inductively Coupled Plasma-Mass Spectroscopy 

(ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) are used for food 

authentication. Molecular tools as Polymerase Chain Reaction (PCR) are used for species and cultivar 

differentiation, for detection of Genetic Modified Organism (GMO) but also in other fields related to 

food origin and production.  

Since the conventional destructive analysis methods are time consuming, expensive, targeted and labor 

intensive therefore, the nondestructive methods due to their reliability, rapidness and cost effectiveness 

are gaining popularity in the food industry with widely developed methods for the classification of fruits 

and vegetables, origin and variety, defect detection and internal composition prediction. Rising concerns 

regarding the nutritional composition led many research works to evaluate the feasibility of the spectral 

profiles in the visible near infrared range (Vis-NIR), near infrared range (NIR) and hyperspectral images 

(HSI) for prediction and mapping of desired compounds in fresh produce. These techniques hold 

significant advantages over the chemical analysis since the chemical analysis are more time consuming, 

costly, adversely impact the environment, need careful sample preparation and require skilled personnel 

to yield expected results. It is important to mention that non-destructive techniques cannot completely 

replace the conventional methods but can serve to assist these techniques saving time, expenses and 

labor. On the other hand, the non-destructive methods need no sample preparation once the model is 

developed making the prediction process quick. This chapter will focus on the nondestructive techniques 

with special emphasis on hyperspectral imaging for the quality assessment of the fresh produce and will 
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present a basic introduction of the nondestructive image analysis techniques. 

2. IMAGE ACQUISITION METHODS IN FOOD TECHNOLOGY 

2.1 Relationship between images, spectroscopy and hyperspectral imaging 

Computer vision technology uses various image processing routines hence providing a reliable 

alternative for the transition of industry towards automation. A computer vision system typically 

comprise an illumination system connected to a personal computer further in connection with electrical 

and mechanical devices which operate as an alternative for the replacement of human manipulative 

efforts in process management and performance (Du and Sun, 2006). But there are a few limitations 

associated with the computer vision technology to be used for industrial applications, since they are only 

confined to the measurement of external attributes and are unable to define the internal features. Modern 

food industries require systems capable for the classification of the products having similar appearance, 

quantification of internal/chemical quality attributes, and detection of invisible internal defects.  

In this regard for the measurement of optical properties based on reflectance, absorbance and 

transmittance modes, of the food products, using spectral devices have proved to be very reliable for 

evaluation of internal quality attributes, classification and defect detection. Most commonly the spectral 

devices measure the ultraviolet (UV), visible (VIS) and near infrared (NIR) regions along with their 

combinations in the electromagnetic spectrum (Jayas et al., 2010).  

The energy released or absorbed by charged particles is known as electromagnetic radiation which 

possesses electric and magnetic field components which oscillate (troughs and crusts) perpendicular to 

the direction of the energy propagation as well as each other. The distance between two adjacent crests 

or two adjacent troughs is termed as wavelength. This electromagnetic radiation is associated with a 

particular wavelength range termed as ‘electromagnetic spectrum’ (see Figure 1). The electromagnetic 

spectrum is divided into seven major regions starting from higher frequency to lower frequency and 

difference in the size of the waves, since frequency is inversely proportional to the wavelength (Equation 

1). Among these regions, the human eye can only detect 300nm of the electromagnetic field with bare 

eyes i.e. in a range of 400-700 nm known as the visible region. 

𝑣 = 𝑓λ                              (Equation 1) 

Where, v is the speed of the wave (3.0x108 ms-1 in case of vacuum), f is the frequency and λ is the 

wavelength. Quantitative and qualitative analysis of various materials are conducted on the basis of the 
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interaction of the light photons in the electromagnetic spectrum with the molecules of various materials 

under study. Therefore, in the food and agriculture industry the assessment of various physical and 

chemical properties of products is carried out on the basis of this interaction. 

 

Figure 1. The Electromagnetic Spectrum 

An image can be defined as a two dimensional function f (x, y) where x and y represent the spatial 

coordinates and the amplitude of f at any given coordinate (x, y) is called the gray level or intensity of 

the image at that point. Each digital image comprises of a limited number of values or pixels each of 

which is located at a particular place along with a value assigned. Color images are formed by the 

combination of two or more 2-D images such as an RGB (red, green, blue) image (see Figure 2).  

 

Figure 2. Coordinate convention for a simple 2-D spatial gray scale image and its matrix 

representation 

In Figure 2 the 2D digital image conceptual representation is shown and f(x, y) is by definition a digital 

image itself and whereas the array represents each element of the image known as image element, picture 

element or pixel.  

Hence a gray scale image provides the intensity of reflected light over a single band from the 

electromagnetic spectrum. On the other hand, a color image constitute intensity over the red, green and 

blue bands of the electromagnetic spectrum. HSIs are composed of multiple continuous bands over a 
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specified range of wavelengths possessing different resolutions in the electromagnetic spectrum. 

Increasing the number of bands enhances the capability of the image to carry more information. The 

purpose for the development of the HIS systems was to integrate the spatial and spectral information to 

obtain desired results which would not have been possible neither with spatial nor spectral techniques, if 

used individually. Since, the spectroscopy techniques alone provide the spectral information resulting 

from the interaction of photons of light with the molecules of the material under study as reflected 

intensity at different wavelengths hence formulating an explicit ‘fingerprint’ of the product whereas the 

imaging technique provides spatial and temporal information in a 2D space. Integration of these two 

techniques results in a formulation of 3D data cube with the spatial dimensions along the x and y 

coordinates and a spectral dimension along the z coordinate (see Figure 3).  

 

Figure 3. Phenomenon for the formulation of hyperspectral cube where x and y are the spatial 

dimensions and λ represents the spectral dimension 

Hyperspectral imaging technique has proved to be reliable, rapid and economical; providing elaborative 

analysis results with the spatial dimension representing the spatial distribution of the chemical 

compounds in the food products along with the spectral dimension representing the type of chemical 

compounds present in the specimen under consideration. Simply stating, the spatial dimension. Image 

processing and analysis is an integrating approach of the principles of mathematics, computer science 

and programming resulting in the enhancement of the systems performance to evaluate several samples 

per second rather than several seconds per sample. Table 1 provides a brief picture of the major 

differences between imaging, spectroscopy and hyperspectral imaging.  

Table 1. Overview of differences between imaging, spectroscopy and hyperspectral imaging 
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2.2 Basic Terminology 

Proceeding further a basic introduction of the commonly used terminology including important 

expressions, definitions and technical information regarding hyperspectral image analysis is inevitable 

to highlight the differences and grasp the concepts efficiently. 

2.2.1 Spatial Resolution 

The spatial resolution of an image is defined as the area in the image that is represented by one pixel of 

a 2-D image, mentioning more precisely, the spatial resolution refers to the number of pixels per unit 

length. Hence, in case of the hyperspectral images, the size of the smallest object that can be observed 

by the sensor on the sample as a distinct object refers to spatial resolution. Higher the spatial resolution 

the more detail the image carries.  

2.2.2 Spectral Range 

The number of wavelength regions in the electromagnetic spectrum covered by the hyperspectral 

imaging device is called the spectral range. Modern demands of chemical imaging and agricultural 

product analysis have led manufacturers to develop hyperspectral imaging devices covering different 

wavelength ranges of the electromagnetic spectrum depending on the types of analysis. In case of food 

analysis, the most commonly used spectral ranges are ultra violet (UV) (190-380nm), visible range (Vis) 

(380-700nm), Visible near infrared (Vis-NIR) (400-1000nm), and the near infrared (NIR) (800-1700nm) 

ranges. For more sophisticated applications, the devices in the short wave infrared (SWIR) range (900-

2500nm) have also been developed but usually for the food applications near infrared (800-1700nm) is 
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most commonly used. 

2.2.3 Spectral Resolution 

It is the measure of the narrowest spectral feature that can be resolved by the spectrograph of the 

hyperspectral imaging device in the electromagnetic spectrum. Hence, the ultimate capability of the 

spectrograph in separating the two adjacent monochromatic features emitted by a particular point in an 

image refers to the spectral resolution. The magnitude of the spectral resolution is related to the 

wavelength dispersion of the spectrograph as well as the entrance and exit aperture sizes. 

2.2.4 Band Numbers and Band Width 

The number of bands usually can be referred to the number of images or number of wavelengths stacked 

to form a single hyperspectral image. In other words, in case of a multispectral image the band numbers 

are usually lower (>10) referring to the informative images at certain wavelengths while in case of the 

hyperspectral images the number of spectral bands may range from 100-250 depending upon the type of 

the hyperspectral imaging device being used.  

2.2.5 Signal to Noise ratio (SNR) 

The ratio between the measured radiance by the hyperspectral imaging device and the noise created by 

the electronic components and detector of the imaging system is defined as signal to noise ratio. In other 

words, SNR is a comparison of the level of signal desired to the level of background noise, hence, higher 

the ration the lower the interference of the noise. In case of the hyperspectral imaging the SNR is 

wavelength depended due to the reason that a decrease is seen in the overall radiance over the longer 

wavelengths along the electromagnetic spectrum. 

2.2.6 Spectral Signature 

 Spectral signature can be defined as the pattern of electromagnetic energy reflected, absorbed or 

transmitted at a specific wavelength. All the materials possess distinctive chemical, physical and 

biological features that can be distinguished by observing the patterns of the reflection, absorbance, and 

emittance of light or electromagnetic energy at specific wavelengths which is the basic fact exploited by 

the hyperspectral imaging. This feature is known as spectral signature or spectral fingerprint. Each pixel 

in the hyperspectral image has its own spectral signature.      

2.3 RGB Imaging 

Color plays a significant role in human visual perception as well as in computer vision. Thousands of 



47 

 

color shades and intensities can be discerned by the human eyes compared with approximately 24 shades 

of grey. Natural scenes are recognized by computer vision based on color information. Color plays a role 

of an important descriptor in automated image analysis for simplification of object identification and 

extraction from a scene. Three factors are responsible for the perceived color of objects: the spectral 

reflectance from the sample (how surfaces reflect color), intensity of ambient illumination (the color 

content of light shining on a surface), and the spectral response of the sensors in the imaging system 

(Gunasekaran, 1996). A tremendous amount of spatial resolution is offered by color vision that is useful 

for the quantification of the ingredient color distribution and surface texture in a food system. There are 

two major categories of color image processing firstly, full-color processing with the images obtained 

from a full-color sensor; and secondly, pseudo-color processing, which works by the assignment of each 

color shade to a particular monochrome intensity or range of intensities. 

Three primary colors red, green, and blue (RGB) constitute the color combination of the photographed 

image. This is known as additive color system since if equal amount of three colors are combined, they 

form white. Color images can be created by placing red, green, and blue filters over individual pixels on 

the image sensor which in most cameras is a charge coupled device (CCD). Interpolation is used by the 

camera for the computation of the actual color of each pixel by combining the color it captured directly 

through the filter with the other two colors captured by the pixels around it (Figure 4). 

 

Figure 4. Working principle of RGB camera (Sensor red, green and blue color filtered pixels 

separately and full color image) 
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Currently, development of some smartphone applications are also under progress to access certain color 

related quality attributes. The devices that contain a charged coupled detector (CCD) usually use RGB 

coding in which the pixels are coded in the red, green and blue channels in between a range of 0-255, 

where 0 refers to black while 255 refers to white. These images can also be represented in other systems 

by conversion of the RGB variables to other color spaces such as Lab (or CIELab), where L represents 

lightness, and a and b mark the variations from red to green and yellow to blue; HSV (Hue, Saturation, 

Value) a cylindrical-coordinate system which is a representation of human vision; YCBCR, used for 

luma chroma JPEG conversion, where y represents the luminance component and both CB and CR the 

chromatic components and CMYK (cyan, magenta, yellow, key), which is used usually in color printing. 

2.3.1 RGB model 

Every color in an RGB model is represented in its primary spectral components of red, green, and blue 

based on a Cartesian coordinate system in which the cubical color subspace of which is shown in Figure 

5. In this case the RGB primary values can be seen at three corners while the secondary colors (cyan, 

magenta, and yellow) formulate the rest of the three corners; the black color (value 0) lies at the origin 

and white (value 255) is at the corner farthest from the origin. In this model, the gray scale (points of 

equal RGB values) extends from black to white from the RGB values (0, 0, 0) to (255, 255, 255). The 

different colors in this model are basically defined with the help of vectors extending form the origin and 

can be seen on or inside the cube (Gonzales and Wintz, 1987). If all R, G and B possess zero values then 

the resulting color is black and when all these color values are maximum i.e. 255 each, the color in this 

case is white. Usually in computer vision systems, each the base-color intensities possess 8 bits of 

resolution thus, representing each point in the image by 24 bits of data. Moreover, for obtaining 

information on any point in the image, analysis of all 24 bits of data must be done (Gunasekaran, 1996). 

Also Figure 5 shows the splitting of an RGB image of grape wine leaf into separate red, green and blue 

colors. 
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Figure 5. Schematic diagram of an RGB color cube and splitting of an RGB image of 

pomegranates into red, green and blue 

2.3.2 CIE Lab color model 

This color space was created by the International Commission on Illumination (CIE) in 1931 and was 

one of the first color spaces mathematically defined. It is also known as CIELAB color model. CIE L*a*b 

lies among the color spaces which were derived from CIE XYZ space in 1976. In L*a*b* color model 

the color is determined with respect to the position in a 3D color space. All the colors visible to the 

human eye were described and the creation of this model was aimed at serving a device-independent 

model. The Hunter and the CIE L*a*b* models use the following parameters, namely lightness 

represented as L*. Black color is yielded by an L* value of 0 while an L* value of 100 indicates diffuse 

white. In this case, a* represents the Chroma or position of a color between red/magenta and green. a* 

value with a negative sign indicates green color while magenta is indicated with a positive value. b* 

shows the position of the color between yellow and blue. Negative values on this case indicate blue color 

and positive values indicate yellow color.  
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Figure 6. Schematic diagram of CIE Lab model and conversion from the RGB image of 

pomegranates to CIE Lab model 

2.3.3 HSV model 

The HSV model is composed of 3 components, namely hue, saturation and value. In cases where value 

is substituted by brightness the model is named as HSB. In this model the resemblance to the human 

color perception is higher as compared to other additive and the subtractive color models. Technically, 

in CIECAM02 model the hue, saturation and brightness, has been defined. Hue is defined as the degree 

to which a stimulus can be described as similar to or different from stimuli that are described as red, 

green, blue, and yellow (the unique hues). Intensity on the other hand is the total amount of light passing 

through a particular area and an attribute of a visual sensation according to which an area appears to emit 

more or less light is called brightness. The brightness that is related to the brightness of a similarly 

illuminated white is called lightness value. Moreover, the attribute of a visual sensation according to 

which the perceived color of an area appears to be more or less chromatic is called colorfulness. 

Colorfulness is the degree of difference between a color and gray. Furthermore, saturation is defined as 

the colorfulness of a stimulus relative to its own brightness.  
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Figure 7. Schematic diagram of HSV model and conversion from RGB image of pomegranates to 

HSV color space 

 

2.4 Hyperspectral Imaging, Hyperspectral Data and Multispectral Imaging 

Hyperspectral imaging has proved to be a reliable chemical or spectroscopic imaging analytical tool, in 

a variety of fields such as agriculture, pharmaceuticals, astronomy and medicine. This emerging 

technique is an integration of imaging technique and spectroscopy, attaining both spatial and spectral 

information simultaneously in a data cube. Hyperspectral images consist of a stack of images of the same 

object over a large number of contiguous wavebands for each spatial position for a targeted study 

formulating a 3D data cube (Diwan P. Ariana and Lu, 2008). Since each pixel possesses its own spectra, 

these can be useful for the characterization of the composition of that specific position and the spatial 

images provide the surface feature information. The composition of the sample under consideration can 

be accessed by the spectral dimension whereas the spatial dimension helps in visualizing the location of 

a particular chemical compound, and both spectral and spatial dimensions integrated together provides 

an answer to “what and where” in the food sample the desired compound exists (Wu and Sun, 2013a). 

Voxels or vector pixels contain the spectral information, whereas the spatial information is contained in 
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an image with two dimensions having x rows and y columns. In the hypercube shown in figure 8, each 

spectral signature belongs to a pixel that corresponds to a specific spatial region, which records the entire 

spectrum of the measured spatial pixels. Hence, the resulting spectrum form an image is measured as the 

capability of the sample for scattering or absorbing of the exciting light, simultaneously presenting the 

characteristic chemical information and hence in this way the spatial images can be used for attaining 

surface-feature information.

 

Figure 8. Hyperspectral image of fresh cut fennels and spectrum of a pixel 

2.4.1 Components of Hyperspectral imaging system 

Instrumentation plays a basic and important role for the acquisition of high quality and reliable 

hyperspectral images. The selection of the components, setup design and calibration of the images require 

a background knowledge of the configuration of the hyperspectral imaging devices. The integral 

components of hyperspectral imaging devices are excitation source (light), devices for wavelength 

dispersion and area detectors.  

Light sources are aimed at excitation or illumination of the sample constituting an essential component 

of the optical system. In this regard the halogen lamps, light emitting diodes (LEDs), lasers and tunable 

light sources are most significantly used. Halogen lamps are a broadband illumination source and are 

frequently utilized in the visible and near-infrared spectral ranges. Usually, a tungsten lamp filament is 

enclosed in a halogen gas filled quartz glass bulb for the formulation of a halogen bulb or source. At 

higher temperatures the filament produces an incandescent emission generating a light source as an 
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output. In this case, the light is a smooth continuous spectrum in the visible and the near infrared regions 

without having any sharp peaks (Wu and Sun, 2013b). Halogen lamps have been used in the food 

applications as illumination sources for external and internal information acquisition (D P Ariana and 

Lu, 2008; Wu et al., 2012; Amodio et al., 2017). But in case of halogen lamps few drawbacks exist such 

as, a shorter life span, rapid heating, voltage fluctuations effecting output stability and sensitivity to 

vibrations. On the other hand, the LEDs can produce a narrow band light in different wavelengths of the 

ultraviolet, visible and near infrared regions along with producing high intensity broadband white light. 

LEDs are also prone to voltage fluctuations, temperature and certain intensity issues have been observed 

compared to halogens since LEDs have comparatively lower intensity and grainy light is produced by 

increasing the number of LEDs in bulbs. Presently, LEDs have not been frequently utilized in the food 

analysis research and are in development phase. Lasers are monochromatic sources of light mostly used 

in Raman and fluorescence applications (Yang et al., 2012; Jiménez-Carvelo et al., 2017). The major 

characteristics of laser light are monochromaticity, directionality and coherence. In case of tunable light 

sources, between the sample and the light source, a dispersion device is used which works on the basis 

of area scan mode and not used for the line scanning and point scanning. These light sources due to weak 

illumination are not suitable for the conveyor belts used in food industries.  

An integral part of the hyperspectral imaging system is comprised of wavelength dispersion devices 

which are used for dispersion of the broadband light into various wavelengths. The most commonly used 

wavelength dispersion devices include filter wheels, imaging spectrographs, liquid crystal tunable filters, 

Fourier transform imaging spectrographs and single shot imagers. In this chapter only the imaging 

spectrographs will be emphasized since they are most commonly used with the line scan system. An 

imaging spectrograph comprising diffraction gratings is used for the dispersion of the broadband light 

that is incident on the sample into different wavelengths and generates a spectrum for each point on the 

scanned line. Equally spaced transmitting or reflecting elements separated from each other by a distance 

in order of light wavelength under study formulate a diffraction grating (Palmer, 2005). Image 

spectrographs are basically divided into two major categories named transmission gratings and 

reflectance gratings. In case of transmission gratings, the grating is superimposed on a transparent surface 

while as the name indicates, in case of the reflectance grating the surface is reflective with a grating 
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superimposed on it. Figure 9 shows the flowchart diagram of the components of a common push broom 

(line scan) hyperspectral imaging system.  

 

Figure 9. Optical chain of common push broom imaging spectrometer adapted from (Dell’Endice 

et al., 2009) 

The transmission grating is seldom used due to limited properties of the resin and limited operability at 

higher diffraction angles. Therefore, reflectance gratings are most commonly used which possess greater 

advantages over the transmission grating such as high quality images with low distortion and larger field 

size (Bannon and Thomas, 2005). The components of a reflection grating comprises of an entrance slit, 

two spherical mirrors that are concentric, a convex reflection grating that is aberration-corrected, and a 

detector. As soon as the light ray enters the slit, it is reflected to the reflection grating by one of the two 

mirrors resulting in the dispersion of the incident beam in a way that the direction of the light propagation 

is a function of its wavelength (Sun, 2010). The other mirror reflects this dispersed light towards the 

detector forming a continuous spectrum at different pixels. The reflection spectrographs provide a high 

signal to noise ratio (S/N) and perform well in low light conditions.   

Area detectors convert the incident light photons into electrons and hence quantify the intensity of the 

light acquired. In hyperspectral imaging systems the most commonly used area detectors are charge 

coupled devices (CCD) cameras comprising of photovoltaic semiconductor devices. These devices are 

semiconductor components for exploiting the semiconductor properties such as Silicon (Si), gallium 

arsenide (GaAr) and germanium (Ge). Due to their low cost, temperature range and simple processing 

silicon is mostly used in semiconductor devices. In most spectral imaging devices, the semiconductor 

line or area arrays used are silicon (Si), indium gallium arsenide (InGaAs) and indium antimonide (InSb) 
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most commonly. Silicon (Si) arrays possess sensitivity towards a wavelength range from 400-1000 nm 

while for the longer wavelengths (1000-5000 nm) the indium antimonide (InSb) and indium gallium 

arsenide (InGaAs) are sensitive (Figure 10). For sensitivity optimization in different wavelength regions 

instruments are developed with overlapping detector elements with cooling arrangements especially for 

the near infrared regions for the reduction of the dark current enhancing the efficiency of the 

hyperspectral imaging devices. 

 

Figure 10. Detector materials and their sensitivity ranges over the electromagnetic spectrum 

2.4.2 Hyperspectral Image Acquisition Modes 

A spectral image can be acquired by three different modes conventionally used, namely, staring image, 

whiskbroom and push broom. Staring imaging is an area scanning mode also known as focal plane 

scanning imaging in which the image field of view is fixed and images are acquired wavelength by 

wavelength making it a wavelength scanning method. In case of whiskbroom method also known as 

point scan method the spectrum of a single point is measured and the next spectrum is acquired by 

moving the sample. The push broom or line scan method acquires a spectrum from a sample line which 

is further instantaneously recorded with the help of an array detector. The line scan method is highly 

compatible with the conveyor belt system and is the most used in the food industry for online 

applications. Therefore, in this chapter more details will be given regarding the line scan hyperspectral 

image acquisition mode. 

In line scan devices a 2D grating and detector array are used to scan an entire line instead of a single 

pixel at a time. Out of the two dimensions of the sensor chip a single line of the sample at a time is 

scanned onto a pixel row and simultaneously on the second dimension a spectrum of each point on the 

line is generated by a spectrograph. Figure 9 shows the configuration of a line scan device. The line scan 
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configuration is usually used when the samples under study are moving with respect to the imaging 

system as in the food industry operations. The sensor detectors in a line scan system have a liner array 

arrangement hence capturing the entire scan line at once. In this case filter change is not required and the 

speed of image acquisition is a function of camera read out speeds. Conclusively, in a line scan system 

the 3D data cube is formed by capturing a line of spatial information possessing a full spectral range for 

each pixel of the spatial information which is the most suitable case of the real time evaluation of the 

samples in the conveyor belt system in the food industry (Kim et al., 2001; Sun, 2010).  

 

Figure 11. Flow chart diagram for Hyperspectral image processing 
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2.5 Calibration of Raw Hyperspectral Images 

In order to secure the consistency of the hyperspectral system and for the reliability of the obtained 

results, the calibration of the hyperspectral imaging systems holds great importance. For this purpose 

mainly,  wavelength, spatial and curvature calibration is done followed by reflectance calibration (Wu 

and Sun, 2013b). The major aims for the calibration of the hyperspectral imaging systems include the 

standardization of the spectral axis, determination of correct operation of the system, acquisition and 

validation of the spectral data and diagnosing the instrumental errors. Even under the controlled 

measurement conditions the reference spectra may vary in some systems hence putting forth the necessity 

for a standard calibration and validation procedure. Wavelength calibration is aimed at the identification 

of every pixel with a specific wavelength along the spectral dimension. In the calibration process, the 

calibration lamps including Argon (Ar), Mercury (Hg), Krypton (Kr), Mercury Argon (Hg/Ar), Xenon 

(Xe) and Neon (Ne) are scanned with the hyperspectral imaging devices resulting in the identification of 

the spectral peaks and corresponding pixel indices over the spectral dimension followed by the 

formulation of regression models between the two parameters. This regression is used for the 

identification of the wavelengths of all the pixels in the spectral dimension. 

The dimensions and resolution of the field of view of hyperspectral imaging system are determined via 

spatial calibration. Since in the line scanning systems two spatial dimensions differ based on the 

phenomenon of their formulation hence resulting in two different resolutions of the spatial dimensions. 

In this case, the x direction pixels are acquired as a result of sample movement over the platform 

(stepwise) while the pixels in the y direction are obtained from the spectrograph. The x direction 

resolution is a function of step size of movement per pixel and the range is the distance of the movement 

while the calibration of the y direction is done by scanning thin parallel lines as a target. Resolution of 

the y direction is the ratio of the distance of a range on the thin parallel line target to the number of pixels 

on the range whereas the y direction range is a product of the number of pixels in the scanned image and 

the resolution (Wu and Sun, 2013b).  

The hyperspectral imaging systems are calibrated for curvature for the analysis of the food products that 

possess a spherical geometry assuring the spectrum of pixels independent of the location. The amount of 

reflected light in this case is usually corrected based on the angle (ϕ or ϴ) between the incident light and 
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normal to the direction of surface. For mandarins curvature calibration was proposed by (Gómez-Sanchis 

et al., 2008) as follows: 

                                                               𝜌(𝜆) =
𝜌𝑥𝑦(𝜆)

[𝛼𝐷 cos(∅)+(1−𝛼𝐷)]
                                (Equation 2)                                   

Where, ρ(λ) is the corrected spectrum in the spatial point (x, y) at the wavelength λ, whereas 𝛼𝐷 represents 

the ratio between the direct light and the total average lights and the amount of reflected direct light at 

each pixel is given by cos(ϕ). Similarly, in another study conducted by  (Qin and Lu, 2008), the geometric 

relation between the fruit and the imaging system such as the fruit surface curvature effects in measured 

reflectance scattering were taken into account and the corrected reflectance was calculated by applying 

a correction factor C(r). Moreover, (Peng and Lu, 2008) introduced various modified Lorentzian 

distribution functions were applied the fitting of spectral scattering profiles at individual wavelengths for 

countering the scattering effects due to the spherical surface of golden delicious apples. (Gowen et al., 

2008) proposed multiplicative scatter correction (MSC) was also proposed for the reduction of the 

spectral variability in mushrooms due to surface curvature. 

Once the hyperspectral image is obtained the reflectance calibration is done using the black and the white 

reference images since the raw hyperspectral image is the intensity of the detector signal. The aim of the 

reflectance calibration is the removal of the dark current of the camera sensor. The same procedure is 

adopted to acquire white reference image (Wr) utilizing a white surface board which is smooth, uniform, 

stable and possessing a reflectance value of 99.9% while the black reference image (Br) is acquired with 

the camera lens covered completely with an opaque cap and with the light source turned off. These black 

and white reference images are used according to the following equation for the correction of the raw 

hyperspectral image (Iraw). 

𝐼𝑐 =
𝐼𝑟𝑎𝑤−𝐵𝑟

𝑊𝑟−𝐵𝑟
𝑥100                                         (Equation 3) 

Where, where Ic is the finally calibrated and corrected hyperspectral image in a unit relative reflectance, 

Iraw is the raw hyperspectral image, Br is representing the black reference image and Wr is the white 

reference image.  

2.6 Image Segmentation 

Image segmentation is a process of dividing the image into different parts or regions, in other words into 

sets of pixels with an intention of simplified image analysis. Since an image is comprised of many pixels 
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so each pixel can be similar to the corresponding neighboring pixels with respect to a particular 

characteristic or property which may include intensity of the pixel, the color values, or textural 

characteristics. Image segmentation is practically employed for filtering noisy images, problems of 

feature extraction and recognition. 

Determination of the technique of segmentation and the extent of the segmentation required is decided 

based on the aim or problem under consideration. Furthermore, another aim of matching the similar 

objects in two or more different images can be achieved using image segmentation. this is accomplished 

by  pin pointing and segmenting the object of interest in the first image followed by matching of the 

segmentation result of the first image with the second image (Sapna Varshney et al., 2010). 

2.6.1. Thresholding Methods 

Thresholding is a procedure for the conversion of the multilevel images into binary images for image 

simplification. Converting an image into binary image means assigning a value of 0 to the background 

pixels and a value of 1 to the objects of interest or foreground pixels of an image. These values 0 and 1 

are assigned on the basis of comparison with a threshold value T which can be intensity or a color value. 

A constant threshold value refers to global thresholding otherwise the thresholding is categorized as local 

thresholding. Background illumination plays a significant role in successful thresholding of the images 

since an unevenly illuminated background cannot be thresholded by the global thresholding methods and 

requires multiple thresholds for compensating the uneven illumination. Conventionally, image 

thresholding is done interactively but it is also possible to develop automated thresholding procedures 

(Kaur and Kaur, 2014; Gonzales and Wintz, 1987).   

 

Figure 12. PCA based image segmentation 
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PCA is used for the simplification of the hyperspectral imaging data by making linear combinations of 

the original variables. Image thresholding can also be done using the PCA as shown in figure 12. 

2.6.2. Edge-Detection Methods  

One of the well-developed techniques for image processing includes edge detection methods which work 

on the basis of rapid variation in intensity values in the image under study, since a single intensity value 

does not provide good information about the edges. In case of edge detection methods, the edges are 

located where the first derivate of the intensity is higher than the threshold or where the second derivative 

has zero crossings. Firstly, after the detection of all the edges they are connected together for the 

formulation of object boundaries for the segmentation of the required regions. There are two commonly 

used edge based methods including, Gray histograms and Gradient based methods. Moreover, for the 

detection of the edges various techniques such as sobel operator, canny operator and Robert’s operator 

are utilized resulting in the formulation of a  binary image  (Saleh Al-amri and Kalyankar, 2010).  

2.6.3. Region-Based Methods  

In case of the region based methods, the characteristics of an input image are used for the mapping of 

the individual pixels which are known as regions which possess correspondence to an object of interest 

or a meaningful part (see Figure 13). Various region based techniques including Local techniques, Global 

techniques and Splitting and merging techniques are commonly utilized. The determination of the region 

based method to be utilized is done based on the application area and the input image. For simple images 

local techniques can prove to be effective yielding the desired segmentation results whereas in case of 

complex images even the most sophisticated techniques cannot yield the required segmentation results 

(Gonzales and Wintz, 1987).  
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Figure 13. Otsu method for image segmentation (finding the best contrast between the image and 

the background) is a region based segmentation method 

2.6.4. Clustering Methods  

Clustering is an unsupervised learning phenomenon where the major aim for the formulation of clusters 

is to achieve a finite set of categories known as clusters for a proper visualization and description of the 

data. In case of clustering a training stage doesn’t exist since it is utilized without any prior knowledge 

of the classes and hence in this way it differs from classification where the classes are analyzed with 

prior knowledge. Clustering functions by defining a similarity metric between the items of the data, hence 

grouping the similar items together in the form of clusters. Moreover, the identification of the attributes 

that provide the best clustering is significantly important to achieve reliable clusters. The clustering 

methods group the data on the principle of maximization of the intra class similarity and minimization 

of the inter class similarity. Clustering profiles which are responsible for the distinction among clusters 

are determined by analyzing the cluster properties. A new data instance is classified by assignment to the 

closest matching cluster, and is assumed to have characteristics similar to the other data in the cluster 

(Dehariya et al., 2010).  

2.7 Data Exploration and Preprocessing 

Hyperspectral images are data cubes with huge dimensionality and contained information. Therefore, 

data exploration techniques are a prerequisite for aim oriented image processing. Data exploration tools 

provide an insight of the image elements that cannot be accessed with simple observation providing the 
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sources of variability or co-variability in the image data. The most commonly used data exploration tool 

for preliminary investigation of hyperspectral imaging in the food industry is principle component 

analysis (from now on mentioned as PCA).  

PCA is aimed at data dimensionality reduction, preserving maximum information by finding the principle 

components (PCs) which are the linear combinations of the original variables and each PC explains a 

direction of variance in the data with the first PC explaining the direction of the maximum variance. PCA 

is categorized as an unsupervised classification method. Mentioning simply, the information contained 

in 161 variables (wavelengths) can be explained by a few PCs, especially for pattern recognition and 

inner relationships in case of food analysis. Let A (XY x λ) be an unfolded hypercube with X and Y as 

the spatial dimensions and λ representing the spectral dimension, then the PCA formula can be given as: 

                                                            X=TPT+E    (Equation4) 

Where, T denote the loadings, P represents the scores and E is the error. Since the orthogonal PCs are 

projected in a new space the relationship between this new axis and the old axis is represented by the 

loadings plot. On the other hand, scores refer to the distance of the projected samples to the center of the 

new axis. The total variance explained can be given as:  

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (%) =  
∑ ∑ 𝑥ˆ𝑖𝑗

𝑁
𝑗=1

𝑀
𝑖=1

∑ ∑ 𝑥𝑖𝑗
𝑁
𝑗=1

𝑀
𝑖=1

   where,  𝑥ˆ𝑖𝑗 = ∑ ∑ 𝑡𝑖1𝑝1𝑗
𝑇𝑁

𝑗=1
𝑀
𝑖=1   (Equation 5) 

 

As it can be clearly seen the scores samples plot give a clear variability of the PC scores with passage of 

time and also show that the variability changes rapidly with the increasing temperature i.e. the variability 

in the PC scores in the (blue block) which corresponds to the leaves stored at 15oC is the maximum. In 

this case the PC score variability corresponds to the quality degradation of the leaves.  

Prior to application of the PCA data normalization is highly recommended which in case of the 

continuous variables (hyperspectral images) is mean centering and in case of the multispectral images 

auto scaling is used. The following equations correspond to the mean centering and auto scaling of the 

hyperspectral and the multispectral data respectively. 

                                                             𝑥 𝑖 = 𝑥𝑖 − 𝑥          (Equation6) 

                                                             𝑥 𝑖 =
𝑥𝑖−𝑥

𝑠𝑡𝑑(𝑥)
           (Equation 7) 
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The major aims for the data preprocessing are inclined to improve the data exploration, classification and 

calibration modelling by forcing the data to follow the Beers Lamberts law which suggests a linear 

relationship between the spectral measurements and the corresponding analytical analysis and is given 

by Equation 8 for transmittance measurements. 

𝐴𝜆 = −𝑙𝑜𝑔10(𝑇) = ɛ𝜆. 𝐼. 𝑐                                             (Equation 8) 

Where, Aλ is the absorbance (wavelength dependent), T represents transmittance, ɛ𝜆 is the molar 

absorptivity, I is the effective path length and c denotes the chemical concentrations. 

In food data analysis, the most common preprocessing techniques are scatter correction and spectral 

derivatives in which the former represents the preprocessing operations such as Multiplicative Scatter 

Correction (MSC), Standard Normal variate (SNV) and normalization and the latter contains Norris-

Willams (NS) derivatives and Savitzky-Golay (SG) polynomial derivative filters with both methods 

using smoothing prior to derivatization of the spectra. 

MSC is the most commonly used preprocessing followed by SNV (Rinnan et al., 2009). MSC is aimed 

at removal of undesirable scatter effect from the data matrix prior to modelling stage and it constitutes 

two steps, the first of which is the estimation of the correction coefficients and in the second step the 

spectrum is corrected by applying the correction coefficients obtain in the first step. 

Step 1   𝒙𝑜𝑟𝑔 = 𝑏𝑜 + 𝑏𝑟𝑒𝑓,1. 𝑥𝑟𝑒𝑓 + 𝑒     (Equation 9) 

Step 2   𝒙𝑐𝑜𝑟𝑟 =
𝒙𝑜𝑟𝑔−𝑏0

𝑏𝑟𝑒𝑓,1
= 𝒙𝑟𝑒𝑓 +

𝑒

𝑏𝑟𝑒𝑓,1
   (Equation 10) 

Where, 𝒙𝑜𝑟𝑔 refers to the original sample spectra, 𝒙𝑐𝑜𝑟𝑟is the corrected spectra, 𝒙𝑟𝑒𝑓is the reference 

spectrum, e is the un-modeled part of the original spectrum and 𝑏𝑜 and   𝑏𝑟𝑒𝑓,1refer to the scalar quantities. 

The basic format of the SNV and normalization is similar to that of MSC. 

Derivatives are used for the removal of both the additive and the multiplicative effects in the spectra with 

the first derivative only contributing towards the removal of the baseline and the second derivative 

towards the elimination of both baseline and linear trend. The estimation of the first derivative is done 

as the difference of the two successive spectral measurement points while the second derivative works 

with the calculation of the difference between the two successive points of the first derivative as shown 

in equations 11 and 12 respectively where x’ refers to the first derivative and x” refers to the second 

derivative. 
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𝑥𝑖
′ = 𝑥𝑖 − 𝑥𝑖−1           (Equation 11) 

𝑥𝑖
" = 𝑥𝑖

′ − 𝑥𝑖−1
′ =𝑥𝑖−1 − 2. 𝑥𝑖 + 𝑥𝑖+1          (Equation 12) 

2.8 Prediction and classification modelling approaches  

In this chapter a few modelling approaches will be briefly introduced including, principle component 

analysis (PCA), multiple linear regression (MLR), principle component regression (PCR) and partial 

least squares regression (PLSR) approach. Also classification methods such as SIMCA and PLSDA will 

also be briefly explained.  

2.8.1. Principle Component Analysis (PCA) 

In PCA an X matrix of r rank is represented by a summation of r matrices of rank 1. Representing 

mathematically: 

𝑋 = 𝑀1 +𝑀2 +𝑀3 +𝑀4 +⋯+𝑀𝑟      (Equation 13) 

These matrices 𝑴𝑟 are an outer product of the loadings vector (𝑝𝑟
′ ) and a scores vector (𝑡𝑟). Hence 

equation 13 can be rewritten as: 

𝑋 = 𝑡1𝑝1
′ + 𝑡2𝑝2

′ + 𝑡3𝑝3
′ + 𝑡4𝑝4

′ +⋯+ 𝑡𝑟𝑝𝑟
′       (Equation 14) 

Equation 14 can also be represented as: 

𝑿 =  𝑻𝑷′          (Equation 15) 

In case of the PCA the angle cosines of the direction vector are known as loadings while projections of 

the sample points in the direction of the principle component are called scores.  

2.8.2. Multiple Linear Regression (MLR) 

MLR is quite similar to the simple regression, the only difference being the number of independent 

variables. In simple regression one independent variable is correlated with one dependent variable while 

in case of MLR many independent variables are attempted to correlate with a single dependent variable 

at the same time by using least squares method finding the smallest sum of the squares of the residuals. 

Therefore, MLR establishes a first order (linear) relationship between the characteristics measured from 

m number of independent variables (xj where j=1 - m) and a dependent variable (y) hence mathematically 

depicting the relationship as: 

𝑦 =  𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑚𝑥𝑚 + 𝑒        (Equation 16) 
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Where, y is the dependent variable, x1 to xm are the independent variables, bj are the coefficients and e is 

the residual or error term. Equation 16 can therefore also be represented as: 

𝑦 = ∑ 𝑏𝑗𝑥𝑗
𝑚
𝑗=1 + 𝑒         (Equation 17) 

MLR doesn’t provide any unique solutions for the condition m>n since in this case b will possess infinite 

solutions, all of them fitting the equation. In case of an impractical situation where m = n, the only unique 

solution for b is possible only if X (a matrix formed with n samples) has a full rank and can be 

mathematically expressed as: 

𝑒 = 𝑦 − 𝑿𝑏 = 0         (Equation 18) 

 In case of m<n, i.e. the number of samples exceed the number of variables measured, a solution for b 

can be obtained by using the least squares method which minimizes the length of the residual vector e 

shown in equation 18. The least squares solution can therefore be expressed mathematically as: 

𝑏 = (𝑿′𝑿)−1𝑿′𝑦         (Equation 19) 

Hence equation 19 depicts a condition where MLR faces a frequent problem of collinearity since the 

inverse of X’X might not exist. Hence in this case it is imperative to have an equal number of samples 

(n) as the number of variables (m) by using various techniques for deleting insignificant variables in the 

condition m>n.     

2.8.3. Principle Component Regression (PCR)  

 The basis for the proper elaboration of PCR can be established by understanding the working principle 

of PCA since in case of PCR the scores matrix represents the data matrix itself hence putting forward a 

possibility of developing a regression between the scores matrix against the dependent variables without 

any issues of matrix inversion. As mentioned earlier, in PCR the regression is done using the scores 

matrix T excluding the dimensions having small eigenvalues hence the transformation can be depicted 

as:  

𝑇 = 𝑋𝑃(= 𝑇𝑃′𝑃 = 𝑇𝐼𝑛)        (Equation 20) 

Therefore, equation 18 can be rearranged as:  
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𝑌 = 𝑇𝐵 + 𝐸 (𝑤ℎ𝑒𝑟𝑒, 𝐵ℎ𝑎𝑡 = (𝑇′𝑇)−1𝑇′𝑌)      (Equation 21) 

Hence equation 18 depicts that the variables in in the matrix X have been replaced by new variables that 

are orthogonal to each other spanning multidimensional space in X. Unlike the MLR in this case inverting 

T’T presents no problems since the scores are mutually orthogonal. Furthermore, collinearity problems 

are avoided by eliminating the score vectors with smaller eigenvalues also resulting in the reduction of 

noise in the data. The only issue facing the PCR is that some useful information for prediction purposes 

can be lost in the eliminated variables and some of the noise can be retained in the variables used for 

regression.  

2.8.4. Partial Least Squares Regression (PLSR)  

PLSR is a type of multivariate regression which is used to correlate the information in a data matrix X 

with the information in data matrix Y by taking into account the latent structures in both datasets. The 

datasets X and Y are decomposed into their latent structures iteratively and a regression model is 

developed between the scores of X and Y blocks. The concept of the PLS model can be demonstrated on 

the basis of outer and inner relations; the outer relations being X and Y blocks individually while for 

inner relations X and Y blocks are both linked. The outer relations in this case can be mathematically 

compared to PCA which in case of X block is:  

𝑿 = 𝑻𝑷′ + 𝑬 = ∑𝑡𝑟𝑝𝑟
′ + 𝐸        (Equation 22) 

Similarly, the outer relationship for the Y block can be written as:  

𝒀 = 𝑼𝑸′ + 𝑭 = ∑𝑢𝑟𝑞𝑟
′ + 𝐹        (Equation 23) 

The aim here is to describe Y in the best possible way and minimizing ||F|| while simultaneously 

achieving a meaningful relationship between X and Y. Hence the inner relationship (linking X and Y) 

can be achieved by plotting the scores of X block (t) and scores of Y block (u) for each component. The 

inner relation for a simple linear model can be given mathematically as:  

û =  𝑏𝑟𝑡𝑟          (Equation 24) 

where, 𝑏𝑟 = 𝑢𝑟
′ 𝑡𝑟/𝑡𝑟

′ 𝑡𝑟 and is the regression coefficient in case of the PLSR model.  

The mixed relation can be given as 𝑌 = 𝑇𝐵𝑄′ + 𝐹 in which case ||F|| is minimized. Using the iterative 

method, the blocks receive each other’s scores hence providing a better understanding of the inner 

relationship. Moreover, the orthogonality in the X scores is achieved by introducing weights. More 
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information on the PLSR can be achieved from (Geladi and Kowalski, 1986).    

3. APPLICATIONS  

Hyperspectral imaging has been used in the food industry for a number of goals including the evaluation 

of the water potential of leafy vegetables, measurement of plum quality, astringency assessment of 

persimmon, assessment of fruit ripening, detection of decayed peaches, early detection of bruises in 

peaches, detection of bruises in apples, yield estimation of mangoes, prediction of sugariness and 

hardness of melons, determination of moistures content and chromaticity of potato slices during drying 

and many other applications.  

In a study conducted by Tung et al., 2018 the water potential of leafy vegetables was determined using 

hyperspectral imaging using Modified Partial Least Squares Regression (MPLSR) with an R2 of 0.8 with 

simultaneously illustrating the distribution of water potential. Among the many mathematical 

pretreatments used, first derivative served as the best pretreatment resulting in the maximization of the 

correlation coefficient and the minimization of the SEC. It was concluded that hyperspectral imaging is 

a useful and reliable tool for the estimation of water stress of the leafy vegetables in terms of water 

potentials.  

B. Li et al., 2018 used hyperspectral imaging for the measurement and prediction of the color, soluble 

solids content and firmness of plum fruits belonging to two different cultivars using partial least squares 

regression modelling. Individual PLSR models were developed for each cultivar followed by a combined 

model including both cultivars. In case of color measurement all the models were reliable for the 

hyperspectral images taken in Vis-NIR region and the correlation coefficient was found to be higher than 

0.7 for individual and combined cases. On the other hand, the soluble solids content was reliably 

predicted with the hyperspectral images in the short wave NIR region with a correlation coefficient 

higher than 0.8.   

Hyperspectral imaging has also been used for the astringency measurement of permission fruit using the 

hyperspectral images in the Vis-NIR range (Munera et al., 2017). ‘Rojo Brillante’ cultivar fruits were 

taken from three different commercial maturity stages and was treated with different CO2 levels for 

attaining different astringency levels. PLS classification approaches were used for the classification of 

the fruits based on maturity levels and it was found out by the study that the 97.9% of the samples were 

correctly classified. Moreover, in the same study the flesh firmness was predicted with a correlation 
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coefficient of 0.8 while the soluble tannins after the CO2 treatments which were distributed inside the 

fruit were illustrated by the hyperspectral images for the astringency measurements obtaining a 

correlation coefficient of 0.91. 

J. Li et al., 2018 compared the short wave and long wave NIR systems for the detection of early bruises 

in peaches. Effective wavelengths were selected using the principle component analysis and a new 

segmentation approach named watershed segmentation approach was introduced which was found to 

better than the normally used segmentation approaches. The study revealed that using the short wave 

NIR system of hyperspectral images 96.5% of the bruised areas and 97.5% of the non-bruised areas were 

correctly classified. In another study, similar objectives were pursued by Huang et al., 2015 using the 

hyperspectral images in the Vis-NIR range where the weighing coefficients of the PC images were used 

for the determination of effective wavelengths i.e. 780, 850, 960 nm. Detection systems were developed 

for the static and online tests with the classification accuracies of 91.5% and 74.6% for static and online, 

respectively.  

Sun et al., 2017 used the NIR based hyperspectral imaging system for estimation of texture and sweetness 

of melons. PLSR models proved to be promising for the reliable and most accurate prediction models 

with selective wavelengths based on the weighted regression coefficients. Hence each pixel of the images 

based on these selected wavelengths was used for the illustration of sweetness and hardness in the melon 

samples. Amjad et al., 2018 used hyperspectral imaging in the Vis-NIR region for the determination of 

the moisture content of potato slices of three different thicknesses. It was concluded by the study that the 

PLSR models with the reduced wavelengths was reliable to visualize and monitor moisture content 

during drying yielding the R2 values between 0.93-0.98 and root mean square errors of 0.16-0.36 for the 

best models. 

 Lee et al., 2014 detected bruises under the pear skin using the hyperspectral imaging in the wavelength 

range of 950-1650 nm. For the bruise discrimination the classification algorithm applied was based on F 

value which finds the optimal waveband ratio. The best optimal waveband ratio classified the bruised 

surfaces with an accuracy of 92%. Li et al., 2016 developed hyperspectral a skin defect detection method 

using the band ratio (Q781/848) integrated with image thresholding over the multicolored fruits. Various 

features for various defect types were detected by PC images either in the Vis-NIR region or the NIR 
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region or among the individual characteristic wavelengths. The study concluded that an overall accuracy 

of 96.6% was achieved for 145 samples for the nine defects under study.  

Hyperspectral imaging was also used by B. Li et al., 2016 for the measurement of SSC, firmness and for 

the classification of the pears based on variety. Various algorithms such as principle component analysis, 

successive projections algorithm, partial least squares regression and fisher LDA were used for the 

prediction and classification purposes. The study concluded that for the prediction of firmness and SSC 

the SPA-PLS models were the best resulting in the correlation coefficient of 0.9977 for firmness and 

0.9924 in case of the SSC prediction whereas a varietal classification accuracy of 95.56% was achieved 

using the Fisher LDA algorithm.  

Rungpichayapichet et al., 2017 used hyperspectral imaging for mapping of the internal constituents 

including titratable acidity, TSS and firmness of mango also using hyperspectral images within the 

wavelength range of 450-998 nm followed by PLSR models. The study revealed a satisfactory and 

reliable correlation between the hyperspectral images and firmness and titratable acidity (R2=0.81for 

both) while for the TSS the R2 was lower up to 0.5. In order to visualize the spatial distribution of these 

models the prediction models were applied to each pixel of the hyperspectral images. Furthermore, 

hyperspectral imaging in the Vis-NIR range was used for the internal quality assessment of persimmon 

fruits (Munera et al., 2017). In this study ripeness and astringency levels of the fruits at three maturity 

stages were predicted using LDA, QDA and SVM. Moreover, PLSR was used to predict the firmness of 

the fruits. All classifiers successfully classified the three different fruits types based on the ripeness level 

whereas QDA yielded 95% correct classification based on the astringency levels. Moreover, PLSR model 

predicted the firmness yielding an R2 of 0.80 and ratio of prediction deviation (RPD) of 1.86 hence 

concluding that hyperspectral imaging can serve as a useful tool for discriminating among various 

persimmon fruits of different maturity stages as well as prediction of firmness.  

used hyperspectral imaging in the Vis-NIR and SWIR ranges for the detection of black spots (bruises) 

in potatoes since they are not visible to the human vision. Classification methods namely, PCA, PLSDA 

and SIMCA were used for the classification of the bruised potatoes with PLSDA serving as the best 

method (94% classification accuracy) within the SWIR range. It was also concluded that pixel based 

method yielded better results in PLSDA model in the SWIR range hence detecting blackspots in potatoes.  
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Hyperspectral imaging has also served as a useful tool for the detection of chilling injury in cucumbers 

(Cen et al., 2016). During the study reflectance and transmittance based hyperspectral images were 

acquired for chilled and normal cucumbers and classification models were developed for discriminating 

between chilled and normal cucumbers and also discriminating between severely chilled, lightly chilled 

and normal cucumber using supervised classification algorithms including naïve Bayes (NB), SVM and 

KNN. Out of all the methods used, SVM served as the best technique for classification between severely 

chilled, chilled and normal cucumbers with a classification accuracy of 100% using spectral information. 

Conclusively, hyperspectral imaging combined with multivariate and chemiometric techniques possesses 

a wide scope in the evaluation of food quality issues, adulteration problems and origin detection. 

Moreover, non-destructive techniques are rapid, reliable, economically feasible and convenient to use.   
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Chapter 3 

FRESH-CUT ROCKET QUALITY AND SHELF-LIFE: STATE OF 

THE ART 

1. INTRODUCTION  

Rocket leaves (Diplotaxis tenufolia) gained significant popularity in Europe especially in the 

Mediterranean countries as a leafy vegetable to be consumed in salads and is well known for its pungent 

smell and nutritional value. The name “rocket” serves as a collective name indicating a number of species 

belonging to the Brassicacea family all of which possess certain levels of pungent smell and pleasant 

bitter taste. Rocket leaves originated in the Mediterranean countries where common names include 

rucola, rughetta, roquette and others were used which were most probably descended from the Latin 

word ‘roc’ which meant ‘rough’ or ‘harsh’.  

A total of 3709 species and 338 genera are included in the Brassicacea family (Warwick et al., 2006); 

among these, perennial wall rocket or wild rocket (Diplotaxis tenuifolia (L.)DC.) and annual garden 

rocket or rocket salad (Eruca satvia Mill.) are of significant importance (Hall et al., 2012; Cavaiuolo and 

Ferrante, 2014). In case of the perennial rocket species the name Diplotaxis is derived from the Greek 

word ‘diplos’ meaning ‘double’ and ‘taxis’ meaning ‘row’ which refer to the seed arrangement inside 

the silique (Mohamedien, 1995). Diplotaxis plant is capable of achieving a height of 80cm and is 

characterized by lengthened leaves and tap root (Pratap and Gupta, 2010) possessing a woody stem base 

with hair present in the lower part (Mohamedien, 1995). The typical leaf is oblong, deeply lobed and 

fleshy, possessing sharp apexes. The germination of the rocket seeds occurs in autumn and the blooming 

that takes place after 28 days of germination is significantly impacted by the seasonal conditions 

(Kenigsbuch et al., 2009). 

In case of Eruca the name refers to the pungent taste of the leaves and is derived from the Latin words 

‘uro’ or ‘urere’ meaning ‘to burn’. The pungency depends on the composition of the glucosinolate 

compounds (Mohamedien, 1995). A high morphological variability is observed with the species 

possessing round or serrated leaves (Hall et al., 2012). The Eruca plants possess the capability of 

achieving a height of 40cm with lyrate pinnatified leaves arranged as a rosette, having an enlarged 
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terminal lobes and slightly smaller lateral lobes (Hall et al., 2012; Pratap and Gupta, 2010). This species 

is characterized by a rigid hairy unbranched stem and a thin tap root. The leaves in this case might possess 

slight differences (smooth or round/lobed or serrated) based on the positioning along the stem achieving 

a maximum length of 20cm. For this species the seeds possess a brown color varying from yellowish 

brown to olive green color. On the other hand, both the species depict similar morphological attributes 

and a characteristic bitter taste (Halkier and Gershenzon, 2006). 

2. NUTRITIONAL ATTRIBUTES OF ROCKET LEAVES  

Out of the many rocket species Diplotaxis tenufolia and Eruca satvia L. are commercaially available as 

a result of consumer demand and are consumed either as fresh salad or mixed with other vegetables 

(Cavaiuolo and Ferrante, 2014). Rocket leaves are a rich source of a wide range of phytonutrients, 

including pro-vitamin A, vitamin C, glucosinolates, flavonoids, fiber, sulfur and potassium (Martínez-

Sánchez et al., 2006a; Martínez-Sánchez et al., 2006b).  

A wide range of health-related benefits are associated to the consumption of the nutrients present in the 

rocket leaves which are characterized by diuretic, anti-inflammatory, stimulant, depurative, 

hepatoprotective and stomathic activities. Also it has been proven that they are a glucosinolates and 

antioxidants prevent various types of cancer including colon (van Poppel et al., 1999; Seow et al., 2002), 

bladder (Paonessa et al., 2009), lung (London et al., 2000) and potentially breast and prostate cancers 

(Cohen et al., 2000; Kirsh et al., 2007).  

Rocket leaves are a rich source of secondary metabolites which are significantly important for the tissue 

cell protection manifesting free-radical scavenging activity. A wide range of various biomolecules are 

found in the antioxidant derivate of the rocket flowers and leaves as a result of the oxidative stress 

response and senescence degenerative processes. 

2.1. Carotenoids 

Carotenoids formulate a portion of the composition of many fruits and vegetables and are natural fat-

soluble pigments involved in primary metabolism. The wavelength rage of 400-500 nanometers (nm) 

characterize carotenoids in the visible region as a result of the light absorption with a characteristic 

orange color. More specifically in the plants carotenoids serve the purpose of accessory pigments 

transferring absorbed light to chlorophyll pigments which are further vitally involved in photosynthesis. 
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The role of carotenoids is also significant regarding the photo-protection of the cells due to the absorption 

and release of excess energy accumulated in the photosynthetic membrane. As for their pharmaceutic 

properties, they contribute to the prevention of cancers, eye disorders and cardiovascular diseases 

(Pacheco et al., 2013). Mevalonate pathway using the acetil-CoA or metabolic intermediates of 

glycolysis are responsible for the formulation of the carotenoids which are tetraterpenes and most of the 

vitamin A in the human diet is derived from carotenoids; this vitamin A being originated from β-

cryptoxanthin, α-carotene and β-carotene (Rao and Rao, 2002). In case of the rocket leaves β-carotene 

and lutein are the most abundant carotenoids (Cavaiuolo and Ferrante, 2014). Moser et al., 2010 studied 

the composition of the rocket leaves and found out that β-carotene amount was 7.01 ± 1.04 mg 100 g−1 

fresh weight (FW) in wild rocket (Diplotaxis tenufolia) and 7.96 ± 1.43 mg 100 g−1 FW in salad rocket 

(Eruca sativa), while the lutein amount was 5.82 ± 0.51 mg 100 g−1 FW in wild rocket and 7.44 ± 0.78 

mg 100 g−1 FW in salad rocket. According to the information of the USDA, National nutrient database 

for standard reference, 2015, the total amount of carotenoids in the rocket leaves sums up to about 120 

µg 100g-1 which is considered to be a significant amount keeping under consideration the recommended 

dietary allowance of 9700 µg day-1. 

2.2. Vitamin C 

Anabolism in the human body lacks the presence of enzymes for the formulation of vitamin C, therefore 

vitamin C must be taken from foods (Niimura, 1994). Research works have proven that 90% of the 

vitamin C can be introduced in the human body with the consumption of fruits and vegetables (Lee and 

Kader, 2000). Proteins, lipids and carbohydrates that are prone to damage by free radicals and reactive 

oxygen species are protected by the vitamin C (Inzé et al., 2002). Furthermore, vitamin C has also been 

reported to be beneficial to prevent scurvy, in maintaining a healthy skin and gums and blood vessels 

(Nunes et al., 2013). Other significant biological functions carried out by vitamin C in the human body 

include collagen formulation, iron absorption, plasma cholesterol levels reduction, inhibition of 

nitrosoammine formation and enhanced immune system (Lee and Kader, 2000). Generally, vitamin C is 

referred to as ascorbic acid (AA) since it is a sum of the AA and its oxidative derivative, the L-

dehydroascorbic acid (DHAA). The intestinal cells in the human body possess the potentiality to reduce 

the DHAA into AA leading to its permeation in the blood (Wilson, 2002), therefore, both AA and DHAA 



79 

 

are nutritionally important in the human diet. Various biosynthetic pathways such as D‐mannose–L‐

galactose pathway, L‐glucose pathway (Wolucka and Montagu, 2003), D‐galacturonate pathway (Agius 

et al., 2003), and myo‐inositol pathway (Lorence, 2004) are capable for the synthesis of the AA in plants. 

Rocket leaves are a rich source of vitamin C with a reported vitamin C content of 50mg 100-1 FW 

(Martínez-Sánchez et al., 2006a), but with high variation due to the growing conditions. The factors such 

as time of sowing and harvesting, light and temperature conditions significantly impact the vitamin C 

content of rocket leaves (Acikgoz, 2011). In this study Acikgoz, 2011 investigated the vitamin C of the 

rocket leaves grown in two different seasons namely, fall and spring and revealed that the rocket leaves 

grown in fall sowing time possessed a maximum vitamin C content of 57.41 mg of vitamin C 100-1 FW 

when grown in an unheated green house.  

2.3 Phenolic Compounds 

Phenolic compounds belong to a class of heterogeneous secondary metabolites, containing a phenolic 

group with a common basic structure corresponding to a hydroxyl group bound to an aromatic ring. 

Phenolic compounds play a significant role in plant defense mechanism, protecting them from herbivores 

and pathogen attack; simultaneously, they assist to attract pollinators and animals that are important for 

seed dispersion. The biosynthesis process of the phenolic compounds initiate through the shikimate 

pathway producing amino acids including phenylalanine the most significant intermediate and substrates 

for the phenylalanine-ammonia-lyase (PAL) which is a key enzyme for the production of several 

phenolic compounds. This enzyme acts as a catalyst to convert the phenylalanine in trans-cinnamic acid 

through releasing ammonia. Phenolic compounds include flavonoids, pigments synthesized through two 

separated pathways (malonic and shickimate), which can be subjected to oxidation into quinines (B.H., 

2002). In case of Diplotaxis tenufolia, quercetin compounds were most abundantly found showing a total 

flavonoid content ranging from 4.68 to 19.81 g kg-1. On the other hand, in case of E. satvia leaves, the 

primary group of phenolic compounds is represented by kampferol derivatives ranging from 8.47 to 26 

g kg-1 corresponding to 77% to 88% of total phenols (Cavaiuolo and Ferrante, 2014; Pasini et al., 2011). 

2.4 Glucosinolates 

Glucosinolates (GLSs) are bioactive molecules found principally in Brassicacea family. GLSs as 

secondary metabolites also contribute towards the plant protection mechanisms by defending them 
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against the herbivores, pathogens, fungal diseases and pest infestation (Blažević and Mastelić, 2009). 

They also play a significant role in the sulphur and nitrogen metabolisms hence regulating the growth of 

the plants. As a result of tissue disruption and cell breakage, glucosinolates normally contained in the 

cell vacuole are converted into isothiocyanates (ITCs), thiocyanates, nitriles and sulfates in the cell 

cytosol via enzymatic reactions. It is due to the presence of these compounds which contain nitrogen (N) 

and sulphur (S) that the Brassicaceae family vegetables possess a pungent and sulphurous taste and a 

typical odor (Cavaiuolo and Ferrante, 2014). The enzymatic reaction occurs because of the myrosinase, 

which belongs to the hydrolase family. Research studies have shown that rocket leaves possess a high 

content of glucoraphanin (4-methylsulfinylbutyl-GLS) glucoerucin (4-methylthiobutyl-GLS) and 

dimeric 4-mercaptobutyl-GLS, whereas seeds and roots are rich in glucoerucin, and flowers mostly 

contain glucosativin (Cavaiuolo and Ferrante, 2014; Cataldi et al., 2007). The most abundant 

isothiocyanate found in rocket leaves erucin (4-methylthiobutyl isothiocyanate) is produced as a result 

of hydrolysis of glucoerucin. (Miyazawa et al., 2002).  

3. FRESH-CUT ROCKET LEAVES: QUALITY AND SHELF-LIFE 

Rocket leaves are usually available in the refrigerator shelves of the retail stores in modified atmosphere 

packages (MAP) to avoid wilting of the leaves due to water loss and generally possess a shelf-life of 9-

14 days under different storage conditions and depending on the raw material quality (Martínez-Sánchez 

et al., 2006b; Nielsen et al., 2008; Løkke et al., 2012). They are commercially sold as whole leaves having 

a small section on the petiole that is exposed to oxidation hence leading to an enhanced postharvest shelf-

life (Egea-Gilabert et al., 2009; Agius et al., 2002). The most important aspect effecting the shelf-life of 

rocket leaves is the storage temperature which is recommended to be as low as possible to attain best 

sensory and nutritional quality and an enhanced shelf life (Mastrandrea et al., 2017a); on the other side, 

it has been observed that in the open market shelves the temperature of the produce might reach 

approximately 10oC (Koukounaras et al., 2007; Dixon et al., 2010) which can result in the rapid quality 

loss. The shelf-life of ready-to-eat rocket leaves is significantly related to the storage conditions and 

processing operations, which tend to accelerate the degradation of the rocket leaves, inducing wilting, 

discoloration, loss of nutritional properties, aroma and flavor (Koukounaras et al., 2009).  

For the estimation of the limit of marketability, color can be considered as a prime factor and any changes 
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from the normal green color leads to the limiting marketability. Conventionally, rocket leaves are 

harvested twice or thrice per cultivation and are primarily utilized for the fresh-cut market. Mostly, they 

are minimally processed involving only the washing and packaging steps before they are delivered to the 

retail stores (Hall et al., 2013). 

It has also been observed that the minimally processed vegetables are prone to faster physiological 

deterioration, biochemical changes and microbial degradation as compared to the intact produce 

(O’Beirne and Francis, 2003), as a result of the enhanced metabolic activity resulting in loss of typical 

color, texture and flavor (Mastrandrea, 2015; Varoquaux and Wiley, 1994). The reason for this rapid 

perishability of the fresh-cut produce is due to the lack of food processing methods applied to extend the 

shelf-life of the conventional food products therefore, the only strategy to prolong the life span of 

minimally processed fruits and vegetables is refrigerated storage.  

Various studies have contributed to relate the quality parameters, storage conditions and shelf life of 

rocket leaves. Ferrante et al., 2004 studied the storage conditions for the fresh-cut leafy vegetables 

including rocket leaves at 4 to 5 oC correlating the effect of the storage conditions on the quality 

attributes. The color changes based on the total chlorophyll content, carotenoids and anthocyanins were 

monitored over a storage period of 12 days for storage at 4-5 oC with and without exposure to light. It 

was revealed by the study that leafy vegetables should be stored in darkness at low temperatures (<5 oC) 

to achieve a longer shelf life. In a study conducted by Martínez-Sánchez et al., 2006b the rocket leaves 

stored in air were compared to those in controlled atmosphere storage over a time span of 14 days and it 

was concluded that the rocket leaves stored in air lost the sensory and microbiological attributes for 

commecial distribution while out of a total of three controlled atmophere storage conditions the rocket 

leaves stored 5 kPa O2 + 10 kPa CO2 maintained the visual quality and microbiological quality traits. 

Edelenbos et al., 2017 demonstrated that the quality of the packaged rocket leaves varied between 

different growing seasons recommending low temperature storage for the color maintenance and shorter 

storage time spans for texture retention. 

In another study conducted by Mastrandrea et al., 2016, the effects of temperature, cultivar and time of 

storage on ammonia accumulation in relation to color variation of rocket leaves was studied. Five 

different cultivars of rocket leave namely, 'Bellezia', 'Grazia', 'Letizia', 'Tricia', and 'Wild Thing' were 
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stored at three different temperatures i.e. 0, 5 or 10°C. In parallel the monitoring of visual scores, color 

(hue angle) and ammonia accumulation was conducted at an interval of each 4 or 8 days, based on the 

temperature of storage of the leaves. It was observed that leaf yellowing as a result of color loss was 

directly proportional to increasing temperature. At the same time the authors found out that for all storage 

conditions, an encouraging correlation between ammonia content and color changes was established. 

Ammonia content increased from 11-15 µg g-1 fresh weight (FW) to 150-220 at 0°C, 340-450 at 5°C 

and more than 590 µg g-1 FW at 10°C by the end of storage-life confirming the fact that storage 

temperature plays a significant role in ammonia accumulation. It was concluded that ammonia may be a 

good indicator of senescence in rocket leaves, since it correlated well to color change with storage 

temperature and time.  

Mastrandrea et al., 2017 in another work investigated the volatile profile and quality of the rocket leaves 

as effected by improper atmosphere packaging subjecting rocket leaves to three different storage 

temperatures at 0, 5 and 15 oC over a 10 days storage period. Macro-perforated bags were used for rocket 

leaves storage aiming at prevention of modified atmosphere in the headspace for control samples. At 0oC 

the ascorbic acid (AA) of the leaves retained throughout the storage time while a rapid loss of AA was 

observed for the leaves stored at higher storage temperatures owing the major losses in the AA, vitamin 

C and sensorial parameters to the low O2 (0kP) and high CO2 (25kP) concentrations. Also for the leaves 

stored at 0oC the initial headspace fingerprint was best preserved as compared to leaves stored at higher 

temperatures where off-odors from dimethyl sulfide (DMS), dimethyl disulfides (DMDS) and other 

volatiles were produced hence varying the initial headspace fingerprint. It was concluded by the study 

that the improper packaging conditions resulted in decreasing the shelf-life of rocket leaves compared to 

storage in air. Additionally, it was also concluded that effect of modifying the gas composition for leaves 

stored at 0oC did not add any beneficial effect in comparison to storage in air. In a similar study, 

Mastrandrea et al., 2017b, concluded that rocket leaves stored under non-isothermal conditions depicted 

higher levels of CO2 concentrations and lower concentration of O2 than those stored under isothermal 

conditions. Also an increased production of volatiles responsible of off-flavors (acetaldehyde and 

dimethyl sulfide) was observed for the leaves stored under non-isothermal conditions following 

temperature abuse. Conclusively, it was recommended that dimethyl sulfide and acetaldehyde possess 
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the potentiality to be effective markers for tracking the effect of temperature fluctuations on rocket during 

storage. 

Possessing the ability for the adequate estimation of the shelf life of rocket leaves holds great significance 

in assisting in planning of produce logistics with fully automated distribution steps and better manage 

stocks. Amodio et al., 2015 attempted to utilize non-linear modelling approach for the estimation of the 

shelf life of rocket leaves. Rocket leaves were exposed to three different storage temperatures i.e. 0, 5 

and 15 °C and the  cumulative form of the Weibull equation combined with a log-logistic model were 

used for the fitting of experimental data over time of storage and for the investigation of temperature 

dependence of the degradation rates for various sensorial and physio-chemical attributes. The fitting 

accuracy of the Weibullian model was accessed by the correlation coefficients which ranged between 

0.95 and 0.99 followed by traditional first-order kinetics. It was concluded that the log-logistic model 

not only accurately described the temperature dependence of the Weibull parameters but also accounted 

for the thermal history of the product. Additionally, a need for a different approach for the shelf life 

estimation considering more quality variable at the same time was also indicated in this work, since it 

was observed that fquality factors limiting the shelf-life may change depending on the temperature. 

Degradation of the fresh-cut produce is in fact a multivariate phenomenon where different reactions take 

place at the same time. Multivariate data analysis algorithms/techniques are aimed at modelling the 

factors and responses in order to develop a relationship between the factors and responses for the 

extraction of useful information. This extracted information is quite useful to understand the system 

characteristics and also determines the variables contributing highly towards the quality changes. 

In case of leafy vegetables, a number of studies have contributed towards the evaluation of quality 

parameters using the multivariate data analysis. Derossi et al., 2016 used the multivariate data analysis 

for the estimation of shelf-life of fresh-cut lettuce in which principle component analysis (PCA) was 

employed for the data acquired at three different storage temperatures, including different sensorial and 

physio-chemical attributes. A correlation was developed between the first PC and the time of storage. 

Multivariate degradation kinetics was studied and it was concluded that it was better elaborated by zero 

order reaction yielding an R2 as high as 0.97 whereas the multivariate rate constant achieved a good fit 

using the log-logistic model. The shelf-life of the fresh-cut lettuce stored at 0, 5 and 15oC was estimated 
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to be 12.4,10.4 and 3.7 days, respectively, providing an evidence that studying the multivariate approach 

can be useful in accurately describing the degradation phenomenon.  

In another study, Toledo-Martín et al., 2017 used Vis-NIR spectroscopy for the prediction of 

glucosinolates and total phenolic content (TPC) in rocket leaves (Eruca vesicaria) using modified partial 

least squares regression (MPLS). The coefficients of determination in case of validation for both the 

parameters ranged from 0.59-0.84 characterizing equations with good to excellent quantitative 

information. The study also concluded using the MPLS loadings that cellulose and protein which are 

major cell components highly contributed in modelling equations for glucosinolates. 

Edelenbos et al., 2017 used multivariate techniques (multispectral imaging) for the differentiation of 

rocket leaves based on seasons. The seasonal variation was assessed with multispectral imaging data as 

factors for color (570nm) and textural (780nm) measurements as responses. The data analysis showed 

that the color was better preserved in the spring season as compared to the summer season whereas, in 

case of temperatures the leaves stored at lower temperatures preserved green color better as compared to 

those at higher temperatures. For texture on the other hand, it was recommended that the lower storage 

time contributed towards a better texture of the leaves. Therefore, it was concluded that the multispectral 

imaging was a useful tool for the seasonal discrimination of rocket leaves based on color and texture.  

It can be concluded for the aforementioned studies that the quality and shelf life of rocket leaves is a 

multivariate phenomenon and the need for the quality estimation and shelf life prediction using 

multivariate approaches is highly required. In addition, there is also space for non-destructive quality and 

shelf-life evaluation by means of spectral information.  
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OBJECTIVES 
The major objectives of this doctoral thesis are to evaluate the potentiality of the non-destructive 

techniques including spectral profiles and hyperspectral images in the Vis-NIR (400-1000nm) and NIR 

(900-1700nm) ranges for the quality assessment, phytonutrient prediction, shelf life evaluation and 

prediction, and raw material discrimination of rocket leaves. Furthermore, wavelength selection for the 

model improvement will also be pursued followed by mapping of the changes in the phytonutrients over 

the storage period. 
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ABSTRACT 

The feasibility of using spectral profiles for the estimation of the shelf life of the rocket leaves was 

evaluated using a multivariate accelerated shelf life testing (MASLT) approach. Spectral changes over 

time were modeled by using principal component analysis (PCA) and as variation to the conventional 

method, partial least squares (PLS) method. Kinetic charts were built fitting the first principle component 

(PC1) and the first latent variable (LV1) scores versus time. In both cases, the kinetics were described 

by a first order reaction, obtaining R2 values of 0.73, 0.94 and 0.95 for samples stored at 5, 10 and 15 oC, 

respectively. The spectra of samples judged unacceptable were used for the calculation of the cut-off 

value, estimated to be 3.955, leading to shelf life estimations of 9.8, 4.3 and 3.1 days for PCA based 

MASLT for the three temperatures, respectively. For PLS based MASLT the shelf life was 9.4, 4.5 and 

3.3 days for samples stored at the three respective temperatures. Conclusively, shelf-life was correctly 

estimated by conventional MASLT using PCA and also with the newly proposed technique using LVs.   

 

Keywords: PCA, PLS, cutoff, kinetic, appearance  
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1. INTRODUCTION 

A significant increase has been observed in the consumption of minimally processed ready-to-eat foods 

in the last decades (Artés et al., 2009). This rapid rise in the consumption is a result of consumer 

preference for healthy, fresh, convenient, highly nutritive and appetizing food products (Ma et al., 2017; 

Oliveira et al., 2015).  

Rocket leaves (Diplotaxis tenuifolia) are popular leafy vegetables especially in the Mediterranean 

countries, mostly preferred by consumers because of their pungent smell and strong flavour. Moreover, 

they are a rich source of health-promoting phytonutrients such as flavonoids, fiber, vitamin C and 

glucosinolates (Martínez-Sánchez et al., 2006, Cavaiuolo and Ferrante, 2014, Nurzyńska-Wierdak, 2015, 

Amodio et al., 2016). Normally rocket leaves are sold in packages after minimal processing operations 

including washing and drying due to which they are also prone to rapid degradation. Particularly, 

yellowing caused by chlorophyll degradation, wilting, and the production of off-odors are the main 

source of deterioration (Koukounaras, 2006, 2007, 2009; Nielsen et al., 2008). The shelf life of rocket 

leaves ranges between 7 to 14 days depending upon the raw material, handling, processing and especially 

the temperature of storage (Toivonen and Brummell, 2008). 

At the market shelves, the consumer criteria for the selection of the leafy vegetables as rocket is the fresh 

appearance and green color (Løkke et al., 2012) and repurchase of the product depends on the quality at 

the consumption stage often evaluated by color, texture and flavor (Barrett et al., 2010). Freshness and 

green color are quick indicators of the fact that the product can sustain under prescribed conditions for a 

certain time.  

The shelf life determination of any food product is usually conducted by monitoring the quality 

parameters most associated with time by developing kinetic models for deterioration under market and 

extreme conditions using accelerated shelf life testing methods (ASLT) (Labuza, 1982; Hough et al., 

2006). In case of ASLT approach, the samples are subjected to severe storage conditions other than the 

market storage conditions and shelf life charts also known as kinetic charts are developed (Hough et al., 

2006). Various studies have proved that ASLT approach is a useful tool for the rapid estimation of shelf 

life of fresh-cut produce, as apple (Amodio et al., 2015), melons (Amodio et al., 2012) even with the use 

of other empirical models as the Weibull model used on fresh-cut melons (Amodio et al., 2013) and fresh 

rocket leaves (M. L. Amodio et al., 2015a).  
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Degradation process of food products and particularly of fresh-cut produce is a multivariate phenomenon 

depending from several pre-harvest handling and storage factors, impacting on many quality attributes 

(Routray and Orsat, 2014; Torres-Contreras et al., 2014; Fernando Reyes et al., 2007). In this regard, 

spectral data, hyperspectral imaging and chemometric tools such as principal component analysis (PCA) 

may be usefully integrated into ASLT to formulate a new procedure named Multivariate Accelerated 

Shelf Life Testing (MASLT) (Bro and Smilde, 2014; Brereton, 2009; Labuza, 1982; Pedro and Ferreira, 

2006).  

The first step in MASLT procedure involves the kinetic description of the important degradation 

reactions based on the PC scores resulting from a PCA model, assuming that degradation reactions are 

the main sources of variation in the data set, and that PCA will explain the time-related phenomena. 

Usually, these are calculated using the zero order, first order and second order kinetics (Odriozola-

Serrano et al., 2009; Amodio et al., 2015). Secondly, the temperature dependence of the rate constants is 

defined using the Arrhenius equation and the third step involves the calculation of shelf life. The MASLT 

approach has successfully been applied to various food products such as broccoli puree (Kebede et al., 

2015), low-fat UHT milk (Richards et al., 2014), sunflower oil (Upadhyay and Mishra, 2015) and tomato 

paste (Pedro and Ferreira, 2006). This method was applied for the first time on fresh-cut produce by 

Derossi et al., 2016, who obtained an accurate description of the degradation phenomena occurring 

during the storage of fresh-cut lettuce at three different temperatures, monitoring several sensorial, 

physical and chemical changes over time. In the same way, MALST method was applied to estimate the 

shelf-life of fresh-cut pineapples (Amodio et al., 2016). Shelf-life estimation obtained with MALST 

method have been proved to be more reliable than ASLT, but generally, the application of these studies 

by processors is limited by the scarce possibility of carrying out specific quality analysis and collecting 

data. Therefore, many companies are looking for a possible alternative system for the evaluation of the 

quality and shelf-life in a faster, simple and eventually non-destructive way.  

Hyperspectral imaging is a fast, reliable, objective, economical and non-destructive means of data 

collection. This technique is a combination or integration of imaging and spectroscopic techniques for 

the quantitative prediction of physical and chemical characteristics of the food samples as well as their 

spatial distribution.  
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Every product has, in fact, a specific spectral signature, which is a function of the structure of the sample, 

the moisture content, the particle size, the temperature of the sample and most importantly of its chemical 

composition (Workman and Shenk, 2004). In case of the green leaves, Vis-NIR region is retains all the 

information related to leaf pigments such as chlorophyll, anthocyanin and carotenoid content (Mishra et 

al., 2017), characterized by a strong absorption by these leafy pigments, particularly chlorophyll which 

are responsible for photosynthetic activity in plants (Feret et al., 2008). When spectral profiles are 

collected over time they can be used for the estimation of the quality changes and shelf life of the food 

products during storage (Gowen et al., 2008; Rajkumar et al., 2012; Løkke et al., 2013). Some 

applications include monitoring of the ripening of tomatoes (Polder and Heijden, 2010), or banana 

(Rajkumar et al., 2012), hence providing a promising opportunity for the collection of the information 

related to the quality of a product in the form of spectral responses as they retain most of the information 

related to the overall quality.  

The objective of this study was to use the MASLT technique for the estimation of the shelf life of rocket 

leaves using the spectra as a quality attribute. In addition, an alternative method based on the use of 

partial least squares regression (PLSR) and latent variables (LV) instead of PCA and PC scores was also 

proposed. 

2. MATERIALS AND METHODS  

2.1 Experimental design and spectral acquisition 

Washed and dried rocket leaves (Diplotaxis tenuifolia) were received in the postharvest laboratory of 

University of Foggia, after being processed in a commercial company. Drying was conducted with a 

drying tunnel, heating the product at 30 °C for 5 mins, and achieving about 95% of added water reduction. 

Upon arrival the rocket leaves were stored at 5 °C. Representative samples of 100 grams were packed in 

plastic clamshells and stored at three different temperatures (5 °C, 10 °C and 15 °C) in a humidified 

(99% RH) flow of air. Ten replicates were prepared for each storage temperature. Samples were taken 

for image acquisition and quality evaluation at 0, 3, 6, 8 and 10 days of storage following the same leaves 

over time.  

A hyperspectral line scan scanner (Version 1.4, DV srl, Padova, Italy) equipped with a spectrograph, in 

the visible-near infrared (Vis-NIR) range of 400-1000 nm with a spatial resolution of 1000x2000 pixels 

and a spectral resolution of 5nm was used to acquire the images. Twenty leaves were taken for each 
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replicate in a single image and self-developed MATLAB (2012b, version 8.0.0.783) code was used for 

extracting the mean spectra of these leaves producing one spectrum per replicate. For the extraction of 

the mean spectrum, the original image was thresholded and the best contrast between the object and the 

background was found. Image thresholding was performed using the Otsu method, on the image 

depicting the best contrast between the foreground and background, corresponding to 795nm for the Vis-

NIR and 1495nm for the NIR. A 2D binary image (mask) was obtained, with 0 value for the background 

and 1 for the leaves. This mask was imposed to extract the mean spectra of the pixels corresponding to 

the leaves. A total of 150 spectra were acquired, 50 from each storage temperature during 5 different 

days of acquisition (Figure 1). Figure 1a shows the mean spectra based on days of storage and 1b 

demonstrates the changes in the mean spectra based on the storage temperature plotted in PLS toolbox 

(version 7.5.2) supported by MATLAB.  

 

Figure 1. a) Mean spectra based on days of storage Day0 (red), Day3 (green), Day6 (blue), Day8 

(black), Day10 (Violet); b) Mean spectra based on temperatures of storage 5 °C (green), 10 °C 

(blue), 15 °C (red) 

Figure 1a shows the characteristic Vis-NIR reflectance spectra of the rocket leaves resulting from the 

leaf biochemical compounds such as chlorophyll, anthocyanins, carotenoids, water and cellulose in the 

wavelength range of 400-1000nm. In case of green leafy vegetables, the interaction between the plant 

leaves and electromagnetic radiation yields reflectance spectra in the Vis-NIR region which are mainly 

representative of the photosynthetic pigments such as chlorophyll and carotenoids (Mohd Asaari et al., 

2018). Visually, a green plant spectral curve can be observed in the raw spectra with 550nm reflectance 

peak and 680nm absorbance peak caused by chlorophyll, a major color related pigment (Kong et al., 

2016). The sharp rise in the spectra from 700nm corresponds to the red edge resulting from two special 
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optical properties of plant tissue, the high internal leaf scattering resulting in large NIR reflectance and 

low red reflectance as a result of chlorophyll absorption (Horler et al., 1983).    

2.2 Sensory analysis 
Rocket leaves were evaluated by a panel of experts for changes in appearance, including freshness, color 

and dehydration, during the storage period. Since appearance is the most important quality attribute for 

the selection of the product at the retail sites for the consumers, the appearance scores were given a scale 

from 0 to 5 and these sensory evaluations were carried out on each acquisition day. In case of appearance 

scores, rocket leaves with uniform dark green color with fresh and turgid appearance were given score 

5, fresh rocket leaves with a slight loss of turgidity obtained an appearance score of 4, rocket leaves with 

a significant loss of turgidity and an apparent loss of color (limit of marketability) were set at an 

appearance score of 3, leaves with significant senescence with the passage of storage time having 

wrinkled and yellowish blades received an appearance score of 2 and the spoiled rocket leaves with 

severe wilting, significant yellowing and decay symptoms were given a score value of 1 (M. L. Amodio 

et al., 2015).   

2.3 Multivariate Accelerated Shelf Life Testing (MALST) Approach 
An elaboration of the MASLT algorithm used in this study is presented, and for the sake of convenience, 

conventional algebraic symbology is followed, where matrices will be represented by boldface upper 

case letters, vectors with bold face lower case letters, scalar quantities with italic lower case, italic 

subscripts denote case letters and sequences.  

In the first step, a matrix X (mxn) where m=150 and n=121, was formulated representing the quality 

changes in the rocket attributes at three different storage temperatures (5, 10 and 15 °C) with m being 

the number of data points collected during storage on Days 0, 3, 6, 8 and 10 respectively with 10 

replicates from each storage temperature and n being the vector of variables or spectra in a wavelength 

range of 400-1000nm (Figure 2). Auto-scaling the data is a necessary consideration when various 

univariate quality attributes with different scales are simultaneously under study (Pedro and Ferreira, 

2006; Derossi et al., 2016) and in case where spectral profiles are serving as property attributes, 

normalization of the data is important for which mean centering was done.  
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Figure 2. Data Matrix (mxn) with Time=m, Wavelength=n at the 3 Storage Conditions (5, 10, 15 

°C) 

Secondly, PCA was performed on the data matrix X after data mean centering (Figure 3). PCA describes 

the data by projecting it on a new set of axis in the multivariate space. Principal components are linear 

combinations of the original variables and each one accounts for the direction of maximum variability in 

the data (Bro and Smilde, 2014). The loading plots of the time related PCs were observed for the selection 

of the best variables and the elimination of those who did not contribute to any information in the PCA 

model resulting in the elimination of the wavelength range from 800-1000nm. For each storage 

temperature, the scores matrix (S) of every ith time related PC were plotted against the storage time to 

formulate kinetic plots also known as shelf life charts, describing the changes of the PC scores as a 

function of time. For these time related PCs, reaction order and multivariate kinetic parameters were 

determined. After the estimation of the multivariate constants, the Arrhenius equation (Labuza, 1982) 

was used for estimating their temperature dependence for each kinetic model.  

Quality degradation kinetics can be represented by the equation 1: 

−
𝑑𝑄

𝑑𝑡
= 𝑘𝑄𝑛  (Equation 1) 

Where Q is the measured quality attribute, t represents time, n is the reaction order and k is the reaction 

or degradation rate. 

The reaction rates are significantly temperature dependent, higher the storage temperature the faster the 

degradation. Therefore, to associate or describe the temperature dependence of the degradation rates, 

Arrhenius equation is used.  
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ln(𝑘) = ln 𝑘𝑇𝑟𝑒𝑓 −
𝐸𝑎

𝑅𝑇
  (Equation 2) 

Where, Ea is the activation energy, R is the universal gas constant with a constant value of 8.314 J/mol, 

Tref is the reference temperature usually in shelf life studies is the market shelf temperature of any food 

product.   

The most important and significant aspect of the MASLT technique is the selection of the cut-off criteria 

for the property under study. In case of study evaluating different quality parameters, individual reference 

limits are chosen for each quality index, and cut-off criteria (tc) is calculated as the maximum acceptable 

value of the vector t (Pedro and Ferreira, 2006; Derossi et al., 2016).  

t = xa*L  (Equation 3) 

tc = Max(t)  (Equation 4) 

Where xa is the row vector containing the auto-scaled values of the reference limits of each quality 

attribute that define the threshold of acceptability of the product, while L is the loading matrix of the 

time-related PCs at the market storage conditions.  

In this study, the spectra of samples judged unacceptable was used for the calculation of the cut-off value. 

For visualization of degradation with the passage of storage time for leaves stored at different 

temperatures, 5 random leaves were collected from the replicates of each acquisition time and were 

processed in Hypertools (Mobaraki and Amigo, 2018). The images were spatially binned, masked and 

augmented with each row representing a single acquisition time (Figure 5). 

2.4 Partial Least squares regression (PLSR) 

A slight modification of the MALST algorithm was also proposed in this study by developing PLS 

models for the spectra against time of storage. PLSR works by maximizing the covariance between the 

linear functions of the information included in the X (mxn) matrix and the corresponding vector of 

storage time in the m (ter Braak and de Jong, 1998; Dunn et al., 1989). Random subset cross validation 

was applied in this case. Firstly, a PLS model to predict days of storage was developed after mean 

centering the X data and auto-scaling m using the PLS toolbox. Then the LVs were taken as properties 

and were plotted against time to formulate shelf life charts. The rest of the procedure remained the same 

as the conventional MASLT application. In this case, only mean centering was done for data 

normalization. The model reliability was accessed by the values of R2 calibration and R2 cross validation 
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and also by the root mean square errors. 

3. RESULTS AND DISCUSSION 

3.1 Principal Component Analysis and PC relationship with time 

PCA of the normalized data in the wavelength range of 400-1000nm resulted in two PCs covering 

maximum variance in the data where, PC1 accounted for only 88.24% of the total variability over the 

entire wavelength range constituting 121 variables. After the removal of the variables not contributing 

to the model from the preliminary PCA, (MacGregor and Kourti, 1995; Saavedra et al., 2013) a total of 

2 PCs accounted for 98.99% of the total variability in the data in the wavelength range of 400-800nm. In 

this case, PC1 explained maximum variability of 96.27% followed by the PC2 which accounted for only 

2.72% of the total data variability (Figure 3).  

Plot of PC1 vs PC2 scores clearly indicated as the main source of variance on PC1 was related to time 

(Figure 3a). Figure 3b depicts the change in the PC1 scores for the samples stored at three different 

temperatures over the storage time. The degradation rate of the rocket leaves stored at 5 °C is much lower 

than those stored at 10 °C and 15 °C, which as expected, indicates that storage temperature had a 

significant impact on the shelf life of the rocket leaves. Temperature is, in fact, the most important factor 

affecting the quality of fresh produce. Low temperature is essential to maintain an optimal product quality 

because it reduces several physiological activities, such as transpiration, which causes weight loss, and 

respiration. Senescence can induce chemical and enzymatic changes that may cause tissue softening, 

pigment loss, ripening and discoloration (Brosnan and Sun, 2001). Moreover, low temperature also 

reduces the growth rate of spoilage microorganisms on surfaces of vegetable tissues (Rediers et al., 2009; 

Ukuku and Sapers, 2007). These changes in the PC scores may be directly related to the leaf pigments 

which are responsible for the color in the rocket leaves since the spectra responses vary with the change 

in color of the leaves in the Vis-NIR range, as a result of the loss of chlorophyll over the storage period. 

As shown in the sample score plot in Figure 3b, spectral signatures of the leaves at each acquisition time 

varied with the temperature of storage. From Figure 3a and 3b it can also be observed that up to day 3 

all the samples at the three different storage temperatures possessed similar scores and therefore similar 

quality attributes. Regarding appearance, in fact, until day 3 all the leaves possessed a visual score value 

above 3 and were still marketable, as can be seen in Figure 4. Starting from day 6 of storage, significant 

quality differences can be observed in the samples stored at different temperatures.  
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Therefore, PC scores possess the capability to mark the days of storage during which significant quality 

changes occur for the samples stored at different storage temperatures. Also in the case of samples stored 

in modified atmosphere packaging at 5, 10 and 15 °C, differences in appearance score were higher 

starting from the 6th day of storage ( Amodio et al., 2015), as well as difference in the overall sensorial 

quality. In the same study, it was found that appearance scores limited the shelf life of the leaves stored 

at 5 °C, estimated in 7.3 days while an increase in the temperature affected the loss of ascorbic acid more 

than the appearance and off-odor scores. 
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Figure 3. PC scores plots in the wavelength range of 400-800nm: a) PC1 vs PC2 for days of 

storage (0, 3, 6, 8, 10); b) PC1 variation of the samples at 5 (green ellipse), 10 (blue ellipse) and 15 

°C (red ellipse) respectively; c) PC Loadings PC1 (red) PC2 (blue)  
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Figure 3c depicts the importance of the variables for the model; all the loadings of the PC1 model above 

the threshold contributed weight to the model. Since the considered wavelength range is 400-800nm, this 

is mainly accounting for the color changes related to the pigments of the rocket leaves such as chlorophyll 

and carotenoids therefore, the PC1 and PC2 loadings correspond to the chlorophyll absorption at 670nm 

in case of PC1 and the peak at 535nm corresponds to the anthocyanins absorption. The spectral profiles 

in the NIR region from 800-1000nm are mostly related to the changes in dry matter and textural 

properties. Moreover, the mid NIR region is usually depicting changes based on the water content as this 

region is based on the high influence by water (Sánchez et al., 2011). 

As for leaf pigments, chlorophyll compounds absorb in the blue and red regions, corresponding to the 

wavelength peak at 430 and 670 nm for Chlorophyll a, and 460 and 640 nm for chlorophyll b. Carotenoid 

peak ranges from 470 to 530 nm, whereas anthocyanins has a maximum absorbance at 530 nm. Based 

on previous research works both the carotenoid and chlorophyll absorbance decreased with the storage 

time due to the senescence of the leaves (Gitelson and Merzlyak, 1994; Ferrante et al., 2004). Figure 1a 

shows lowest reflectance values in the region from 650-670nm for samples at Day0, which means that 

the leaves possess significant chlorophyll content which with the passage of storage time decreased 

resulting in higher reflectance (low absorption) values at the end of storage period. This transition from 

the green to yellow color as a result of chlorophyll breakdown, associated to senescence, results in 

increased reflectance values.  
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Figure 4. Changes in the appearance scores of fresh rocket leaves stored at 5 oC (green), 10 oC 

(blue) and 15 oC (red) over time    

From Figure 4 it can be observed that leaves stored at 15 °C showed the highest degradation, followed 

by samples at 10 oC and 5 oC; this is a result of color changes and leaf dehydration and wilting. 

Figure 5 represents the variability of the PC Scores in the leaves stored at 5, 10 and 15 °C. As can be 

seen, the color changes in each row (each acquisition time) at 5 °C are not visually different, but in case 

of 10 and 15 °C higher changes can be observed. As for 10 °C, starting from the 3rd row corresponding 

to the 6th day of storage, slight changes in the score colors can be observed. In case of 15 °C, the leaves 

in row 3 are clearly showing a significant variation of the score values when compared to those at 5 °C 

and 10 °C. This is totally comparable to the PCA results of the spectra in Figure 3b where the score 

sample plot depicts maximum score changes at 15 °C. So Figure 5 is an image visualization of the trend 

of the score changes, obtained using randomly chosen leaves which has been expressed in Figure 3b for 

the samples stored at all three temperatures. The differences in the Figures 5a, 5b and 5c can be directly 

related to the quality of the leaves. While Figure 3b shows a plot of the samples against the time related 

PC1, Figure 5 shows the relative maps of the leaves stored at all the three different temperatures over a 

time span of 10 storage days. The PC1 score values correspond to the color changes in the leaves from 

dark green to yellow over the storage period, which can also be depicted in the PC scores plot along the 



106 

 

PC1 axis in Figure 3a. According to the Figure 3b all the samples at Day1 of storage have the same score 

values hence they possess the same freshness and green color as can also be observed for the samples of 

Day1 for all samples in Figure 5. Since the degradation rate at different temperatures is different, clear 

quality changes (transition from dark green towards yellowish color) were observed for the samples 

stored at 10 °C and 15 °C after 6 days of storage, especially for the samples stored at 15 °C.   

3.2 Multivariate modeling and shelf life estimation 

Table 1 shows the results obtained by applying non-linear fitting to PC1 scores against time; based on 

R2 values, results of first order fitting, particularly when a pre exponential factor was also included in the 

equation were better than those of the zero order reactions. First order kinetics explained the PC1 score 

changes with time with an R2 of 0.73 at 5, 0.94 at 10, and 0.95 at 15°C for the variables in the range of 

400-800nm. The reason for this low value of R2 in case of 5oC can be attributed to the fact that the 

degradation rate at this temperature was slower as compared to 10 and 15oC. A0 refers to the pre 

exponential factor, and was estimated in similar values among different temperatures, being 3.849, 3.831 

and 3.776, respectively at 5, 10 and 15 °C  

Table 1. First order kinetic parameters of PC1 scores as a function of time for fresh rocket leave 

samples stored at 5, 10 and 15°C using the equation A=A0*e(-kt) 

Wavelength Range 400-800nm 

Temperature   Estimate  Std. error  t-value  p-level  Conf limits  R2  

5°C 
A0  3.849 0.030 126.570 0.000001 3.753-3.947 

0.73 

km  0.008 0.004 1.825 0.16 -0.006-0.022 

10°C 
A0  3.831 0.043 87.299 0.000003 3.692-3.971 

0.94 

km  0.033 0.006 4.870 0.01 0.011-0.055 

15°C 
A0  3.776 0.071 52.478 0.00001 3.547-4.005 

0.95 

km  0.058 0.011 5.276 0.01 0.023-0.094 

 

Looking also at the confidence values for A0 values, it can be concluded that all the samples had the same 

quality attributes upon the beginning of the shelf life estimation and that the variance of overall quality 
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of the fresh samples did not affect the degradation kinetics. On the other hand, a progressive increase in 

the value of the multivariate rate constants is seen with the increasing temperature which at 5°C increased 

with a value of 0.008d-1, at 10°C with a value of 0.033d-1 and at 15°C it increased with a value of 0.058d-

1. From the confidence intervals, a significant difference can be observed between samples stored at 5 

and 15°C, with an increase of ~7.2 fold in the degradation rate of the appearance scores. Derossi et al., 

2016 found higher multivariate rate constants with values increasing with the increasing temperature for 

fresh-cut lettuce stored in MAP at 0, 5 and 15°C, but this may be explained with the higher sensitivity of 

lettuce to browning and quality degradation due to mechanical damages induced with the cutting (Murata 

et al., 2004) and to the effect of modified atmosphere which at higher temperature may result in improper 

gas composition and in off-flavor development (Mastrandrea et al., 2017). On the other side, observed 

values for km at 5 and 15°C were very similar to the value obtained by Amodio et al. (2015) when fitting 

color score kinetic, evaluated sensorially with the same scale system from 5 to 1. These authors reported 

values of 0.019 and 0.047, at 5 and 15°C, respectively, fitting the kinetic curve with a Weibull model. 

Considering that shape factor values were not very different from 1 (1.34), a rough comparison of the 

constant can be done, and thus it can be hypothesized that observed variations were closely related to the 

color changes. The decrease in the values of the PC scores with the passage of storage time in the 

wavelength range of 400-800nm is indicative of the transition from green color to yellowish as a result 

of the loss of chlorophyll which at 15oC is the highest (Figure 5c) followed by 10oC (Figure 5b) and 5oC 

(Figure 5a) and color changes can only be observed in the region from 550-700nm.  
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Figure 5. Variability in PC1 scores over storage) a) 5°C b) 10°C c)15°C in a wavelength range of 

400-800nm. 
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The multivariate kinetic parameters (km, αm, Ea) calculated using PC scores as properties after various 

data pretreatments and utilizing two different spectral ranges, are shown in Table 2. These kinetic 

parameters were obtained after the exponential fitting of the time related PC scores with time of storage 

using the equation A=A0*e(-kt). 

Table 2. First order kinetic parameters as a result of exponential modeling of PC1 scores as a 

function of time for fresh rocket leave samples stored at 5, 10 and 15°C using the equation A=A0*e(-

kt) 

Wavelength range (400-1000 nm) 

PC# Variance 

explained 

(%) 

Pretreatment Storage 

Temperature 

(°C) 

Multivariate 

rate constant 

(km) 

Acceleration 

factor  

(αm) 

Activation 

Energy (Ea) 

1st 88.92 Mean Centering 

05 0.0024 … 

120.91 10 0.0085 3.54 

15 0.0147 6.13 

Wavelength range (400-800 nm) 

PC# Variance 

explained 

(%) 

Pretreatment Storage 

Temperature 

(°C) 

Multivariate 

rate constant 

(km) 

Acceleration 

factor  

(αm) 

Activation 

Energy (Ea) 

1st  96.37 Mean Centering 

05 0.0022 … 

124.88 10 0.0082 3.73 

15 0.0143 6.5 

 

From Table 2 it can be seen that the dependence of the rate constant (km) on the temperature of storage 

is clearer in case of mean centered data both for the 121 variables used (400-1000nm) and 81 variables 

(400-800nm) after the spectral cropping. Other data pre-treatments were applied, but a clear difference 

between the rate constants could not be observed in those cases, since, by extensively preprocessing the 

data, the baseline effects related to the product degradation cannot be observed (Pedro and Ferreira, 

2009), therefore the spectral data were only normalized.  
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In case of the full wavelength range, the rate constant changed from 0.0024d-1 to 0.0085d-1 and 0.0147d-

1, respectively for 5, 10, and 15°C, depicting the change in the rate constants with respect to temperature. 

Similarly, after the omission of the undesired variables, the variance explained by PC1 increased but still 

there was not a significant difference between the rate constant and acceleration factor values from those 

of the total 121 variables under study. The activation energy calculated for 121 variables was 120.91 

kJ/mol whereas for 81 selected variables it was 124.88 kJ/mol. Also in this case the comparison with 

value found by Derossi et al., 2016 for fresh-cut lettuces, confirmed that degradation reactions in rocket 

leaves were much slower than for fresh-cut lettuce, requiring much higher Ea.  

 

 

Figure 6. PC1 scores as a function of time for rocket leaves stored at 5oC (green), 10oC (blue) and 

15oC (red). Red full-line represent the shelf-life cut-off value.  

In Figure 6, PC1 scores for each temperature were plotted against time in order to estimate the shelf-life. 

The cut off criterion was calculated based on the number of days needed to reach score 3, corresponding 

to the marketability limit, applied to the kinetic at 15°C. This is in line with the MASLT theory of using 

the maximum acceptable values among shelf-life limit of considered attributes. The spectrum of the 



111 

 

unacceptable sample as vector xa and the loadings of the time related PC were taken and using equation 

4 the cutoff criteria was calculated to be 3.955. These appearance score values were in agreement with 

the studies conducted by Amodio et al., 2015 and Mastrandrea et al., 2017 in which the rocket leaves 

reached the limit of marketability (appearance score 3) on the third day of storage when stored at 15°C.  

Estimated values of shelf life were similar to those reported by Amodio et al., 2015 and were lower when 

compared to values reported by Koukounaras et al., 2007, but this can bedue to the difference in raw 

material possibly related with the cultivar, the season, and the number of cutting (Seefeldt et al., 2012; 

Koukounaras et al.,2007; Martínez-sánchez et al., 2008). Moreover this study was conducted in 

humidified air flow storage of the leaves and the same leaves were followed over time, being   more 

prone to mechanical damage during image acquisitions.   

 Generally shelf-life of wild rocket leaves stored at 0°C was extended to about 3 days if compared to 

storage at 4°C and 6 days compared to storage at 7°C (Hall et al., 2013). Amodio et al., (2015) reported 

value of 7.3, 5.8 and 3.7 days for samples stored at 0, 5 and 15 °C, respectively, when appearance score 

was used as marketability limit. In the same study, the shelf life was of 12.6, 10.4 and 3.1 when calculated 

on texture score, and even higher if calculated on the ascorbic acid losses. The authors, showed, in fact 

that appearance score was the limiting factor for shelf life at 0 and 5°C, but that at 15°C, ascorbic acid 

content, followed by the texture, were more critically contributing to the marketability, because the 

degradation rates of these attributes increased with temperature more than the appearance and off-odor. 

These findings confirm the needing of a multivariate approach for shelf-life estimation. When MALST 

method was applied on fresh-cut lettuce, it was found that the degradation of samples stored at 15°C was 

mainly attributed to the off-odor rather than to the appearance score and color score, which, on the other 

hand, were the most determinant for samples stored at 0 and 5°C, respectively (Derossi et al., 2016).  

3.3 PLSR for the estimation of days of storage and shelf life 

This method is a slight modification of the MASLT approach. In this case instead of doing a PCA, a PLS 

model was developed for the prediction of days of storage from the spectra acquired during the storage 

period at all three storage temperatures. The spectra were mean centered and PLS regression model for 

days of storage in the full wavelength range resulted in an 𝑅𝑐𝑎𝑙
2  of 0.86 and 𝑅𝑐𝑣

2  of 0.83 with the RMSC 

of 1.32 and RMSECV of 1.48. The first latent variable (LV) accounted for 88.82% of the variance and 
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the second LV described 8.31% of the variance in the data. Variables having minimal or negligible 

weight in the PLS model as shown in the loading plots were removed, resulting also in this case, in the 

elimination of the variables from 800-1000nm. PLS regression model for prediction of days of storage 

was developed again with 81 variables from 400-800nm after data normalization (Figure 7). 

  

Figure 7. PLS regression model for prediction of days of storage in the wavelength range of 400-

800nm; Day0 (red), Day3 (green), Day6 (blue), Day8 (light blue), Day 10 (orange). 

LV1 explained 96.25% of the covariance, whereas LV2 only accounted for 2.69% of the covariance in 

the data. The plot of LV1 versus LV2 shows the variability of the LV scores along the LV1 axis (Figure 

8a). The cause of this variability can be found in the differences of the Y values due to the different 

storage temperatures. Figure 8b depicts the loadings of LV1 and LV2.  
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Figure 8. LV plots in the wavelength range of 400-800nm; a) LV1 vs LV2 score variability for 

days of storage (0, 3, 6, 8, 10); b) LV loadings LV1 (red) LV2 (blue). 

 

Compared to the PCA in Figure 3a a similar dependence of LV values with time of storage can be 

observed; the changes in the spectral properties are evident in this case as well. For this reason, this can 
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also be considered as a new MASLT approach and its results can be compared to the conventional 

MASLT based on PCA. As expected, LV1 was found to be time related and the loadings of LV1 and 

PC1 possessed negligible difference. Both the LV1 and PC1 loading profiles hold similarity with the 

mean centered spectral profiles, hence explaining maximum covariance and variance, respectively. 

Table 3. Estimated A0 and slope km values resulting from the regression analysis of storage time 

and LV1 scores 

Wavelength range (400-800 nm) 

Temperature   Estimate  Std. error  t-value  p-level  Conf. limits  R2  

5  
A

0
  3.849 0.029 128.814 0.000001 3.754-3.944 

0.74 
km 0.008 0.004 1.919 0.15 -0.005-0.021 

10  
A

0
  3.831 0.044 86.470 0.000003 3.689-3.972 

0.94 
km 0.033 0.006 4.842 0.01 0.011-0.054 

15  
A

0
  3.775 0.072 51.784 0.00001 3.543-4.007 

0.95 
km  0.058 0.011 5.218 0.01 0.023-0.095 

 

If compared to Table 1, the results obtained by applying non-linear fitting to the LV1 against time using 

the first order kinetics are not significantly different as the PC scores approach in the conventional 

MASLT studies (see Table 3). LV1 score changes with time resulted in an R2 of 0.74 at 5°C, slightly 

higher than the R2 obtained in the case of PC scores at the same storage temperature, 0.94 at 10°C and 

0.95 at 15°C, similar to those of the PC approach. The A0 values for all three temperatures is almost 

similar in this case and negligibly different from those of the PC scores for each storage temperature. 

Moreover, the multivariate rate constant values are exactly the same in both cases, with the increasing 

temperature which at 5°C was 0.008d-1, at 10°C was 0.033d-1 and at 15°C was 0.058d-1. If compared to 

the A0 values in Table 1 it can be seen that the results of the PLS regression coupled with the MASLT 

analysis are the same as the conventional MASLT approach. Also in this case the negligible differences 

in the A0 values signify that the leaves in the start of the analysis had the same quality attributes which 

deteriorated with the passage of time at different rates stored at different temperatures.  

Table 4. First order kinetic parameters as a result of exponential modeling of LV1 scores as a 
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function of time for fresh rocket leave samples stored at 5, 10 and 15°C using the equation A=A0*e(-

kt) 

Wavelength range (400-800 nm) 

LV# Co-variance 

explained 

(%) 

Pretreatment Storage 

Temperature 

(°C) 

Multivariate 

rate constant 

(km) 

Acceleration 

factor  

(αm) 

Activation 

Energy (Ea) 

1st 96.25 Mean Centering  

05 0.0023 … 

121.95 10 0.0082 3.57 

15 0.0143 6.22 

 

The kinetic charts were developed for the LV scores at each storage temperature against the days of 

storage (Figure 9). 

 

 

 

Figure 9. LV1 scores as a function of time Figure 6. PC1 scores a for rocket leaves stored at 5oC 
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(green), 10oC (blue) and 15oC (red). Red full-line represent the shelf-life cut-off value. 

If compared to Figure 6, in which the PC1 scores were plotted as a function of time, it can be observed 

that the results are not very different. Equation 4 was used for the calculation of cutoff criteria using the 

unacceptable spectrum and the loadings matrix of the time related LVs, and these cutoff criteria 

possessed negligible difference from that of the PC scores approach. The estimate of shelf life in this 

case for samples stored at all three temperatures had minute differences but was still better as compared 

to the PCA, 3.3 days, 4.5 days and 9.4 days at 5, 10 and 15oC.   

Comparing Figure 6 and Figure 9, as well as Table 4 and Table 2, it is clear that LV can be used as an 

alternative approach for the shelf life estimation in the MASLT method since the differences in the values 

of the rate constants, of the activation energy, as well as of shelf-life estimation are not significant. The 

advantage of using this approach instead of using a PCA is that it would be much more flexible for further 

validation experiments. In fact, while PCA distribution of variables may be more sensitive to other 

sources of variation, a PLS prediction model based on days of storage will be more robust since PLS 

takes into consideration the covariance between the spectral profiles and the predictor values. Hence, the 

co-variability of the spectra with respect to days of storage are more accurately represented by PLS. This 

will facilitate the comparison of data obtained with new samples, just by plotting them versus the 

regression line plot, without the need of re-running a PCA every time, and also the adding of new 

calibration data into the model.  

4. CONCLUSIONS 

For the first time a multivariate approach using the spectral fingerprints for the estimation of the shelf 

life of fresh cut rockets was used. The changes in the spectra with the passage of storage time for the 

samples stored at three different temperatures served as the property under study. Comparing the MASLT 

approach with the conventional ASLT methods the use of PCA yielded valuable information regarding 

the variables contributing towards the weight in the model and accounting for the quality losses of the 

product. It was highlighted that the wavelength range of 550-700nm held great significance while 

estimating shelf life based on appearance scores. The conventional MASLT approach using the PC scores 

was also compared with a new method using PLS and LV for the development of the kinetic or shelf life 

charts. Comparing both the approaches it was concluded that no significant difference exists between the 

results yielded by both the techniques.  
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On the other side, the PLS model can be more robust as compared to a PCA model with the allowance 

of new samples to be added in the calibration and can serve as a tool for better validation. MASLT 

approach with PLS can enable the processors to better estimate the shelf life of their products and access 

the market with better product quality by improving the logistics.   
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Abstract 

The potential of hyperspectral imaging in the visible and near infrared regions was investigated for the 

prediction and mapping of Vitamin C, ascorbic acid (AA), dehydroascorbic acid (DHAA), antioxidant 

activity and phenols in wild rocket (Diplotaxis tenuifolia) over a storage span of 12 days at 5oC. 

Hyperspectral images of the wild rocket leaves were acquired in the Vis-NIR (400-1000nm) and the NIR 

(900-1700nm) ranges followed by Partial least squares regression (PLSR) using different data 

pretreatments and wavelength selection. The model reliability was checked by the root mean square error 

(RMSE) and R2 values. Among the predicted parameters Vitamin C, AA, antioxidant activity and 

phenols were predicted satisfactorily in the NIR range. 1st derivative followed by mean centering served 

as the best spectral pretreatment in each case. The PLSR models for Vitamin C yielded an R2 of 0.76 in 

external prediction (RMSEP of 10.905 over a range of 15.80 to 123.33 mg/100g) while for AA, with the 

same data pretreatment the R2 value in external prediction was 0.73 with a RMSEP of 10.249 over a 

range of 7.97 to 109.38 mg/100g. The R2 value for antioxidant activity was 0.76 in external prediction 

(RMSEP of 16.022 over a range of 54.26 to 192.15 mg Trolox/100g) while for phenols, external 

prediction yielded an R2 of 0.78 with a RMSEP of 13.816 over a range of 83.53 to 200.92 mg of gallic 

acid/100g. The prediction maps for the parameters were calculated to follow the changes over the storage 

period. More reliable results were acquired in the NIR range as compared to the Vis-NIR range.  
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1. INTRODUCTION 

Leafy vegetables have always served as a significant source of health promoting elements in human diet 

as they are an enormous reserve of active chemical compounds and are the cheapest and widely available 

source of fiber, proteins, vitamins, phenolic compounds, antioxidants and minerals (Gibson et al., 2012). 

Along with aiding the consumers in meeting their optimum nutrient requirements they also act in the 

prevention of various morbid conditions (Lampe, 1999; Mann, 2001; He et al., 2006; Webb and Villamor, 

2008). Therefore, the consumption of minimally processed ready-to-eat fruit and vegetable has 

significantly boosted in the last decades (Artés, Gómez, Aguayo, Escalona, & Artés-Hernández, 2009), 

since they are perceived as healthy, convenient, highly nutritive and appetizing (Oliveira et al., 2015; Ma 

et al., 2017)..  

In the Mediterranean countries, rocket leaves (Diplotaxis tenuifolia) with its pungent smell and strong 

flavour, lies among the most popular leafy vegetables mostly consumed as stand-alone salads or as a part 

of mixed salad products. The rocket leaves are a rich source of phytonutrients such as fiber, Vitamin C, 

flavonoids and glucosinolates which are widely known for their positive impacts on human health 

(Cavaiuolo and Ferrante, 2014; Nurzyńska-Wierdak, 2015). The nutritional value of the wild rocket 

leaves and its degradation with the passage of the shelf life depends on the pre-harvest practices, 

postharvest handing, processing and storage conditions (Toivonen and Brummell, 2008; Cefola and Pace, 

2015).  After minimal processing operations (most commonly in this case, washing and drying), the 

rocket leaves are available packaged in plastic bags in the retail stores. Particularly, yellowing caused by 

chlorophyll degradation, wilting, and the production of off-odors are the main sources of deterioration 

for this product (Nielsen et al., 2008; Koukounaras et al., 2009; Løkke et al., 2012; Chaudhry et al., 

2018).  

The degradation process in fruits and vegetables also results in the degradation of the phytonutrients and 

many studies have taken into account the changes in the vitamin C, ascorbic acid (AA), antioxidant 

capacity, phenols and anthocyanins (Amodio, Derossi, Mastrandrea, & Colelli, 2015; Derossi, 

Mastrandrea, Amodio, De Chiara, & Colelli, 2016a). The kinetics of AA degradation is effected by 
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temperature, pH, enzymes, oxygen, metallic catalysers and light (Santos & Silva, 2008; Pérez-Balibrea, 

Moreno, & García-Viguera, 2008). The effect of storage time and temperature on vitamin C degradation 

of rocket leaves  has been reported by (Kim and Ishii, 2007; Spadafora et al., 2016; Mastrandrea et al., 

2017). Kim & Ishii, 2007 observed that the vitamin C content was significantly affected during the 

storage of the rocket leaves at both 4oC and 15oC and also it was reported that the vitamin C content was 

higher in the leaves with roots and leaves only in case of 4oC as compared to 15oC regardless of the 

storage time. In the same study it was also observed that the rocket leaves stored without roots showed 

better results during storage at 4oC in terms of freshness and weight loss. Moreover, Spadafora et al., 

2016 also reported a rapid decrease in the vitamin C content of rocket leaves stored at higher 

temperatures. In this study it was concluded that the vitamin C depletion rate was higher for rocket leaves 

stored at 10oC at all time-points but this difference was particularly significant at the ninth day of storage. 

At the end of the storage period the rocket leaves stored at 5oC retained more vitamin C as compared to 

the leaves stored at 10oC. Particularly, Mastrandrea, Amodio, de Chiara, Pati, & Colelli, 2017 reported 

that the leaves stored at 0oC both in air and in modified atmosphere packaging (MAP) did not show any 

changes in the AA content but those stored at 5oC air portrayed slight decrease in the AA content with 

the passage of storage time while a progressive and rapid decrease was observed in the AA content 

degradation at 15oC both in case of samples stored in air and in MAP. Changes in AA content during 

storage of rocket leaves were also studied by (Cavaiuolo, Cocetta, Bulgari, Spinardi, & Ferrante, 2015a) 

which observed a slight increase in the AA content in the initial days of storage. In another study a 

comparison of the changes in the AA and vitamin C content was made for the rocket leaves stored at 4oC 

in controlled atmosphere (CA) with those stored in air concluding that the AA content remained unaltered 

in the CA and also increased at the end of the storage while the ascorbic acid (AA) content degraded in 

the leaves stored in air (Martínez-Sánchez, Marín, Llorach, Ferreres, & Gil, 2006a). Moreover, a decrease 

in the total antioxidant capacity was observed during the storage period which was more significant for 

the samples stored in air. The phenolic content in the leaves also portrayed a decrease with the passage 

of storage time regardless of the storage atmosphere.  

All the above studies rely on chemical methods for the quantification of the phytonutrients that are time 

consuming, require skilled personnel and they are expensive to conduct. As an alternative rapid, and 
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cheaper means of measuring nutritional quality may facilitate the access to this information also to 

processing companies and finally to the consumer. Hyperspectral imaging is a technique that integrates 

imaging and spectroscopy for the quantification and prediction of physical attributes and chemical 

compounds in food samples along with the mapping of their spatial distribution in the sample (Elmasry 

et al., 2012; Y.-Y. Pu et al., 2015; Huang et al., 2014). Every food product has, in fact, a specific spectral 

fingerprint, depending on the sample structure, the moisture content, the particle size, the temperature of 

the sample and most importantly of its chemical composition (Osorio, Haughey, Elliott, & Koidis, 2014). 

Most commonly, during the storage period, these spectral profiles are collected from the hyperspectral 

images which later integrated with multivariate tools can be used as a powerful tool for the estimation of 

the quality and shelf life of the food products during storage (Gowen et al., 2008; Løkke et al., 2013). 

The potentiality of the hyperspectral imaging and spectral fingerprinting combined with multivariate 

analysis has been widely recognized for the prediction of various chemical constituents, contaminant, 

detection of defects, safety inspection, in fresh fruits and vegetables such as strawberries (Nagata et al., 

2005; Tallada et al., 2006), apples (ElMasry, Wang, Vigneault, Qiao, & ElSayed, 2008), cucumbers (Liu, 

Chen, Wang, Chan, & Kim, 2004), lychee fruits (H. Pu, Liu, Wang, & Sun, 2015), wheat grains 

;(Vigneau, Ecarnot, Rabatel, & Roumet, 2011), and spinach leaves (C. D. Everard, Kim, & Lee, 2014a). 

Many research works have concentrated on the non-destructive evaluation of leafy vegetables 

particularly spinaches (Diezma et al., 2013; Tewey et al., 2017; Lara et al., 2013; Zhang et al., 2017; Cho 

et al., 2017; Everard et al., 2014; Lunadei et al., 2012; Yang et al., 2017), lettuce (Derossi et al., 2016; 

Xue and Yang, 2009), and rocket leaves (Toledo-Martín et al., 2017; Løkke et al., 2013b; Giovenzana et 

al., 2015; Chaudhry et al., 2018). Among leafy vegetables most of the research works have implemented 

hyperspectral or multispectral techniques for the quality evaluation of spinach leaves including detection 

of Escherichia coli (Siripatrawan, Makino, Kawagoe, & Oshita, 2011) where Vis-NIR hyperspectral 

imaging was used to establish a correlation between the hyperspectral data and the number of E. Coli 

which varied from 5.1 to 7.4 Log (CFU/g) in the four sub-groups for different initial inoculated 

concentrations of E. Coli (K12). Diezma et al., 2013b and to  discriminate  between the fresh, degrading 

and degraded spinach leaves over the storage period. In another study (C. D. Everard, Kim, & Lee, 

2014b) hyperspectral imaging in the visible-NIR and florescence regions was used for the fecal detection 
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on the spinach leaves up to 1:10 dilution level with 100% accuracy. Moreover, for rocket leaves Løkke 

et al., 2013b used CIELAB obtained from multispectral imaging for achieving a correlation with the 

sensory evaluation based on color and texture. It was observed that a more reliable color evaluation was 

achieved using the CIELAB multispectral image data whereas the selective wavelengths in the NIR 

region resulted in the reliable description of textural variations. Kokalj, Prikeržnik, & Kreft, 2016 used 

FTIR spectroscopy for detecting the rocket contamination with the common groundsel leaves and 

obtained 100% correct classification. Moreover, Chaudhry et al., 2018 used hyperspectral imaging in the 

Vis-NIR range for followed by the multivariate accelerated shelf life testing approach (MASLT) for the 

non-destructive shelf life estimation of stored rocket leaves. It was concluded by the study that 

wavelength range between 550–700 nm significantly contributed towards the shelf life estimation based 

on appearance scores. The changes in the appearance scores were also mapped over the storage time for 

all storage temperatures. NIRS was also employed by Villatoro-Pulido et al., 2012 for the prediction of 

mineral composition of the rocket leaves in the wavelength range of 400-2500nm using modified partial 

least squares regression (MPLS). For the model simplification wavelength selection was done and it was 

found out that the wavelengths in the regions between 500–700, 1100–1300, 1400 and 1900–2400 nm 

were significantly important for the prediction of minerals with R2 values ranging between 0.39-0.78 for 

various minerals. Villatoro-Pulido et al., 2012 also used the Vis-NIR spectroscopy for the quantification 

of total phenolic content (TPC) and glucosinolates in the rocket leaves using MPLS regression with R2 

values ranging between 0.59 to 0.84 depicting reliable quantification results. Nevertheless, none of the 

studies have attempted to quantify and predict the phytonutrient changes over time in leafy vegetables 

particularly rocket leaves using spectral profiles and map these changes over time using hyperspectral 

imaging. 

The objective of this study is to correlate the spectral information acquired over time with the changes 

in vitamin C content, antioxidant activity, AA, DHAA and phenols over the storage period and map the 

concentration profiles over time, by using hyperspectral images in the visible and NIR ranges using 

Partial Least Squares Regression (PLSR). To this aim a new approach was introduced in order to correct 

errors due to the pixel by pixel prediction based on prediction model obtained with mean spectra of leaf 

regions.  
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2. MATERIALS AND METHODS 

2.1. Experimental design and spectral acquisition 

Washed and dried rocket leaves (Diplotaxis tenuifolia) were received in the postharvest laboratory of 

University of Foggia, Italy. Representative samples were weighted; distributed into 100g batches, packed 

into plastic clamshells and stored at 5oC under humidified air flow. Fifteen replicates comprising 20 

leaves each were acquired on each acquisition interval over a span of 12 days of storage. Hyperspectral 

image acquisition and reference analysis of the samples was done on 0, 2, 5, 7, 9 and 12 days of storage. 

Prior to the analysis the leaves were kept at room temperature.  

For the acquisition of the hyperspectral images, a hyperspectral line scan scanner (Version 1.4, DV srl, 

Padova, Italy) equipped with two spectrographs, one in the visible near infrared (Vis-NIR) region and 

the other in the near infrared region (NIR) were used. The spatial resolution of the Vis-NIR spectrograph 

was 2000x1000 pixels with a spectral resolution of 5nm over a wavelength range of 400-1000nm while 

the spatial resolution of NIR spectrograph was 623x320 pixels and a spectral resolution similar to Vis-

NIR spectrograph over a wavelength of 900-1700nm.  

Self-developed MATLAB codes were used for image thresholding and the extraction of the average 

spectra of twenty leaves from each replicate based on the best contrast between the object and the 

background followed by masking and the same procedure was followed for each acquisition interval. A 

total of 90 spectra both in the NIR and Vis-NIR ranges were collected to formulate the dataset.  

2.2 Chemical analysis 

2.2.1 Total phenolic content and antioxidant activity evaluation 

Total phenolic content and antioxidant activity were determined according to Singleton and Rossi (1965) 

and Brand-Williams et al., (1995) with minor modifications. Three grams of leafy tissues representing 

the leaves of one replicate (one image) were homogenized in 2mM sodium fluoride methanol:water 

solution (80:20) for 1 minute and centrifuged at 5°C and 12,000 rpm for 5 minutes. The total phenol 

content was expressed as mg of gallic acid equivalent (GAE) 100-1 g fresh weight. The antioxidant 

activity was reported as mg Trolox equivalent antioxidant activity (TEAC) 100 g-1 FW. Readings were 

made at 725 nm, against a blank after 2 h standing for phenolic content and at 515 nm after 24 h standing 

for antioxidant activity using a UV-1700 Shimadzu spectrophotometer (Jiangsu, China). 
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2.2.2 Vitamin C analysis 

Three grams of fresh rocket tissues representing the leaves of one replicate (one image) were 

homogenized with 10 mL of MeOH/H2O (5:95) plus citric acid (21 g L−1) with EDTA (0.5 g L−1). The 

homogenate was filtered through cheesecloth and a C18 Bakerbond SPE column (Waters, Milford, MA, 

USA). AA and DHAA contents were determined as described by Zapata and Dufour, (1992), with some 

modifications. The HPLC analysis was achieved after derivatization of DHAA into the fluorophore 3-

(1,2-dihydroxyethyl) furol [3,4-b] quinoxaline-1-one (DFQ), with 1,2-phenylenediamine 

dihydrochloride (OPDA). Samples of 20 µl were analyzed with an Agilent 1200 Series HPLC. The HPLC 

system consisted of a G1312A binary pump, a G1329A autosampler, a G1315B photodiode array 

detector from Agilent Technologies (Waldbronn, Germany). Separations of DFQ and AA were achieved 

on a Zorbax Eclipse XDB- C18 column (150 mm × 4.6 mm; 5 μm particle size; Agilent Technologies, 

Santa Clara, CA, USA). The mobile phase was MeOH/H2O (5:95 v/v) containing 5mM cetrimide and 

50mM potassium dihydrogen phosphate at pH 4.5. The flow rate was 1 mL min-1. AA and DHAA 

contents were expressed as mg of ascorbic or dehydroascorbic acid per 100 g of fresh weight (mg 100 g-

1). 

2.3. Partial Least Squares Regression (PLSR) 

Prediction models for the desired parameters were developed using the PLS algorithm in the PLS toolbox 

(Eigenvector Research Inc., version 7.2.5) working under MATLAB 2012b (version 8.0.0.783, The 

mathworks, MA, USA) as well as in HYPER-Tools (Version 2.0). The spectral dataset was divided into 

calibration set and validation set based on the 70/30 ration with 70% of the samples in the calibration 

dataset and 30% of the samples reserved for external validation from the replicates of each acquisition 

interval. For the development of the PLSR calibration models internal cross validation was done using 

the random subset cross validation. The accuracy of the calibration models was accessed by visualizing 

the R2 in calibration, R2 cross validation and the root mean square error for calibration (RMSEC) and 

cross-validation (RMSECV). After the formulation of the best calibration model the external dataset was 

used for the prediction of the desired constituent.  

After the development of prediction models, the mapping of the internal constituents was done by 

introducing a brand new approach based on the selection of pixels in the image according to the 

calibration range. PLSR models were developed within the calibration range based on the spectra 



132 

 

acquired from the average of the leaves in an image, standing to the consideration that the mean spectrum 

of that particular image corresponds to the averages of the vitamin C content of all the leaves in that 

image. Therefore, it is normal that when the PLSR calibration model developed with the mean spectra 

of all the leaves of all the replicates is applied to a new image for pixel by pixel prediction, some of the 

pixels may fall out (below or above) of the calibration range. Moreover, since the prediction can be 

certain only if the obtained values are within the calibration range, the pixels with concentrations that 

falls out of the calibration range should not be considered. Also keeping under consideration the 

confidence level, the root mean square error of calibration (RMSEC) in the model, the calibration range 

can be spanned from the minimum of the calibration range minus the RMSEC until the maximum of the 

calibration range plus the RMSEC. All the pixels with prediction values outside this range were excluded 

from the concentration map and were depicted separately both for above and below calibration range 

with the passage of storage time.    

3. RESULTS AND DISCUSSION 

 

Figure 1. a) 1st Derivative of Vis-NIR spectra   b) 1st Derivative of NIR spectra   Day 0 (red), Day 

2 (blue), Day 5 (cyan), Day 7 (pink), Day 9 (light green) and Day 12 (green) 

In table 1 are shown the mean values and respective range of composition for the main chemical 

constituents analyzed in this study. The variation in the minimum and the maximum range of values for 
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the chemical parameters were determined over a storage span of 12 days at the intervals of 0, 2, 5, 7, 9 

and 12 days. Mastrandrea, Amodio, de Chiara, Pati, & Colelli, 2017b also found similar values of vitamin 

C in fresh rocket leaves with a much higher amount of AA and a low amount of DHAA, hence showing 

that the rocket leaves in the start of the storage period possess a significantly higher amount of AA as 

compared to DHAA. Moreover, in a similar study regarding vitamin C content Martínez-Sánchez, Marín, 

Llorach, Ferreres, & Gil, 2006b also showed that the predominant form of vitamin C at the beginning of 

the storage time was AA in rocket leaves as compared to DHAA. The also confirmed that a significant 

decrease in the AA content was recorded after six days of storage ultimately decreasing the vitamin C 

content of the rocket leaves stored both in air and in controlled atmosphere.  

Figure 1a and 1b, shows the pre-processed (1st derivative) Vis-NIR and NIR spectra, respectively. The 

VIS-NIR peaks correspond to the color related properties of rocket leaves and the leaf reflectance as 

affected by chlorophyll a, chlorophyll b and β-carotene, in the region of 400-700nm (Chaudhry et al., 

2018a). On the other hand, in case of NIR spectra, the reflectance signal is dominated by the leaf water 

content. In figure 1b the peaks observed between 900-1000nm and 1400-1500nm are located in the third 

overtone region the beginning of the first overtone region, respectively, both predominantly affected by 

water absorption. (Workman, 2003; Sasic and Ozaki, 2011). In these regions most of the peaks identified 

by H. Yang & Irudayaraj, 2002 can be found for vitamin C in powdered mixtures and solutions (1000, 

1210, 1360, 1457, 1579 and 1651 nm); the same author also reported one peak at 840 nm related to 

vitamin C. Therefore, in this regard, it can be inferred that only one peak for vitamin C can be observed 

in the Vis-NIR region while all the other peaks are located in the NIR region from 900-1700nm. 

Moreover, the region between 1300-1700nm held great significance also for the other compounds 

analyzed in this study, since the correlations between the spectra and the corresponding concentration in 

this wavelength region were higher than in the VIS-NIR region.  

The PLSR models yielded, reliable results for the Vitamin C content, AA, phenols and antioxidant 

activity in NIR range while results obtained for DHAA were not satisfying. After the development of 

these models, the most significant variables were selected based on the loading weights for each 

parameter and simplified PLSR models were developed. 
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Table 1. Range values and statistical distribution of Chemical Parameters 

Chemical Parameter Min Max Mean Standard Deviation 

Vitamin C 15.80 123.33 66.39 22.94 

Ascorbic Acid (AA) 7.97 109.38 55.83 20.53 

Dehydroascorbic Acid 

(DHAA) 
5.01 19.45 11.23 3.43 

Antioxidant Activity 54.26 192.15 113.72 35.30 

Phenols 83.53 200.92 136.06 29.79 

Table 2 shows the calibration results for the parameters in the NIR range in terms of R2, root mean square 

error of calibration and random block cross validation. Individual calibration models were developed for 

each parameter. Different preprocessing techniques were attempted including mean centering, 

derivatization, SNV, MSC and their combinations. The best models obtained resulted from the 

combination of 1st derivatives followed by data mean centering in the NIR range which was also reported 

by Pissard et al., 2013 while measuring similar parameters in apples.  

 

 Table 2. Calibration statistics for the PLSR modelling of the internal constituents in fresh cut 

rocket leaves (Dev= derivative, MC= mean centering  

NIR range (900-1700nm) 

Parameter Pretreatment No. of 

variables 

LVs 𝑅𝑐𝑎𝑙
2  RMSEC 𝑅𝑐𝑣

2  RMSEC

V 

Vitamin 

C 

1st Dev+MC 161 8 0.80  10.129 0.71 12.184 

1st Dev+MC 75 6 0.80 10.263 0.73 11.903 

1st Dev+MC 55 5 0.80 10.149 0.74 11.727 

AA 1st Dev+MC 161 6 0.82 8.301 0.77 9.615 

1st Dev+MC 68 6 0.82 8.312 0.77 9.636 
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1st Dev+MC 39 6 0.81 8.377 0.77 9.438 

DHAA 2nd Dev+MC 161 2 0.17 2.978 0.10 3.119 

 

1st Dev+MC 93 3 0.22 2.887 0.13 3.060 

 

Phenols 1st Dev+MC 161 5 0.80 12.909 0.75 14.488 

1st Dev+MC 80 7 0.79 13.261 0.72 15.344 

Antioxida

nt activity 

1st Dev+MC 161 5 0.77 15.324 0.74 16.651 

1st Dev+MC 91 6 0.79 14.876 0.74 16.531 

1st Dev+MC 77 8 0.82 13.544 0.75 16.375 

 

In case of vitamin C, the calibration dataset comprised of 70 samples and the external validation was 

done with 12 samples. Figure 2a shows the PLSR calibration results for the vitamin C over a storage 

period of 12 days. The calibration model developed with a total of 161 variables in the NIR range yielded 

𝑅𝑐𝑎𝑙
2  of 0.80 and 𝑅𝑐𝑣

2  of 0.71 with the RMSEC and RMSECV of 10.129 and 12.184 mg/100g f.w, 

respectively which was very similar to the laboratory error (9.179 mg/100g f.w) hence confirming the 

reliability of the calibration model. Optimal wavelength selection not only simplified the calibration 

model but also resulted in enhancing the performance in cross validation with 𝑅𝑐𝑣
2  of 0.74 and RMSECV 

of 11.727 mg/100g f.w. 
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Figure 2. a) PLS regression plot for Vitamin C measured vs Vitamin C predicted in the NIR 

range  b) Loadings plots for LV1, LV2 and LV3. Highlighted green regions represent the 

variables selected for final calibration model 

It can be observed that the wavelength regions from 900-1000nm, 1300-1500nm and 1650-1700nm hold 

the most significant weight in the model for quantification of vitamin C and therefore, the variable 

reduction did not impact the model performance.  

In this model for the prediction of vitamin C in the NIR region a total of 55 variables highlighted in green 

in the loadings plot were utilized ranging from 900-1000nm, 1315-1435nm and 1650-1700nm. External 
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validation allowed to obtain 𝑅𝑝𝑟𝑒𝑑
2  of 0.76 with a RMSEP of 10.905 mg/100g f.w. The best prediction 

results are summed in Table 3 for all the parameters. 

 

 

Table 3. Prediction statistics for the PLSR modelling of fresh cut rocket leaves 

Parameter Preprocessing Wavelength  

Range (nm) 

LVs 𝑹𝒄𝒂𝒍
𝟐  RMSEC 𝑹𝒄𝒗

𝟐  RMSECV 𝑹𝒑𝒓𝒆𝒅
𝟐  RMSEP 

Vitamin C 1st Dev+MC 900-1000 

1300-1500 

1650-1700 

5 0.80 10.149 

mg/100g 

0.74 11.727 0.76 10.905 

AA 1st Dev+MC 900-1000 

1295-1480 

1655-1700 

6 0.81 8.377 

mg/100g 

0.77 9.438 0.73 10.249 

Phenols 1st Dev+MC 900-1700 5 0.80 12.909 

Mg gallic 

acid/100g 

0.75 14.488 0.78 13.816 

Antioxidant 

activity 

1st Dev+MC 900-970 

1285-1540 

1655-1700 

8 0.82 13.544 

Mg 

Trolox/100g 

0.75 16.375 0.76 16.022 

 

Applying this model pixel by pixel to the images, a prediction map of the vitamin C content during 

storage could be obtained as shown in figure 3. It is worth mentioning that the pixels located above and 

below calibration range are not included in the prediction map (figure 3) but are separately shown in 

figure 4d and 4e. 
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Figure 3. PLS prediction map for Vitamin C with each row corresponding to Day 0, Day 2, Day 

5, Day 7, Day 9 and Day 12 / For each leaf, first number: percent pixels predicted within 

calibration range; second number: average concentration of vitamin C on predicted pixels 

Figure 3 demonstrates, 5 random leaves chosen from the replicates of each storage time in order to 

visualize the changes in Vitamin C over the storage period, where each row represents leaves from each 

acquisition interval. As can be observed, prediction values ranged between 15.8-123.33 mg/100g f.w. 

for vitamin C, with many pixels higher than calibration range (133.35-670.40 mg/100g f.w.), and even 

with negative values for the pixels lying below the calibration range (-326.43-15.92 mg/100g f.w.). 

Moreover, each leaf in figure 3 is labelled by two numbers, first one being the percentage of the pixels 

predicted for each leaf within the calibration range and the second number represents the average 

concentration of Vitamin C on the pixels falling within the calibration range. It can be observed that both 

average vitamin C and AA contents slightly increased in the initial days, especially at the second 

acquisition interval and then decreased with time; similar results were reported by Cavaiuolo, Cocetta, 

Bulgari, Spinardi, & Ferrante, 2015b in which the AA content increased at initial days of storage and 

then decreased later during the entire storage span. These results are also compliant to those reported by 

Martínez-Sánchez, Allende, Bennett, Ferreres, & Gil, 2006 and Amodio et al., 2015 which revealed that 



139 

 

the rocket leaves when stored in the continuous air flow tend to decrease the AA and vitamin C content 

even at lower temperatures during storage time. Moreover, the calibration models for DHAA were also 

developed but the correlation between the spectra and the DHAA values was not encouraging which led 

to the conclusion that the calibration and prediction models for vitamin C possessed a slightly lower 

accuracy as compared to the PLSR models for AA because of the fact that vitamin C was determined 

using both AA and DHAA.  

For phenolic content the PLSR model were developed yielding an 𝑅𝑐𝑎𝑙
2  of 0.80 with RMSEC of 12.909 

mg of gallic acid 100g-1 and 𝑅𝑐𝑣
2  of 0.75 with RMSECV 14.488 mg of gallic acid 100g-1 (refer to S4a) 

with all 161 variables (refer to S4b). The reliability of the calibration model was accessed with external 

validation yielding 𝑅𝑝𝑟𝑒𝑑
2  of 0.78 and RMSEP of 13.816 mg of gallic acid 100g-1. Figure 7 shows the 

changes in the phenolic content of the rocket leaves over the 12 day storage period within the calibration 

range (77.37 to 229.89 mg of gallic acid 100g-1). Moreover, the in case of phenols also the percentage of 

pixels detected within the calibration range decreased with the passage of storage time and so did the 

average phenolic content.   

 

Figure 7. PLS prediction map for Phenols with each row corresponding to Day 0, Day 2, Day 5, 

Day 7, Day 9 and Day 12 / For each leaf, first number: percent pixels predicted within calibration 
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range; second number: average concentration of phenols on predicted pixels 

 

The percentage of the pixels within the calibration range for the phenols is shown in S5a which decreases 

over the storage period followed by a decrease in the average phenol content depicted by S5b. 

Additionally, the maps for the pixels within (77.37 to 229.89 mg of gallic acid 100g-1), above (229.93 to 

626.96 mg of gallic acid 100g-1) and below (-278.34 to 77.35 mg of gallic acid 100g-1) the calibration 

range for the phenolic content are represented by S5c, S5d and S5e, respectively. Furthermore, S6 depicts 

the number of pixels in each leaf representing the concentration of predicted phenols by each pixel in the 

map.   

For antioxidant activity the final calibration model contained 77 variables ranging from 900-970nm, 

1285-1540nm and 1655-1700nm yielding 𝑅𝑐𝑎𝑙
2  of 0.82 and 𝑅𝑐𝑣

2  of 0.75 with RMSEC and RMSECV 

being 13.544 and 15.675 mg Trolox 100g-1, respectively (refer to S7a) with first 3 LVs explaining 

97.12% co-variance in the data. The chosen wavelength regions are highlighted in green regions (refer 

to S7b). The external validation resulted in an 𝑅𝑝𝑟𝑒𝑑
2  value of 0.76 with a RMSEP of 16.022 mg Trolox 

100g-1. Figure 8 shows the prediction map for the changes in the antioxidant activity over time of storage. 

It can be observed that the average content of the antioxidant activity decreases with time (also refer to 

S8b) which can be more related to the leaf structure and chemical composition than the storage conditions 

since Martínez-Sánchez, Allende, et al., 2006 studied the storage of rocket leaves in controlled 

atmosphere as well as air flow and concluded that the antioxidant capacity decreased regardless of the 

storage conditions. Other studies have also revealed that the variation of the antioxidant activity in plants 

can be a result of the changes in the phenolic profiles (Lattanzio, Cicco, & Linsalata, 2005; Lattanzio et 

al., 2005), with the ellagic acid (Marie E. Olsson et al., 2004) with anthocyanins (Wang & Lin, 2000), 

and also with ascorbic acid changes (Cocci et al., 2006). Therefore, the percentage of detected pixels for 

antioxidant activity decreased with time followed by a decrease in the antioxidant activity. The pixels 

within (45.49 to 206.43 mg of gallic acid 100g-1 refer to S8c), above (206.46 to 816.33 mg of gallic acid 

100g-1 refer to S8d) and below (-452.34 to 45.48 mg of gallic acid 100g-1 refer to S8e) the calibration 

range for the antioxidant activity showed the same trend as vitamin C and AA that is the percentage of 

pixels within the calibration range decreased over the storage period while those below the calibration 

range increased (refer to S8a and S8e).  
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Figure 8. PLS prediction map for Antioxidant activity with each row corresponding to Day 0, 

Day 2, Day 5, Day 7, Day 9 and Day 12 / For each leaf, first number: percent pixels predicted 

within calibration range; second number: average concentration of antioxidant activity on 

predicted pixels 

 

Moreover, S9 depicts the histograms representing the association of the number of pixels with the 

antioxidant activity concentration in each leaf over the storage period. Similar, trend was observed as the 

phenols in this case as well.  

 

4. CONCLUSIONS 

The potential application of spectral fingerprints and hyperspectral images in the NIR region, together 

with multivariate data analysis, has proven the potential to predict and map phytonutrients in fresh cut 

rocket leaves, provided that predicted values are included in the calibration range. A new method was, 

in fact, developed in order to overcome the prediction error due to the unavoidable process of using 

average spectra for the calibration model and individual pixels for the image prediction. It was shown 

that the number of pixels detected within the calibration range decreased with the passage of storage time 

with a simultaneous increase in the pixels below the calibration range hence reducing the capability of 
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the PLSR model to predict the corresponding phytonutrient. In this way, hyperspectral images revealed 

that the central part of the leaves lose vitamin C content faster as compared to the leaf edges or in other 

words the vitamin C starts degrading from the center of the leaf. Furthermore, the PLSR models in this 

case were very sensitive to the number of samples and their performance can be further enhanced with 

increasing the number of the samples in the calibration sets. Conclusively, NIR combined with 

hyperspectral imaging can be a very informative tool for studying the changes in the phytonutrient 

content during storage.  
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SUPPLIMENTARY MATERIAL 

 
S1 (a) PLS regression plot for ascorbic acid measured vs ascorbic acid predicted (b) Loadings 

plots for LV1 (58.12%), LV2 (21.69%) and LV3 (17.10%). Highlighted green regions represent 

the variables selected for final calibration model 
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S2. a) Percentage of detected pixels and standard deviation pre leaf w.r.t days of storage for AA 

 b) AA on average c) pixels within calibration range d) pixels above calibration range

 e) pixels below calibration range (time in days refers to the 6 acquisition intervals i.e. Days 

0, 2, 5, 7, 9, 12) 
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S3. Histograms of AA content of the leaves representing number of pixels with respect to AA 

concentration (Day1, 2, 3, 4, 5, 6 refers to the 6 acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12) 
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S4. a) PLS regression plot for Phenols measured vs Phenols predicted  b) Loadings plots 

for LV1, LV2 and LV3 
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S5. a) Percentage of detected pixels and standard deviation pre leaf w.r.t days of storage  b) 

Phenols on average c) pixels within calibration range d) pixels above calibration range e) 

pixels below calibration range (time in days refers to the 6 acquisition intervals i.e. Days 0, 2, 5, 7, 

9, 12) 
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S6. Histograms of Phenols detected in leaves with respect to the pixels detected (Day1, 2, 3, 4, 5, 6 

refers to the 6 acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12) 
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S7. (a) PLS regression plot for antioxidant activity measured vs antioxidant activity predicted (b) 

Loadings plots for LV1, LV2 and LV3. Highlighted green regions represent the variables selected 

for final calibration model 
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S8. a) Percentage of detected pixels and standard deviation pre leaf w.r.t days of storage for 

antioxidant activity  b) antioxidant activity on average c) pixels within calibration range d) 

pixels above calibration range e) pixels below calibration range (time in days refers to the 6 

acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12) 
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S9. Histograms of antioxidant activity detected in leaves with respect to the pixels detected (Day1, 

2, 3, 4, 5, 6 refers to the 6 acquisition intervals i.e. Days 0, 2, 5, 7, 9, 12) 
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Chapter 6 

POTENTIALITY OF NEAR INFRARED SPECTROSCOPY FOR 

ROCKET LEAVES (Diplitaxis tenufolia) CHARACTERIZATION: 

RAW MATERIAL DISCRIMINATION AND PHYTONUTRIENT 

MODELING 
 

Abstract 

The potentiality of spectral profiles in the NIR region for the classification of rocket raw material and 

global modelling of vitamin C content was investigated. Partial Least Squares Discriminant Analysis 

(PLSDA) with mean centering as data pretreatment was used for the classification of rocket leaves 

belonging to three different seasons of harvest namely spring, summer and autumn with a non-error rate 

(NER) of 94% both in calibration and validation. Moreover, partial least squares regression (PLSR) 

models for the prediction of vitamin C, ascorbic acid (AA), phenols and antioxidant activity were 

formulated using the spectral information from the hyperspectral images acquired in the NIR spectral 

range from 900-1700 nm with selective variables. The best data pretreatments in this case were first 

derivative followed by mean centering. Vitamin C prediction model resulted in 𝑅𝑐𝑎𝑙
2  of 0.77, 𝑅𝑐𝑣

2  of 0.70 

and 𝑅𝑝𝑟𝑒𝑑
2  of 0.65 with RMSEC, RMSECV and RMSEP of 8.70, 9.92 and 12.42 mg of vitamin C 100g-

1 f.w, respectively. In case of AA the 𝑅𝑝𝑟𝑒𝑑
2  was 0.72 with a RMSEP of 12.81 mg of AA 100g-1 f.w. 

PLSR prediction models for phenols and antioxidant activity showed 𝑅𝑝𝑟𝑒𝑑
2  of 0.70 and 0.61 with 

RMSEP of 18.70 mg of gallic acid 100g-1 and 25.65 mg of Trolox 100g-1, respectively. Conclusively, 

spectral information retrieved from the hyperspectral images using selected variables revealed good 

potentiality for quality assessment of rocket leaves, suggesting a possible implementation for raw 

material inspection and characterization in the NIR range.  

 

Keywords: classification, prediction, phytonutrients, shelf-life, PLSR, PLSDA      
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1. INTRODUCTION 

Leafy vegetables have always served as a significant source of health promoting elements in human diet 

as they are an enormous reserve of active chemical compounds and are the cheapest and widely available 

source of fiber, proteins, vitamins, phenolic compounds, antioxidants and minerals (Gibson et al., 2012). 

Therefore, the consumption of minimally processed ready-to-eat fruit and vegetable has significantly 

boosted in the last decades (Artés et al., 2009), since they are perceived as healthy, convenient, highly 

nutritive and appetizing (Oliveira et al., 2015; Ma et al., 2017). 

In the Mediterranean countries, rocket leaves (Diplotaxis tenuifolia) with its pungent smell and strong 

flavor, lies among the most popular leafy vegetables, mostly consumed as stand-alone salads or as a part 

of mixed salad products. The rocket leaves are a rich source of phytonutrients such as fiber, Vitamin C, 

flavonoids and glucosinolates which are widely known for their positive impacts on human health 

(Cavaiuolo and Ferrante, 2014; Nurzyńska-Wierdak, 2015). The nutritional value of the wild rocket 

leaves and its degradation with the passage of the shelf life depends on the pre-harvest practices, 

postharvest handing, processing and storage conditions (Toivonen and Brummell, 2008; Cefola and Pace, 

2015). After minimal processing operations (most commonly in this case, washing and drying), the 

rocket leaves are available packaged in plastic bags in the retail stores. Particularly, yellowing caused by 

chlorophyll degradation, wilting, and the production of off-odors are the main sources of deterioration 

for this product (Nielsen et al., 2008; Koukounaras et al., 2009; Løkke et al., 2012; Chaudhry et al., 

2018). Moreover, the degradation process in fruits and vegetables also results in the degradation of the 

phytonutrients specially the degradation of nutrients, such as vitamin C has been reported over storage 

time (Kim and Ishii, 2007; Spadafora et al., 2016; Mastrandrea et al., 2017). Kim & Ishii, 2007 observed 

that the vitamin C content was significantly affected during the storage of the rocket leaves at both 4oC 

and 15oC and also it was reported that the vitamin C content was higher in the leaves with and without 

roots in case of 4oC as compared to 15oC regardless of the storage time. Moreover, Spadafora et al., 2016 

also reported a rapid decrease in the vitamin C content of rocket leaves stored at high temperatures. 

Mastrandrea, Amodio, de Chiara, Pati, & Colelli, 2017 reported that the leaves stored at 0oC both in air 

and in modified atmosphere packaging (MAP) did not show any changes in the AA content but those 

stored at 5oC air portrayed slight decrease in the AA content with the passage of storage time while a 
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rapid decrease was observed in the AA content degradation at 15oC both in case of samples stored in air 

and in MAP. On the other side, other authors reported that AA remained unaltered in rocket leaves stored 

in controlled atmosphere (CA) at 4 °C, while it degraded in the leaves stored in air (Martínez-Sánchez et 

al., 2006b). In the same way, the reduction of total antioxidant capacity was also significant for the 

samples stored in air, whereas the phenolic content decreased with the passage of storage time regardless 

of the storage atmosphere. Changes in AA content during storage of rocket leaves were also studied by 

(Cavaiuolo et al., 2015) which observed a slight increase in the AA content in the initial days of storage. 

Moreover, it was also revealed by Mastrandrea et al., 2017b that improper MAP contributed towards the 

loss of appearance and degradation of vitamin C hence resulting in a shorter shelf life of rocket leaves 

stored at 5oC and 15oC in improper MAP as compared to those stored in air. The study also specified that 

the appearance score loss and vitamin C degradation occurred at low O2 (0 kPa) and at high CO2 (25 

kPa) in the modified atmosphere packages.  

 

Near infrared spectroscopy (NIRS) has gained wide attention in the food sector due to its potentiality to 

attain fingerprints of the various products as a result of the interaction between light and the molecular 

structure of food since every product has a different fingerprint indicating its contrast with the others 

(Workman and Shenk, 2004), being the results of the different pre-harvest factors, which also affect its 

final quality and composition. Hyperspectral imaging devices are being used in the food research sector 

in a bid to evaluate the quality, class, authenticity, adulteration or fraud in a rapid and non-destructive 

way (ElMasry & Sun, 2010; Yoon et al., 2011; Lorente et al., 2012). Chemiometric techniques and 

particularly discriminant analysis are the statistical tools used for analyzing differences between various 

samples or groups of samples relative to a number of variables simultaneously. Soft independent 

modelling of class analogy (SIMCA), partial least squares discriminant analysis (PLSDA), artificial 

neural networks (ANN), discriminant analysis (DA) and support vector machine (SVM) have commonly 

been used in scientific studies addressing discrimination among fruit and vegetable belonging to different 

quality classes. Oliveri et al., 2011 discussed different class modelling methods for addressing the types 

of potential problems rising during studies related to food authentication. Moreover, for the prediction 

of the nutritional value partial least squares regression (PLSR) models are used which are internally 
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cross-validated and the accuracy of these models is ensured with external validation (Geladi and 

Kowalski, 1986). But there is a need of making the state of the art for the use of spectral information and 

chemiometric tools for prediction as well as discrimination purposes. In this case the transition from the 

hyperspectral to the multispectral approaches is gaining significance resulting is model simplification 

and process rapidness. None of the studies have yet used the reduced wavelengths for the classification 

of the rocket raw materials and global prediction of the internal phytonutrients over the storage period. 

The objective of this study was to discriminate between different rocket raw materials using the PLSDA 

and development of global PLSR models for the prediction of the internal composition of the 

phytonutrients utilizing a reduced wavelength range with variables constituting weights in the model for 

the model simplification. 

2. MATERIALS AND METHODS  

2.1 Experimental design and spectral acquisition 

Washed and dried rocket leaves (Diplotaxis tenuifolia) were received in the postharvest laboratory of the 

University of Foggia (Italy) from 3 different raw material quality leaves over a time span of two years, 

season/year namely, September 2017 (raw material 1 referred as RM1 in the text), March 2018 (raw 

material 2 (RM2)) and July 2018 (raw material 3 (RM3)). For each experiment the representative samples 

were weighted, distributed into 100g batches, packed into plastic clamshells and stored at 5oC under 

humidified air flow. Ten to fifteen replicates of >20 leaves each were acquired on each acquisition 

interval (for each experiment) over a span of shelf life of rocket leaves ranging between 8-12 days. 

Hyperspectral image acquisition followed by sensorial and reference analysis of the different raw 

materials was conducted over the storage period for the leaves of each season.  

For each individual experiment the acquisition of the hyperspectral images was done using a 

hyperspectral line scan scanner (Version 1.4, DV srl, Padova, Italy) equipped with a spectrograph, in the 

near infrared region (NIR). The spatial resolution of NIR spectrograph was 623x320 pixels with a 

spectral resolution of 5nm over a wavelength range of 900-1700nm.  

Self-developed MATLAB codes were used for image thresholding and the extraction of the average 

spectra of each replicate based on the best contrast between the object and the background followed by 

masking. Two different objectives were pursued; firstly, the principle component analysis (PCA) was 

utilized for the discrimination of rocket raw materials using reference analysis values of the first ten 
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replicates for each season followed by the PCA analysis of spectral datasets in the NIR range. Whereas, 

a separate dataset for the global classification and prediction modelling was formulated utilizing 146 

samples of rocket leaves with different raw material quality RM1, RM2 and RM3 in the NIR range 

(146x161). The wavelength ranges used for the prediction of the phytonutrients in Chapter 5 were kept 

under consideration during variable reduction.  

2.2 Chemical Analysis 

2.2.1 Vitamin C reference analysis 

For each individual experiment, three grams of fresh rocket tissues representing the leaves of one 

replicate (one image) were homogenized with 10 mL of MeOH/H2O (5:95) plus citric acid (21 g L−1) 

with EDTA (0.5 g L−1). The homogenate was filtered through cheesecloth and a C18 Bakerbond SPE 

column (Waters, Milford, MA, USA). AA and DHAA contents were determined as described by Zapata 

and Dufour, (1992), with some modifications. The HPLC analysis was achieved after derivatization of 

DHAA into the fluorophore 3-(1,2-dihydroxyethyl) furol [3,4-b]quinoxaline-1-one (DFQ), with 1,2-

phenylenediamine dihydrochloride (OPDA). Samples of 20 µl were analyzed with an Agilent 1200 

Series HPLC. The HPLC system consisted of a G1312A binary pump, a G1329A auto-sampler, a 

G1315B photodiode array detector from Agilent Technologies (Waldbronn, Germany). Separations of 

DFQ and AA were achieved on a Zorbax Eclipse XDB- C18 column (150 mm × 4.6 mm; 5 μm particle 

size; Agilent Technologies, Santa Clara, CA, USA). The mobile phase was MeOH/H2O (5:95 v/v) 

containing 5mM cetrimide and 50mM potassium dihydrogen phosphate at pH 4.5. The flow rate was 1 

mL min-1. AA and DHAA contents were expressed as mg of ascorbic or dehydroascorbic acid 100 g-1 of 

f.w (mg 100 g-1). 

2.2.2 Total phenolic content and antioxidant activity evaluation 

Total phenolic content and antioxidant activity were determined according to Singleton and Rossi (1965) 

and Brand-Williams et al., (1995) with minor modifications. Three grams of leafy tissues representing 

the leaves of one replicate (one image) were homogenized in 2mM sodium fluoride methanol:water 

solution (80:20) for 1 minute and centrifuged at 5°C and 12,000 rpm for 5 minutes. The total phenol 

content was expressed as mg of gallic acid equivalent (GAE) 100 g-1 fresh weight (f.w). The antioxidant 

activity was reported as mg Trolox equivalent antioxidant activity (TEAC) 100 g-1 f.w. Readings were 

made at 725 nm, against a blank after 2 h standing for phenolic content and at 515 nm after 24 h standing 
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for antioxidant activity using a UV-1700 Shimadzu spectrophotometer (Jiangsu, China). 

2.3 Multivariate analysis  

A PCA model including samples of different raw materials was performed separately on the spectra of 

the Vis-NIR and the NIR range as well as the reference analysis values for the preliminary data 

exploration. The data acquired using the hyperspectral imaging device were in this way reduced to few 

variables, called Principal components (Bro and Smilde, 2014) which are a linear combination of the 

original variables. For the classification of the samples belonging to different raw materials over their 

storage period, partial least squares discriminant analysis (PLSDA) was conducted on the NIR spectral 

dataset in the NIR range which were then reduced to 30 variables after wavelength selection. In this case 

the model accuracy was evaluated based on the sensitivity and the specificity values. Moreover, in the 

second methodology the pixels belonging to the corresponding classes were used for the development of 

a PLSDA prediction model in Hypertools (Mobaraki et al., 2018). Five-fold spatial binning of the 

hyperspectral image with the dimensions 1869x320x161 was done reducing the image size to 

374x64x161. Furthermore, the spectral cropping was done for the reduction of the variables from a total 

of 161 to 30 variables which were related to vitamin C related regions in the NIR range resulting in a 

final image of the size 374x64x30 for conducting a pixel based PLSDA analysis. 

Prediction models for the desired parameters were developed using the PLS algorithm in the PLS toolbox 

(Eigenvector Research Inc., version 7.2.5) working under MATLAB 2012b (version 8.0.0.783, 

MathWorks, MA, USA). The spectral dataset was divided into calibration set and validation sets using 

the Kennard stone algorithm. For the development of the PLSR calibration models random subset 

internal cross validation was applied. The accuracy of the calibration models was accessed by visualizing 

the coefficient of determination in calibration (𝑅𝑐𝑎𝑙
2 ), coefficient of determination in cross validation 

(𝑅𝑐𝑣
2 )and the root mean square error for calibration (RMSEC) and cross-validation (RMSECV). After 

the formulation of the best calibration models the external dataset was used for the prediction of the 

desired constituent.  

3. RESULTS AND DISCUSSION 

3.1 Raw material classification 

Figure 1a shows the preprocessed NIR spectra of the three different rocket raw materials (RM1, RM2 

and RM3) over their storage period in the full wavelength range comprising of 161 variables.  
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Figure 1. Preprocessed (SNV+ 1st derivative) NIR spectra (Red color = RM1, Green color = RM2, 

Blue color = RM3)  

For the initial data exploration, a PCA was conducted and a clear discrimination of the data was obtained 

as shown in figure 2a with the first principle component (PC) explaining 86.64% and the second PC 

explaining 6.10% of the total variance in the data. PC1 discriminated the data based in the year of harvest 

since the RM1 samples belonged to year 2017 while RM2 and RM3 belonged to the year 2018. The 

loadings plot (figure 2b) for the PCA also demonstrated potential for the discrimination in the regions 

from 900-1000nm, 1300-1450nm and 1500nm onwards.  
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Figure 2. a) Scores plot for PCA based on season of harvest b) Loading plot for PCA based on 

season of harvest 

For the exploration of the chemical parameters responsible for the discrimination of raw material in the 

NIR range a second PCA was conducted with the destructive quality parameters obtained on the initial 

samples. The PCA yielded a good discrimination based on 3 PCs resulting in the elaboration of 52.46%, 

14.08% and 9.92% variance in the data for the respective PCs. Based on the PCA it was observed that 

vitamin C held significance as compared to other variables as can be seen in figure 3. It can be observed 

that chlorophyll a and chlorophyll b formulated a cluster whereas another cluster can be observed with 

soluble solids content (SSC), yeasts and moulds, firmness and mesophilic bacteria. Moreover, pH and 

NH4 g-1 were found to have a close relationship. Based on this PCA it was deduced that vitamin C content 

can be a reliable indicator for the raw material discrimination. 
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Figure 3. PCA for the reference values of raw material on first day of storage 

Therefore, based on the loading weights of the spectral based PCA model, a PLSDA model was 

formulated in the NIR range from 900-1700nm based on the vitamin C sensitive peaks i.e. 945-980nm, 

1350-1410nm and 1660-1700nm having 30 variables in total. These wavelength ranges were used since 

in the NIR range these regions are highly effected with the vitamin C content (Malegori et al., 2016). 

The PLSDA modelling was utilized using two different approaches firstly, on the spectral dataset and 

secondly, PLSDA was applied on the pixels of the hyperspectral image. In case of the spectral based 

PLSDA, the calibration set comprised of 108 samples while the external validation set contained 36 

samples. The data was mean-centered followed by random subset cross validation. Table 1 shows the 

confusion matrix for the spectral based PLSDA. The model performance was evaluated based on the 

non-error rate which is an average of the sensitivity calculated over the various classes, and gives an 

overall idea of the goodness of the classification.  
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Table 1. Confusion table for sensitivities and specificities for the classes summer, spring and 

autumn in calibration, cross validation and prediction 

Calibration CV 
Actual Class N Global 

SUMMER SPRING AUTUMN  SENS SPEC 

P
re

d
ic

te
d

 a
s 

C
la

ss
 

SUMMER  51 0 0 52 98 100 

SPRING 1 11 0 11 100 98 

AUTUMN 0 0 45 45 100 100 

TOTAL   108 Non error rate = 99.33% 

Cross 

Validation 
CV 

Actual Class N Global 

SUMMER SPRING AUTUMN  SENS SPEC 

P
re

d
ic

te
d

 a
s 

C
la

ss
 

SUMMER 49 0 0 52 94 100 

SPRING 3 11 0 11 100 96 

AUTUMN 0 0 45 45 100 100 

TOTAL   108 Non error rate = 98% 

Prediction CV 
Actual Class N Global 

SUMMER SPRING AUTUMN  SENS SPEC 

P
re

d
ic

te
d

 a
s 

C
la

ss
 

SUMMER  10 0 0 12 83 100 

SPRING 2 3 0 3 100 93 

AUTUMN 0 0 21 21 100 100 

TOTAL   36 Non error rate = 94.33% 

 

The PLSDA model in this yielded 6 latent variables (LVs) with the first two LVs explaining 98% of the 

covariance in the data. From the confusion matrix it can be seen that out of the 108 samples in the 

calibration dataset spring and autumn datasets were classified with 100% accuracy while in case of 

summer class only one sample was misclassified as spring class. Similarly, in case of cross validation 

100% accuracy was achieved for the classification of spring and autumn classes whereas 3 samples of 

summer class were misclassified in the spring class. The external prediction resulted in the non-error rate 

of 94.33% with sensitivity values of the summer, spring and autumn values to be 83%, 100% and 100% 

respectively. In addition, the areas under the receiver operating characteristic (ROC) curves (data not 

shown) were close to 1 for this classification model, which is an indication of excellent classification.  
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The PLSDA classification model accuracy in this case was also evaluated based on the sensitivity, 

specificity and NER values. Table 2 shows the sensitivities and specificities of the pixels belonging to 

three different classes in calibration and cross validation.   

Table 2. Confusion table for sensitivities and specificities for the pixels belonging to classes 

summer, spring and autumn in calibration and cross validation  

Calibration CV 
Actual Class Global 

AUTUMN SPRING SUMMER UNASSIGNED SENS SPEC 

P
re

d
ic

te
d

 a
s 

C
la

ss
 

AUTUMN 2473 17 8 373 99 100 

SPRING 0 2122 202 255 91 96 

SUMMER 5 239 3259 271 93 96 

NON-ERROR RATE 94.33% 

Cross 

Validation 
CV 

Actual Class Global 

AUTUMN SPRING SUMMER UNASSIGNED SENS SPEC 

P
re

d
ic

te
d

 a
s 

C
la

ss
 

AUTUMN 2482 15 8 366 99 100 

SPRING 0 2123 205 251 91 96 

SUMMER 4 242 3261 267 93 96 

NON-ERROR RATE 94.66% 

 

The PLSDA model based on the pixels of the classes retrieved from the hyperspectral image comprised 

of 5 LVs with the first LV explaining 41.38% (figure 4a) and the second LV explaining 22.28% (figure 

4b) of the covariance in the data. The classification accuracy in calibration and random subset cross 

validation was depicted by NER of 94.33% and 94.66%, respectively. The classified pixels during the 

calibration were then used to develop a classification map for the prediction mapping of the three classes 

as shown in figure 4c.  
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Figure 4. PLSDA classification map for the classification of RM1 (cyan colored pixels), RM2 

(yellow colored pixels), RM3 (red colored pixels); the pixels not assigned to any class are colored 

blue 

3.2 Global Modelling of Phytonutrients 

Table 3 shows the means and the ranges of the composition of the phytonutrients globally modelled in 

this study. The determination of the variation in the minimum and maximum was conducted over the 

storage period of rocket leaves.  
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Table 3. Range values and statistical distribution of Chemical Parameters for the 

reference vector developed for global PLSR modelling  (summer, spring, autumn) 

Chemical Parameter Min Max Mean Standard Deviation 

Vitamin C 15.80 123.33 59.51 19.02 

Ascorbic Acid (AA) 7.77 109.38 45.33 20.41 

Antioxidant Activity 54.26 225.98 127.35 33.94 

Phenols 83.53 251.26 142.40 32.18 

 

Various research studies have demonstrated that at the beginning of the storage time of rocket leaves AA 

is the principle form of vitamin C which slowly converts to dehydroascorbic acid over the storage span 

(Martínez-Sánchez, Marín, Llorach, Ferreres, & Gil, 2006b). Since the rocket leaves possess a storage 

life ranging between approximately 7-14 days; it has been revealed by Martínez-Sánchez, Marín, 

Llorach, Ferreres, & Gil, 2006b that a significant decrease in the AA occurs after six days of storage 

ultimately leading to a lower vitamin C content for rocket leaves stored in various conditions. Similarity 

in the range of vitamin C values were also encountered by Mastrandrea, Amodio, de Chiara, Pati, & 

Colelli, 2017b confirming a significantly higher amount of AA on the initial day of storage as compared 

to a much lower amount of dehydroascorbic acid.   

It can be observed in figure1 that the leaf water content highly affected the reflectance signal, particularly 

for the peaks between 900-1000nm which correspond to the third overtone region hence corresponding 

to the O-H bonds and the peaks between 1400-1500nm which correspond to the first overtone region 

corresponding to the O-H and N-H bonds with water absorption between 1400 1450 nm (Workman, 

2003; Sasic and Ozaki, 2011). Moreover, Malegori et al., 2016 also found region between 7200-6700cm-

1 which corresponds to 1428-1492nm to be effective for studying most characteristic vitamin C 

absorbance for acerola fruit and Liu et al., 2006 also revealed that the region between 1428-1492nm is 

significantly influenced by vitamin C absorption possessing a broad band at approximately 1428nm. On 

the other hand, in a study based on powdered mixtures and solutions, H. Yang & Irudayaraj, 2002 found 

that for vitamin C in powdered mixtures and solutions the peaks can be found around 1000, 1210, 1360, 

1457, 1579 and 1651 nm. Moreover, the same author also demonstrated that one peak for vitamin C can 
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also be observed at 840 nm.  

As for prediction models, PLSR was applied for Vitamin C content, AA, phenols and antioxidant activity 

in NIR range of 900-1700nm keeping under consideration the wavelengths utilized for this aim in 

Chapter 5. Table 4 shows the calibration statistics of the PLSR models for the phytonutrients measured 

over the storage time in fresh-cut rocket leaves.  

Table 4. Calibration statistics for global PLSR models for phytonutrients in fresh-cut rocket leaves 

Parameter Pretreatment No. of 

variables 

LVs 𝑅𝑐𝑎𝑙
2  RMSEC 𝑅𝑐𝑣

2  RMSECV 

Vitamin C 1st Dev+MC 30 10 0.77 8.70 0.70 9.92 

AA 1st Dev+MC 59 9 0.78 9.09 0.72 10.31 

Phenols 1nd Dev+MC 109 10 0.69 17.47 0.60 19.85 

 

Antioxidant- 

Activity 

1st Dev+MC 86 8 0.72 15.75 0.61 18.96 

 

Kennard stone algorithm was used for the splitting of the samples in the calibration and validation 

datasets. In this case a logical vector is created and allocates TRUE (1) and FALSE (0) values to the 

samples in the dataset based on maximum variability. The samples allocated TRUE formulate the 

external validation set while the samples allocated FALSE formulate the calibration dataset. In case of 

vitamin C, the calibration dataset contained 108 samples and the external validation was conducted with 

36 samples. The PLSR calibration results for the vitamin C over a storage period of 12 days are shown 

in figure 5. A number of various data pretreatments were used but the best pretreatment was concluded 

to be 1st derivative accompanied by data mean centering. The calibration model developed with a total 

of 30 variables and 10 LVs in the NIR range yielded 𝑅𝑐𝑎𝑙
2  of 0.77 and 𝑅𝑐𝑣

2  of 0.70 with the RMSEC and 

RMSECV of 8.70 and 9.92 mg of vitamin C 100g-1 f.w, respectively which was very similar to the 

laboratory error (9.179 mg of vitamin C 100g-1 f.w) hence confirming the reliability of the global PLSR 

calibration model. The 30 variables selected for the formulation of the vitamin C calibration model 

included wavelength ranges from 930-970nm, 1420-1500nm and 1660-1700nm. An external prediction 
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set comprising of 36 samples was used to evaluate the performance of the global PLSR model which 

yielded 𝑅𝑝𝑟𝑒𝑑
2  of 0.65 with a RMSEP of 12.43 mg of vitamin C 100g-1 f.w (Table 5). 

 

Figure 5. Global PLS regression model plot for Vitamin C measured vs Vitamin C predicted in 

the selected NIR ranges  

Similar wavelengths are reported to be used for prediction and mapping of the vitamin C content in 

acerola fruits by Malegori et al., 2016 where 7200-6700cm-1 was most significantly related to vitamin C 

changes. In a similar study, Liu et al., 2006 recommended that the wavenumber regions between 7200-

6700nm are most sensitive to vitamin C changes and hence it was confirmed that the global PLSR model 

for the vitamin C prediction yielded reliable R2 values as well as RMSEs for vitamin C calibration.  

The calibration dataset for AA contained 108 samples 30 samples comprised the external validation set. 

Global PLSR calibration results for AA are depicted in figure 6. A total of 59 variables and 9LVs in the 

NIR range were used for the formulation of the global PLSR model for AA after pretreating the spectral 

dataset with 1st derivative and mean centering resulting in the model statistics  in the form of 𝑅𝑐𝑎𝑙
2  of 0.78 

and 𝑅𝑐𝑣
2  of 0.72 with the RMSEC and RMSECV of 9.09 and 10.31 mg of AA 100g-1 f.w, respectively. 

The global calibration model for AA was developed utilizing the wavelength ranges from 900-1000nm, 

1340-1500nm and 1660-1700nm selected based on the loading plots with the variables possessing 

maximum weights in the model. An external prediction set containing of 30 samples was utilized for the 
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performance evaluation of the global PLSR model for AA which yielded 𝑅𝑝𝑟𝑒𝑑
2  of 0.72 with a RMSEP 

of 12.82 mg of AA 100g-1 f.w. as shown in table 5. 

 

Figure 6. Global PLS regression model plot for AA measured vs AA predicted in the selected 

NIR ranges 

Similar results were obtained for the prediction of AA in bell peppers by Ignat et al., 2012 in which the 

AA was predicted with a RMSECV of 11.4-14.6%. In this study, Vis-NIR and SWIR mini-spectrometers 

were used for the measurement of the AA content. In case of the SWIR range (850-1888nm) the AA was 

predicted yielding an 𝑅𝑐𝑎𝑙
2  of 0.75 with 8 LVs accompanied by RMSEC of 12.6 mg of AA 100g-1.  

For phenolic content the Kennard Stone algorithm was used to generate calibration and validation sets 

comprising 134 samples in the calibration and leaving 50 samples for the external prediction. Global 

PLSR models were developed using various data pretreatments but the best pretreatment in this case was 

1st derivative flowed by mean centering of the data. A total of 109 variables were used for the calibration 

development yielding an 𝑅𝑐𝑎𝑙
2  of 0.69 with RMSEC of 17.47 mg of gallic acid 100g-1 and 𝑅𝑐𝑣

2   of 0.60 

with RMSECV of 19.85 mg of gallic acid 100g-1. These 109 variables comprised of wavelength ranges 

from 900-970nm, 1095-1170nm and 1330-1700nm. The reliability of the calibration model was accessed 

with external validation done with 50 samples yielding 𝑅𝑝𝑟𝑒𝑑
2  of 0.70 and RMSEP of 18.70 mg of gallic 

acid 100g-1 (Table 5). Figure 7 shows the global calibration plot for the phenolic content of the rocket 
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leaves over the storage period of rocket leaves for the three different seasons.  

 

Figure 7. Global PLS regression model plot for Phenols measured vs Phenols predicted in the 

selected NIR ranges 

In case of the antioxidant activity, a total of 86 variables were used including the wavelength ranges from 

900-970nm, 1250-1550nm and 1655-1700nm. The global calibration model with a total of 8 LVs yielded  

𝑅𝑐𝑎𝑙
2  of 0.72 and 𝑅𝑐𝑣

2  of 0.61 with RMSEC and RMSECV being 15.75 and 18.96 mg Trolox 100g-1, 

respectively. The external validation resulted in an 𝑅𝑝𝑟𝑒𝑑
2  value of 0.61 with a RMSEP of 25.65 mg 

Trolox 100g-1. A close observation of the PLSR results for antioxidant activity shows that the RMSEP 

is quite high and hence decreases the reliability of the model. It can be due to the reason that the variation 

in the content of antioxidant activity with the passage of storage time is related to the leaf structure and 

chemical composition than the storage conditions therefore during various storage periods the leaves 

specially in autumn and spring the leaves would have maintained their structure not leading to a constant 

decrease in the antioxidant activity. Martínez-Sánchez, Allende, et al., 2006 concluded that the 

antioxidant capacity decreased regardless of the storage conditions in case of rocket leaves. But it is quite 

possible that the rate of decrease of antioxidant activity may vary among various quality raw materials, 

harvest times and seasons. Other studies have also revealed that the variation of the antioxidant activity 

in plants can be a result of the changes in the phenolic profiles (Lattanzio, Cicco, & Linsalata, 2005; 
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Lattanzio et al., 2005), with the ellagic acid (Marie E. Olsson et al., 2004) with anthocyanins (Wang and 

Lin, 2000), and also with ascorbic acid changes (Cocci et al., 2006).  

Table 5 shows the prediction results for the vitamin C, AA, phenols and antioxidant activity. 

Table 5. Prediction statistics for the global PLSR modelling of fresh cut rocket leaves 

Parameter No. of predicted samples Wavelength Range 

(nm) 

LVs 𝑹𝒑𝒓𝒆𝒅
𝟐  RMSEP 

Vitamin C 1st Dev+MC 900-1000 

1300-1500 

1650-1700 

10 0.65 12.43 

AA 1st Dev+MC 900-1000 

1295-1480 

1655-1700 

9 0.72 12.82 

Phenols 1st Dev+MC 900-1700 10 0.78 18.70 

Antioxidant 

activity 

1st Dev+MC 900-970 

1285-1540 

1655-1700 

8 0.76 25.65 

 

4. CONCLUSIONS 

Hyperspectral imaging in the NIR range was used for the classification of rocket raw materials and global 

prediction of the changes in the phytonutrients in rocket leaves belonging to three different quality 

standards. The classification models were simplified by using variable reduction. It was concluded that 

the vitamin C sensitive regions in the NIR range were effective for the classification of the rocket leaves 

based on raw material (season of harvest as well) yielding classification accuracies as high as 94%. 

Moreover, for the prediction of the plant phytonutrients global PLSR models with appropriate variable 

selection techniques assisted in model simplification but also the model reliability was enhanced due to 

increasing the variability in the calibration dataset. Conclusively, NIR range accompanied by the 

wavelength selection can serve as a reliable tool for the sorting of rocket leaves based on the raw material 

quality and prediction of the internal constituents. 
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Abstract 

The potentiality of the Vis-NIR hyperspectral imaging for the prediction of the rocket raw material shelf-

life was investigated along with the identification of the reference parameters contributing significantly 

towards shelf life estimation. Hyperspectral images in the range of 400-750nm were acquired for five 

different rocket raw materials were acquired followed by extraction of the spectral profiles. Partial least 

squares regression (PLSR) models were developed for correlating the initial spectral response of the raw 

materials to the marketability limit as assessed by sensorial evaluation. PLSR models were also 

developed for the prediction of shelf-life by establishing a correlation between the initial reference 

analysis and the  shelf-life for each rocket raw material. Principle component analysis (PCA) was used 

for exploration of the reference analysis variables with the first 2 PCs explaining 70.13% of the total 

variance in the data. PLSR models were developed for the selected reference analysis variables resulting 

from the PCA model loading weights. The PLSR models in this case resulted in an 𝑅𝑐𝑎𝑙
2  of 0.83 

accompanied by RMSEC of 0.51 days and an 𝑅𝑐𝑣
2  of 0.79 with RMSECV of 0.57 days. In case of the 

spectral based PLSR calibration models the potential shelf life of the rocket raw materials was predicted 

yielding an 𝑅𝑐𝑎𝑙
2  of 0.99 and 𝑅𝑐𝑣

2  of 0.99 followed by RMSEC and RMSECV of 0.10 days and 0.11 days, 

mailto:marialuisa.amodio@unifg.it
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respectively. Hence it was concluded that the spectral profiles are a more reliable tool for the prediction 

of the potential shelf-life of different rocket raw materials as compared to reference analysis variables.  

Keywords: raw material, shelf-life, PLSR, prediction, hyperspectral 

 

1. INTRODUCTION  

Minimally processed ready to eat foods have demonstrated a significant increase in terms of 

consumption in the last decades. The rising demand of these food products is a corollary to the 

consumer concern regarding fresh, convenient, nutritive, appetizing and healthy food products (Ma 

et al., 2017).   

Rocket leaves (Diplotaxis tenuifolia) have gained significant popularity particularly in the 

Mediterranean countries, due to their pungent smell and strong flavor and are usually preferred by 

consumers in their diet since they are a rich source of health promoting phytonutrients such as 

flavonoids, fiber, vitamin C and glucosinolates (Martínez-Sánchez et al., 2006; Amodio et al., 2016). 

After minimal processing steps such as washing and drying, rocket leaves are found on the retail 

stores in modified atmosphere packages (MAP). Due to minimal processing they are also prone to 

rapid degradation. The degradation symptoms appear in the form of yellowing resulting from the 

degradation of chlorophyll, wilting due to water loss, off-odor production and degradation of flavor 

related volatile compounds (Koukounaras et al., 2009; Nielsen et al., 2008; Mastrandrea et al., 2017). 

A number of factors including raw material quality, handling, processing steps and storage 

temperature significantly impact the shelf life of rocket leaves which generally ranges between 7 to 

14 days (Toivonen and Brummell, 2008). 

The consumer criteria for the selection of rocket leaves at retail stores includes fresh like appearance 

and green color while development of the consumer trust regarding repurchasing, relies on the quality 

of the product during consumption which is usually attributed to color, texture and flavor (Løkke et 

al., 2012; Barrett et al., 2010). Particularly, the shelf life is the time span during which the produce 

retains freshness and is saleable to the ultimate consumer. It is a critical phenomenon in the fresh cut 

industry since from the potential shelf-life depends on the possibility of an easy distribution of the 

product and its general salability, also in consideration of the fact that commercial agreement with 
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distributors very often ensure that unmarketable products are sorted out prior to the processing stage.  

Various techniques have been used in different research works for the estimation and monitoring of 

the shelf life of rocket leaves using various pretreatments of raw materials and storage conditions,  

and evaluating the effect of the relevant parameters on the ultimate shelf life of the rocket leaves 

(Koukounaras et al., 2006; Martínez-Sánchez et al., 2006; Kalio, 2008). Recent studies have also 

considered raw material quality in relation to the ultimate quality of the stored rocket leaves. 

Edelenbos et al., 2017 demonstrated that the quality of the packaged rocket leaves varied between 

different growing seasons recommending low temperature storage for the color maintenance and 

shorter storage time spans for texture retention. In a study conducted by Martínez-Sánchez et al., 

2006 the rocket leaves stored in air were compared to those in controlled atmosphere storage over a 

time span of 14 days and it was concluded that the rocket leaves stored in air lost the sensory and 

microbiological attributes for commecial distribution while out of a total of three controlled 

atmophere storage conditions the rocket leaves stored 5 kPa O2 + 10 kPa CO2 maintained the visual 

quality and microbiological quality traits. On the other hand, Amodio et al., 2015 worked with the 

development of non-linear models for the prediciton of the shelf life of rocket leaves. In this case the 

temperature dependence of the various sensorial, chemical and physical parameters of the rocket 

leaves were studied fitting the experimental data over time. Weibullian model was compared with 

the traditional zero and first order kinetics concluding that the Weibull-log logistic model best 

described the quality variaiton in fresh rocket leaves. It was also recommended that the limitinig 

factor for shelf life significantly varied with respect to the temperature of storage as well as the 

thermal history of the product.    

Various multivariate approaches have also been applied for the estimation of the shelf life of the 

fresh-cut produce including accelerated shelf life testing approach for as apples (M.L. Amodio et al., 

2015), lettuce (Derossi et al., 2016), melons (Amodio et al., 2012) , also using non-linear modelling 

used on fresh-cut melons (Amodio et al., 2013), and rocket leaves (Amodio et al., 2015) and 

monitoring of volatile organic compounds for shelf life monitoring of rocket leaves (Spadafora et al., 

2018). 

Chaudhry et al., 2018 used hyperspectral imaging accompnied by MALST approch for the estimation 
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of th shelf life of fresh-cut rocket leaves using the time related principle components (PCs) and latent 

variables (LVs) and the cut-off criteria formulated resulted in the shelif life estimation of 9.4, 4.5 and 

3.3 days for the rocket leaves stored at respective temperatures.  

All the available studies,  predict shelf-life based on storage data fitting, but none of the them have 

attempted to predict the shelf life only based on raw material quality, as requested from both 

processor and distributors. Since the processors and producers interact with the raw material at the 

reception points of the processing plants and it is imperative to formulate a methodology to predict 

the shelf life of the raw materials based on quality.  

The objective of this study was to  predict  potential shelf-life of different rocket raw material using 

two alternative approaches; firstly, characterizing produce quality and defining critical quality 

parameters for shelf-life prediction, secondly, using hyperspectral images and multivariate approach 

to formulate shelf-life prediciton models. 

2. MATERIALS AND METHODS 

2.1 Experimental design and spectral acquisition 

Minimally processed rocket leaves (Diplotaxis tenuifolia) were received in the postharvest laboratory 

of University of Foggia from different harvest seasons over a time span of two years. Immediately 

after recieveing, the rocket leaves were transferred to a storage room at 5°C. Plastic clamshells were 

used to package 100 grams (g) of representative rocket samples (10 replicates for each raw material 

upon arrival) followed by storage at 5°C in plastic continers with humidified air flow circulation. 

Hyperspectral images of all the replicates were taken on the initial day of storage along with other 

quality parameters and over the storage life which ranged from approximately 5-12 days depending 

on the initial quality of the raw materials and the season of harvest. Each replicate acquired comprised 

of a minimum of twenty leaves in a single image. 

For the hyperspectral image acquisition, a hyperspectral line scan scanner (Version 1.4, DV srl, 

Padova, Italy) equipped with a spectrograph, in the visible- near infrared (Vis-NIR) range of 400-

1000 nm with a spatial resolution of 1000x2000 pixels and a spectral resolution of 5nm was used 

with the leaves of each image, producing one spectrum per replicate. The mean spectrum was 

extracted by thresholding the image to find the best contrast between the object of interest and the 
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background. The initial 10 spectra of the 5 different raw materials (RM) named RM1: summer 2017, 

RM2: summer 2017, RM3: autumn 2017, RM4: spring 2018 and RM5: summer 2018, were aquired 

resulting in the formulaiton of a spectral dataset of 50 samples x 71 variables with quality traits 

differing from raw material to raw material 

2.2 Sensorial and Physico-Chemical Analysis 

2.2.1 Sensory analysis 

Sensory evaluation for the rocket leaves was done by a panel of experts for assessing changes in 

appearance, including color, freshness, and dehydration, over the entire storage span on a scale from 

1 to 5. In case of appearance scores (Amodio et al., 2015), rocket leaves with uniform dark green 

color with fresh and turgid appearance were given score 5, fresh rocket leaves with a slight loss of 

turgidity obtained an appearance score of 4, rocket leaves with a significant loss of turgidity and an 

apparent loss of color (marketability limit) were set at an appearance score of 3, leaves with 

significant senescence with the passage of storage time having wrinkled and yellowish blades 

received an appearance score of 2 and the spoiled rocket leaves with severe wilting, significant 

yellowing and decay symptoms were given a score value of 1. 

2.2.2 Soluble solids content, titratable acidity, and pH 

Soluble solids content (SSC) was measured on homogenized samples diluted with water using a 

digital hand refractometer (Atago, Japan). One gram of puree was then used to measure the pH, with 

an automatic titrator (T50 M Terminal, Mettler Toledo, Switzerland). 

2.2.3 Determination of the microbial load 

For microbiological enumeration, five grams of rocket leaves from each replicate was weighted, 

diluted (1:10) with 45 ml of saline solution (NaCl 8.6 g L−1), and homogenized in a blender (Bag 

Mixer, Interscience, Saint-Nom-la-Bretéche, France) for 2 minutes. Then, samples were submitted 

to tenfold serial dilution. Mesophilic microorganism were enumerated by plate counting on Plate 

Count Agar (PCA) and incubated at 25 °C for 48 h. Yeasts and moulds were plated on Potato 

Dextrose Agar (PDA) (Oxoid) added with chloramphenicol (100 mg L−1) and incubated at 30 °C for 

48 h. 



189 

 

2.2.4 Ammonia determination 

The determination of ammonia was done using a colorimetric method (Nason and WHITTEN, 1970) 

using a Shimadzu UV-1700 PharmaSpec spectrophotometer. 4 g of rocket leaves were cut and then 

frozen at a -80 °C until analysis. Tissue was homogenized with 20mL distilled water for 1 min, and 

a 0.5 mL aliquot was centrifuged for 10 min at 14000 g at 5 °C. A 0.5  mL was added to a solution 

of nitroprusside with phenol and alkaline hypochlorite in a reaction mixture which was incubated at 

37 °C for 15 min; color development was measured at 635nm. Ammonium sulfate was used as a 

standard.  

2.2.5 Chlorophyll determination 

1 g of frozen rocket leaf samples were weighed into 25 mL of methanol and kept in the dark for 24 

hours at room temperature. 15mL methanol was then added and kept for another 24 hours and 

repetead until no green pigments were found on the leaves. The extracts were then separated and the 

absorbance was read at resolution of 1 nm using Shimadzu UV-1700 spectrophotometer. Chlorophyll 

was determined as the maximum absorbance at 666nm, 653 nm and 470 nm and the amount of 

pigments were calculated for chlorophyll a, chlorophyll b and total chlorophyll according to the 

methods of (Wellburn, 1994). 

2.2.6 Firmness determination 

The texture variations among the initial replicates of the different raw materials were determined on 

five grams of leaves with an Instron Universal Testing Machine (model 3340), equipped with a 

Kramer cell. The leaves were placed in the Kramer shear cell equipped with 5 blades and extruded 

with the crosshead at a speed of 50 mm min-1. Texture was measured as the maximum peak force 

and expressed in Newton (N). 

2.3 Multivariate analysis 

A principle component analysis (PCA) was done to explore the relationship between the reference 

variables. On the other hand, partial least squares regression (PLSR) modelling was used for the shelf 

life prediction of the different rocket raw materials under study using two different approaches. 

Firstly, PSLR was applied to the reference analysis data as variables against the marketability limit 

to achieve a shelf life prediction and secondly, spectral profiles of each raw material were used as 



190 

 

variables under study for the shelf life prediciton based on marketability limit. The model reliability 

was accessed by the values of R2 in calibration and R2 in cross validation and also by the root mean 

square errors in calibration and cross validation. PCA and PLSR modlelling was conducted using 

PLS toolbox (version 7.5.2) supported by MATLAB 2015a (version 8.5.0.197.613).  

3. RESULTS AND DISCUSSION 

3.1 Raw material characterization 

Figure 1 shows the mean values of the different reference analysis conducted for five different rocket 

raw materials on the initial 10 replicates for each. It can be clearly observed that the values of the 

reference analysis for the five different raw materials vary since the raw materials are not of the same 

quality neither they come from the same season of harvest.  

 

Figure 1. Mean vales of the reference analysis for raw material 1 (RM1), RM2, RM3, RM4 and 

RM5 

Figure 2 shows the preprocessed spectra in the Vis-NIR range (400-750nm ) of the rocket raw materials 

with 2a depicting the preprocessed spectral data and 2b representing the mean preprocessed spectra of 
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the 5 differrent raw materials. The Vis-NIR peaks correspond to the color related properties of rocket 

leaves as affected by chlorophyll a, chlorophyll b and β-carotene (Chaudhry et al., 2018). In case of the 

Vis-NIR spectral range, the characteristic reflectance spectra of the rocket leaves result from the leaf 

biochemical compounds such as chlorophyll, anthocyanins, carotenoids, water and cellulose. In case of 

green leafy vegetables, the interaction between the plant leaves and electromagnetic radiation yields 

reflectance spectra in the Vis-NIR region which are mainly representative of the photosynthetic pigments 

such as chlorophyll and carotenoids (Mohd Asaari et al., 2018). Visually, a green plant spectral curve 

can be observed in the raw spectra with 550 nm reflectance peak and 680 nm absorbance peak caused by 

chlorophyll, a major color related pigment (Kong et al., 2016). Approximately around 700 nm, the 

reflectance signal in case of the leaves depicts a sharp rise of around 40–50% which is a result of the 

scattering of light with the leaf cell structure, mainly within the mesophyll (Mishra et al., 2017).

 

Figure 2. a) Preprocessed spectra (SNV+1st Derivative) for RAW MATERIAL(RM) in the Vis-

NIR range (400-750nm) b) mean spetra for each RM  in the Vis NIR range (400-750nm)  

The PCA model for the quality reference parameters yielded 78.23% of total variance with 3 PCs; the 

first PC accounting for 47.30% while the second and third PCs explained 22.83% and 8.10% of the total 

variance, respectively. The loadings from the PCA model were used for the selection of the most 

significant variables portraying differences among the raw materials and contributing towards describing 

shelf life. Prior to conducting the PCA, the data were autoscaled.  

After the variable selection based on the loading weights the PCA model was reduced to 6 variables, 

namely, mesophilic bacteria, yeasts and moulds, pH, SSC, chlorophyll b and dry matter (DM). In this 
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case with a dataset containing 50 samples and 6 variables a second PCA model was formulated resulting 

in 2 PCs with the first PC explaining 63.58% and the second PC explaining 18.74% of the total variance 

in the data as shown in figure 3.Figure 3a shows the scores/loadings bi-plot and figure 3b shows the 

loadings for the variables. As can be seen in the loadings plot, mesophilic bacteria and yeasts and moulds 

hold significant weights; it has been revealed by the previous studies that fresh-cut produce possess a 

neutral pH, and are a rich source of sugars and phytochemicals which are prone to be metabolized by 

bacteria hence these foods are an ideal media for microbial growth if handeled incorrectly (Rico et al., 

2007).   
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Figure 3. a) Scores/loadings bi-plot for PC1 and PC2 for reduced variables  b) Loadings plot 

for PCA model for reduced variables 

On the PC1 axis DM and SSC were among the most significant variables in the positive direction while 

in the negitive region pH was noteworthy. On the other hand in case of the PC2 axis chlorophyll b and 

yeasts and moulds carried greater significance in the positive and negative regions respectively. As per 

the sensorial analysis by a panel of experts the shelf life of the rocket leaves was determined for each 

raw material plotting the visual scores against the days of storage (data not shown) until they reach the 
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marketability limit (score value of 3). In this case RM1 and RM2 took 9.4 and 9.3 days respectively to 

reach the marketablity limit. RM3, RM4 and RM5 showed a shorter storability with a shelf-life of 8, 6.9 

and 6.3 days, respectively. The initial quality of the raw materials in this study can be compared to those 

of Martínez-Sánchez et al., 2006a which showed high initial mesophilic load of 5.35 log CFU g-1 whereas 

for the yeasts and moulds RM4 and RM5 showed significantly higher values as comapred to the latter. 

Moreover, RM4 and RM5 also showed a significantly higher mesophilic load as compared to the other 

raw materials which can be contributing factor for lower storability for RM4 and RM5. Ferrante et al., 

2004 studied the shelf life of rocket leaves and demonstrated that fresh-cut rocket leaves possess a short 

shelf life in which case the leaf yellowing initiates within 4 to 8 days of storage even at lower storage 

temperatures i.e. 5 °C. Spadafora et al., 2016 revealed that the leaves stored at three different 

temperatures showed slight increase in the microbial loads till day 6 of storage; but it is important to note 

that the initial microbial count was significantly lower ~1.2 log CFU g-1 as compared to those of present 

study. Moreover, the differences between the mesophilic count and yeasts and moulds for the RM1, 

RM2, RM3, RM4 and RM5 can also be due to the fact that the season of growth for all raw materials is 

different since Yahya et al., 2019 demonstrated that the bacterial loads of summer produce is higher 

compared to winter produce.  

3.2 Shelf-life prediction 

For the prediction of the shelf life based on the initial reference analysis of the five different raw 

materials, PLSR models were developed (Table 1).  

Table 1. Calibration statistics for the PLSR models developed for the shelf life prediction of rocket 

raw materials 

PLSR models based on reference analysis (50 samples x 6 variables) 

Parameter Pretreatment No. of vars LVs 𝑅𝑐𝑎𝑙
2  RMSEC 𝑅𝑐𝑣

2  RMSECV 

Prediction of shelf life Auto-scaling 6 3 0.83  0.51 0.79 0.57 

PLSR models based on Vis-NIR spectra in the range of 400-750nm (50 samples x 71 variables) 

Prediction of shelf life Log(1/R) + SNV + mean 

centering 

71 6 0.99 0.10 0.99 0.11 
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The dataset utilized for the PLSR model based on the reference analysis results comprised of 50 samples 

and 6 variables. Accuracy of the model was evaluated based on the coefficient of determination in 

calibration (𝑅𝑐𝑎𝑙
2 ), coefficient of determination in cross validation (𝑅𝑐𝑣

2 ), root mean square error of 

calibration (RMSEC) and root mean square error of cross validation (RMSECV). The PLSR model for 

the prediction of the shelf life contained three latent variables (LVs) with the first LV explaining 62.80% 

of the co-variance in the data while the second and third LVs explained 14.18% and 11.97% of the co-

variance , respectively. Figure 4a demonstrates the calibration plot for the PLSR model debveloped while 

figure 4b shows the loadings plot for the variables included in the PLSR model.  
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Figure 4. a) Calibration plot for tshelf-life measured vs shelf-life predicted b) Loadings plot of 

LV1 and LV2 for the variables involved in the PLSR model 

As for prediction based on spectral data, after preprocessing (transformation from reflectance to 

absorbance+ SNV+mean centering) the PLSR model resulted in a significant difference as compared to 

the one formulated based on the reference values. In this case the model contained six LVs with the first 

LV explained already 96.28% of the co-variance in the data followed by the second LVs explaining 

2.81% of the co-variance. The model accuracy was accessed by the 𝑅𝑐𝑎𝑙
2  which was 0.99 accompnied by 

RMSEC of 0.10 days followed by an 𝑅𝑐𝑣
2  of 0.99 with a RMSECV of 0.11 days (Table 1). Figure 5a and 

5b depicts the calibraiton plot and the loading plots, respectively for the spectral based PLSR model.  

 

Figure 5. a) Calibration plot for the marketability limit measured vs marketability limit 
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predicted based on spectral profiles b) Loadings plot of LV1 and LV2 for the for the 

included wavelength range 

Shelf life determination based on the spectral profiles in the Vis-NIR region has been attempted in a 

recent work by Chaudhry et al., 2018 (refer to Chapter 4),but in this case authors applied a Multivariate 

Accelerated Shelf Life Test (MASLT) collecting spectral profiles over the storage period of rocket 

stored at 3 different temperatures. The authors reported a shelf life of 9.4 days at 5 °C, with root mean 

square errors of 1.32 and 1.48 in calibration and cross validation, using a spectral range from 400-800 

nm, but in this case the shelf life estimaiton was possible only by modeling storage data and the study 

did not compare different raw materials. On the other hand, similar results for the shelf life were found 

by M. L. Amodio et al., 2015 using weibull models where the shelf life for the rocket leaves stored at 5 

oC was estimated to be 5.8 days. To our knowledge, none of the studies have based shelf-life predicion 

only on raw material quality. Comparing both PLSR models in this study, i.e. the reference analysis 

based PLSR and the spectral based PLSR model, it can be observed that the RMSEC and RMSECV in 

of spectral based PSLR model is quite low hence proving that spectral informaiton of the raw materials 

can be a useful tool for the prediciton of potential shelf life of the raw material under consideration. 

Moreover, the accuracy of the spectral based PLSR model can be enhanced by using a greater number 

of samples from various seasons and harvest times.  

4. CONCLUSIONS 

 For the first time a multivariate approach has been implemented for the prediction of the potential shelf-

life of rocket leaves based on the raw material quality. The most significant quality variables contributing 

towards shelf life of the raw materials were mesophilic count, yeasts and moulds, pH, SSC, chlorophyll 

b and DM. PLSR models using these reference variables resulted in adequate shelf life prediction based 

on raw material quality. Moreover, a secondary approach using the spectral profiles of different raw 

materials was also used for the prediction of shelf-life potential implementing PLSR modelling which 

yielded a reliable prediction error of about 0.1 day. These results would be very important both for the 

producers and processors for making logistic decisions and ensuring product quality along all the market 

chain. 
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GENERAL CONCLUSIONS  
For the first time a multivariate approach using the spectral fingerprints for the estimation of the shelf 

life of fresh cut rockets was used. The changes in the spectra with the passage of storage time for the 

samples stored at three different temperatures served as the property under study. Comparing the MASLT 

approach with the conventional ASLT methods the use of PCA yielded valuable information regarding 

the variables contributing towards the weight in the model and accounting for the quality losses of the 

product. It was highlighted that the wavelength ranges of 550-700nm held great significance while 

estimating shelf life based on appearance scores. The conventional MASLT approach using the PC scores 

was also compared with a new method using PLS and LV for the development of the kinetic or shelf life 

charts. Comparing both the approaches it was concluded that no significant difference exists between the 

results yielded by both the techniques. On the other side, the PLS model can be more robust as compared 

to a PCA model with the allowance of new samples to be added in the calibration and can serve as a tool 

for better validation. MASLT approach with PLS can enable the processors to better estimate the shelf 

life of their products and access the market with better product quality by improving the logistics.   

The potential application of spectral fingerprints and hyperspectral images in the NIR region, together 

with multivariate data analysis, has proven the potential to predict and map phytonutrients in fresh cut 

rocket leaves, provided that predicted values are included in the calibration range. A new method was, 

in fact, developed in order to overcome the prediction error due to the unavoidable process of using 

average spectra for the calibration model and individual pixels for the image prediction. It was shown 

that the number of pixels detected within the calibration range decreased with the passage of storage time 

with a simultaneous increase in the pixels below the calibration range hence reducing the capability of 

the PLSR model to predict the corresponding phytonutrient. In this way, hyperspectral images revealed 

that the central part of the leaves lose vitamin C content faster as compared to the leaf edges or in other 

words the vitamin C starts degrading from the center of the leaf. Furthermore, the PLSR models in this 

case were very sensitive to the number of samples and their performance can be further enhanced with 

increasing the number of the samples in the calibration sets. Conclusively, NIR combined with 

hyperspectral imaging can be a very informative tool for studying the changes in the phytonutrient 

content during storage. 
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The future research perspectives in the domain of non-destructive analysis should be focused on 

simplifying the existing models by reducing the number of variables (hence orienting the hyperspectral 

imaging to multispectral imaging) to facilitate the industry for online implementation of the sorting 

systems on the basis of nutritional value and furthermore exploring the possibilities of employing these 

techniques for the development of new methods for nutritional compounds as has been proposed in 

Chapter 5 of the thesis.  

Since the food industry is oriented towards acquiring simple, rapid, reliable and cost effective methods 

addressing their concerns regarding quality or origins of their products; it has been demonstrated by the 

research studies in this thesis that spectral information accompanied by multivariate and chemiometric 

methods possess the capability for the discrimination among the crops in accordance with the product 

history since each sample is comprised of a different fingerprint NIR spectrum which consists of a unique 

and characteristic pattern of radiation, hence suggesting that samples having similar spectra may be 

discriminated by other physically and/or chemically different samples. But for a reliable classification 

based on unsupervised or supervised classification methods the number of samples used to develop a 

discrimination model holds great significance. Therefore, it is imperative to have a dataset with a wide 

variability of samples for achieving a PLSDA or PCA model with utmost reliability. 

 

 


