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ABSTRACT 

 

Nowadays it is increasing the needs to know the quality and safety of the food products. 

These requirements call for on-line detection techniques which have the advantages of be assembled 

in the production line and take place under realistic environment, know early detection of possible 

failures, have permanent monitoring of the conditions and know assessment of conditions at any 

desired time. 

This study evaluated the feasibility of using a spectral scanner VIS-NIR (DV Srl, version 

1.4., Italia) with a detector in the region between 400-1000 nm to predict quality and characterize 

local varieties of artichoke: “Violetto” and “Catanese” located respectively in the area of San 

Ferdinando di Puglia and Brindisi (Puglia Region, Italy). The samples were harvested during years 

2009/10 from 20 plants for each field, randomly-chosen and labelled in order to reduce field 

variability among different harvest dates. 

Artichoke heads were harvested from December to May (7 harvest dates) for “Violetto 

foggiano” and from January to April for “Catanese” (4 harvest dates). 

Artichokes were processed and cut into quarters. One quarter for each artichoke was 

analyzed during storage at day 0, day 2, day 5 and day 7 acquiring hyperspectral images using a 

hyperspectral imaging system. 

Spectral data were analyzed using the Unscrambler packing software version X (CAMO 

ASA, Oslo, Norway) and PLS toolbox in Matlab (version 2014a). The data set included 736 

samples (400 for “Violetto” and 336 for “Catanese”). All the reflectance measurements were firstly 

transformed to absorbance values using log(1/R) according to the law of Lambert-Beer. 

Classification models were built with the aim of discriminate among cultivars, harvest 

times and day after cut. Two methods were compared: SIMCA (Soft Independent Modelling of 

Class Analogy) and PLS-DA (Partial least squares discriminant analysis), defining a Training set of 

308 samples for “Violetto” and 244 for “Catanese” and a Test set of 92 samples for “Violetto” and 

76 for “Catanese”. 

In the classification by cultivar (“Violetto” and “Catanese”) the discriminant approach is 

superior to the class-modeling, mostly because of the two classes have a very similar general profile 

of the spectrum and one of them (“Violetto”) have an inner variability which encloses the one of the 

other class (“Catanese”). 

 Forcing the discrimination, the differences between the two classes are exalted, and the 

classification is obtained with very interesting results. 

For the classification by harvest time, the SIMCA model was developed building 

individual PCA models for the spectra of each harvest time. Comparing the result coming from the 
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analysis made with SIMCA and PLS model, it is evident how the PLS-DA is the most performing 

method for this application giving a “non error rate” of 80% on the external test set. 

For the classification by days of storage the PLS-DA model has for all the classes high 

value of specificity, and for some classes low values of sensibility. 

The results suggest that is possible to discriminate samples just cut from samples cut and 

stored for some days, but that is more difficult to exactly separate samples depending on the days of 

storage. Most likely this is not due to a low efficiency of the model but to the changing proprieties 

of the samples that are not so dissimilar between 2 and 7 days of storage, but becoming more 

evident with the passing of the time.  

For these analysis “Non Error Rate” values increased reducing the number of classed from 

4 to 3: the model performance improved. 

Calibration model for phenols content and antioxidant activity was built analyzing for day 

0 several pre-treatment (9 for antioxidant activity and 8 for phenols).  

Particularly the data of “Harvest Time 1” showed a different behavior compared to the 

remaining harvest times and for this reason the prediction models were tested on 3 classes: “All 

Harvest Time”, “Harvest Time 1” and “Other Harvest Time”. The efficiency of the model was 

always higher when using only sample from “Harvest Time 1”, suggesting that other sources of 

variation were included in the data set for the following samplings. 

The classes “All Harvest Times” and “Other Harvest Times”, for PLS-calibration model, 

had higher values of R2C and R2CV and low values of RMSEC and RMECV in the wavelength 

range of 400-1000 nm for both phenols content and antioxidant activity. “Harvest Time 1”, instead, 

carried out the best value for both (phenols content and antioxidant activity) in the range 650-

1000nm (R2pred 0.62 and RMSEP of 72 for phenols, and R2pred 0.67, and RMSEP of 126 for 

antioxidant activity). 

Starting from this considerations and from obtained results it may be interesting to further 

investigate the effect of the harvest time on the phenolic and antioxidant activity prediction to try to 

improve prediction results. Moreover also the instrumental setting can be improved, trying to 

standardize as much as possible the acquisition conditions.  

Generally results of this thesis explored new area of research developing tools that may be 

used to increase the value of local productions, by mean of a better characterization and 

identification and by providing innovative non destructive-tools to be used online during the 

minimally processing operations for selecting raw material based also on its internal composition. 

 

Key words: Artichoke, SIMCA, PLS-DA, VIS-NIR, phenols, antioxidant activity, classification 
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1.1 NUTRITIONAL PROPERTIES OF ARTICHOKES 

 

1.1.1 General information 

 

Artichoke, Cynara cardunculus L. subsp. scolymus (L.) Hayek, (Scientific name: Cynara 

scolymus L.) is an ancient herbaceous perennial plant (Figure 1.1), originating from the 

Mediterranean area, which today is widely cultivated all over the world (Bianco, 2005). Artichoke is 

one of the popular winter season, edible flower bud. It is used as a vegetable and it is well known 

since ancient times for its medicinal and health benefiting qualities. 

The plant grows up to 1.5-2 m tall, with arching, deeply lobed, silvery-green leaves about 

0.5 m long. Beautiful light pink flowers develop in a large head from the edible buds. 

Each artichoke globe measures about 6-10 cm in diameter and weighs about 150 g. These 

are not edible anymore if the flower become old, and large in size. 

Seed-propagated plants have hypogeous seed germination and produce a conspicuous, 

thick, fleshy tap-root apparatus. During the vegetative growth, the plant produces a rosette of large, 

deeply lobed or divided pubescent green-grayish leaves attached to a compressed stem. Leaves 

differ sensibly among cultivars for their margin, color, shape, length, presence/absence of spines. 

The base of the stem produces auxiliary buds from which offshoots (suckers) can grow in a variable 

number, depending both on the variety and on its attitude to the vegetative propagation. Each 

offshoot produces adventitious roots that initially are mostly fibrous and thick and, during the first 

year of growth, differentiate fleshy storage organs (rhizomes). In the spring, above the rosette of 

leaves, an apical or primary bud appears and a floral stem can elongate above 1 m of height. Floral 

stem induction is influenced both by temperature and photoperiod and the cultivars differ in their 

requirements of low-temperature and day length. Secondary, tertiary, and higher-order buds develop 

on branching stems from leaf axis of the primary stem; the primary terminal bud achieves the 

largest size, this decreasing sequentially for secondary, tertiary and higher-order flower buds. Each 

vegetative offshoot produces an erect flower-bearing stem (Jacoboni, 1958). The head or capitulum 

is composed by many florets crowded onto a fleshy receptacle and surrounded by a whorl of 

multiple rows of bracts, thick and fleshy in basal parts and progressively thinner in upper portions; 

the outermost bracts are large and fibrous while the inner ones are progressively smaller and tender. 

The inner tender portions of the receptacle form the ‘heart’ of the globe artichoke (Figure 1.2).  

Several cultivars of artichoke grown and are categorized based upon size, color, and 

presence of the spines.  
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Figure 1.1. Globe artichoke - From http://www.science.howstuffworks.com
 

 
Figure 1.2 – Artichoke section. 

 

The number of globe artichoke cultivars grown in the Mediterranean basin and in other 

parts of the word cannot be easily determined. A cultivar grown in one location is frequently known 

by other names in other localities (about 14 to indicate “Catanese” globe artichoke) (Bianco, 1990). 

Therefore, the number of names exceeds that of the actual cultivars. The cultivar composition in 

Italy, Spain, and France has been extensively studied but it is much less known in other 

Mediterranean countries. Thirty-seven economically important globe artichoke types have been 

examinated by Dellacecca et al. (1976). Only 11-12 of them can be considered as being of major 
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commercial importance (Basnizki and Zohary, 1994). The artichoke world collection in Bari (Italy) 

was subjected to a detailed study of cultivar divergence by multivariate analysis (Porceddu et al., 

1976; Vannella et al., 1981), this showed that the majority of the accessions analyzed fall into the 

following four main groups (Figure 1.3): 

A) “Spinoso” (long sharp spines on the bracts and leaves); 

B) “Violetto” (medium-sized, violet-colored and less spiny heads); 

C) “Romanesco” (spherical or sub-spherical non-spiny heads); 

D) “Catanese” (small, elongated and non-spiny heads). 

 

 
Figure 1.3 – Typologies of globe artichoke cultivated in Italy (Lo Bianco, 2009) 

 

1.1.2 Nutritional aspects and health benefits of artichoke 

 

Artichoke is widely cultivated for its large immature inflorescences, called capitula or 

heads, which represent an important component of the Mediterranean diet and is a rich source of 

health-promoting compounds, mainly bioactive polyphenols, flavonoids and also inulin, fibres and 

minerals (Lattanzio, 1982; Lattanzio et al., 2005; Lattanzio et al., 2009; Llorach et al., 2002; 

Orlovskaya et al., 2007). 
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Artichoke is low in calories and fat; 100 g of this flower bud just carries 47 calories. 

Nonetheless, it is a rich source of dietary fiber and anti-oxidants (Table 1.1.). It provides 5.4 g per 

100 g, about 14% of RDA fiber. Dietary-fiber helps control constipation conditions, decreases badly 

or "LDL" cholesterol levels by binding to it in the intestines and help cut down colon cancer risks 

by preventing toxic compounds in the food from absorption. 

Fresh artichoke is an excellent source of vitamin, folic acid; provides about 68 µg per 100 g 

(17% of recommended daily allowance). Folic acid acts as a co-factor for enzymes involved in the 

synthesis of DNA. Scientific studies have proven that adequate levels of folates in the diet during 

pre-conception period, and during early pregnancy, help prevent neural tube defects in the newborn 

baby (Kronenberg et al., (2009). 

Fresh globes also contain moderate amounts of anti-oxidant vitamin; as-C (about 20% of 

recommended levels per 100 g). Regular consumption of foods rich in vitamin C helps the body 

develop resistance against infectious agents and scavenge harmful, pro-inflammatory free radicals 

from the body. 

It is also one of the very good vegetable sources for vitamin K; provide about 12% of DRI. 

Vitamin K has potential role bone health by promoting osteotrophic (bone formation) activity. 

Adequate vitamin-K levels in the diet help limiting neuronal damage in the brain; thus, has 

established role in the treatment of patients suffering from Alzheimer's disease (Parris, 2005). 

It is also rich in B-complex group of vitamins such as niacin, vitamin B-6 (pyridoxine), 

thiamin, and pantothenic acid that are essential for optimum cellular metabolic functions. 

Moreover, artichoke is rich source of minerals like copper, calcium, potassium, iron, 

manganese and phosphorus. Potassium is an important component of cell and body fluids that helps 

controlling heart rate and blood pressure by countering effects of sodium. Manganese is used by the 

body as a co-factor for the antioxidant enzyme, superoxide dismutase. Copper is required in the 

production of red blood cells. Iron is required for red blood cell formation (Horacio et al., 2014). 

Additionally, it contains small amounts of antioxidant flavonoid compounds like carotene-

beta, lutein, and zea-xanthin. 

Depending on the cultivar and harvest time, head weight ranges from 150 to 600 g. The 

ratio of edible parts to the total weight head is 10–18% for the lower part (receptacle), and about 

40% for the core parts (receptacle and inner bracts). Since only the central portion of the capitula is 

consumed, the ratio of edible fraction/total biomass produced by the plant is very low, being less 

than 15–20% of total plant biomass. This ratio decreases further if the contribution to the total 

biomass represented by offshoots, removed from the field by common cultural procedures, is also 

considered (Marzi and Lattanzio, 1981; Lattanzio, 1982; Lattanzio et al., 2009). 
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Artichokes are a popular winter season vegetables across Europe. Small or baby artichokes 

can be eaten completely without removing the inside spiny choke. 

 

Table 1.1 – Analysis of nutrients: Artichoke (Cynarascolymus), raw, Nutrition value per 100 g.  
ORAC value 6552 TE/100 g.  

(Source: USDA National Nutrient data base)  

 

Principle Nutrient Value Percentage of RDA 

Energy 47 Kcal 2% 

Carbohydrates 10.51 g 8% 

Protein 3.27 g 6% 

Total Fat 0.15 g  0.5% 

Cholesterol 0 mg 0% 

Dietary Fiber 5.4 g 14% 

Vitamins 

Folates 68 µg 17% 

Niacin 1.046 mg 6.5% 

Pantothenic acid 0.338 mg 7% 

Pyridoxine 0.116 mg 9% 

Riboflavin 0.066 mg 5% 

Thiamin 0.072 mg 6% 

Vitamin C 11.7 mg 20% 

Vitamin A 13 IU 0.5%  

Vitamin E 0.19 mg 1% 

Vitamin K 14.8 µg 12% 

Electrolytes 

Sodium 94 mg 6% 

Potassium 370 mg 8% 

Minerals 

Calcium 44 mg 4% 

Copper 0.231 mg 27% 

Iron 1.28 mg 16% 

Magnesium 60 mg  15% 

Manganese 0.256 mg 11% 

Phosphorus 90 mg 13% 

Selenium 0.2 µg <0.5% 

Zinc 0.49 mg 4.5% 

Phyto-nutrients 

Carotene-alpha 8 µg 

Crypto-xanthin 0 µg 

Lutein-zeaxanthin 464 µg 
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The edible part is widely consumed raw, boiled, steamed or fried and as a component of 

many recipes. Within the capitulum only the receptacle is usually considered fully edible, but the 

bracts, if properly prepared, are edible as well (Lattanzio et al., 2005). 

In respect of this chemical composition, the globe artichoke combines good sensory 

properties with a healthy image, known since Roman times which are linked to their high content of 

inulin and polyphenolic compounds (Robertfroid, 2005; Holst and Williamson, 2008), which are 

phytontrients not included in the composition Table 1.1. and that dispite to their minor content are 

very important for a nutritional point of view. 

Inulin is a highly water-soluble carbohydrate, which serves as an alternative storage 

carbohydrate in the vacuole of approximately 15% of all flowering plant species (Lattanzio et al., 

2009). Inulin belongs to a group of fructose-based polysaccharides called fructans, which are not 

digested in the small intestine because humans lack the enzymes required for hydrolysis of fructans. 

A reason for the recent interest in inulins is due to the publication of data showing the positive 

influence on the composition of the gut microflora, and there are indications of beneficial effects on 

mineral absorption, blood lipid composition, and prevention of colon cancer. In addition, inulin is a 

low-calorie fiber that has potential for use in the production of low-fat foods (Frehner et al., 1984; 

Pollock, 1986; Darwen and John, 1989; Pontis, 1990; Carpita et al., 1991; Rapaille et al., 1995; 

Hellwege et al., 1998; Roberfroid and Delzenne, 1998; Van Loo et al., 1999; Hellwege et al., 2000).  

Phenolic are heterogeneous group of phytochemicals normally synthesized both during 

regular plant grown and development and are prominent in fruit and vegetables, where they are 

important in determining color, appearance, flavor, and taste (Lattanzio, 2003). Polyphenols 

synthesis and accumulation in plants may be stimulated in response to biotic and abiotic stresses 

(Beckman, 2000), modifying qualitatively and quantitatively the composition (Falleh et al., 2008). 

Phenolic compounds form one of the main classes of secondary metabolites, with a large range of 

structures as shown in Table 1.2: (Harborne, 1980).  

 

Table 1.2 – The major classes of phenolic compounds (from Lattanzio, 2003). 

Basic skeleton Class

C6 Simple phenols, Benzoquinones

C6-C1 Phenolic acids

C6-C2 Acetophenones, Phenilacetic acids

C6-C3 Hydroxycinnamic acids, Phenylpropenes, Coumarins, Isocoumarins, Chromones

C6-C4 Naphtoquinones

C6-C1-C6 Xanthones

C6-C2-C6 Stilbenes, Anthraquinones

C6-C3-C6 Flavonoids, Isoflavonoids

(C6-C3)2 Lignans, Neolignans

(C6-C3-C6)2 Biflavonoids

(C6-C3)n Lignins

(C6)n Catechol melanins
(C6-C3-C6)n Proanthocyanidins  
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The importance of these compounds seems to be linked to their well-established role as a 

protective pool against oxidative damages caused by free radicals (Racchi et al., 2002; Rice-Evans 

and Miller, 1996). The action of phenolic as strong antioxidants is due mainly to their redox 

properties, which allow them to act as reducing agents, hydrogen donators and single oxygen 

quenchers (Rice-Evans and Miller, 1996). The most abundant phenolic substances reported in 

artichoke heads belong to the class of hydroxycinnamic acids, such as coumaric (4-

hydroxycinnamic acid), ferulic (3-methoxy-4-hydroxycinnamic acid) and caffeoylquinic acid 

derivatives, particularly chlorogenic acid (5-O-caffeylquinic acid), the most abundant single 

component (39% of total caffeoylquinic acid contents), 1,5-di-O-caffeoylquinic acid (21%) 3,4-O-

dicaffeoylquinic acid (11%), 1,3-O-dicaffeoylquinic acid (Cynarin) (about 1.5%) and 3,5-di-O-

caffeoylquinic acid (Lattanzio et al., 1994).  

About flavonoids, apigenin and luteolin glycosides have been detected in both leaves and 

artichoke heads, while anthocyanin pigments are present only in capitula. Anthocyanin pigments are 

responsible for most of the blue, purple, red and intermediate hues of plant tissues. From a 

quantitative viewpoint, these compounds are considered minor constituents of the total phenolic 

content (about 10% or less) of artichoke tissue (Lattanzio et al., 2009). 

Due to the high content of phenolics compounds artichoke heads might, therefore, be 

regarded as a source of dietary antioxidants. (Lattanzio and Linsalata, 2005; Lattanzio 2009 ). In 

addition, leaves and outer bracts of artichoke heads can be considered as a cheap, as yet unused, 

source of natural non toxic antioxidants for use in industrial processes (to preserve and stabilize the 

freshness, nutritive value, flavour and colour of foods. 

Phenolic content, profiles of polyphenols and minerals may significantly vary among 

artichoke plant parts, genotype, and are affected by several physiological and environmental factors. 

Some studies reported that, in some artichoke cultivars, single polyphenols accumulate 

preferentially in the edible parts of the heads (Lattazio et al., 2009). Phenolic content decreases 

during capitula development and content at commercial maturity stage is about half of the content at 

the early development (Fratianni et al., 2007; Di Venere et al., 2009; Lombardo et al., 2009, 2010, 

2011; Pandino et al., 2011a, 2011b). 

Several authors reported a different phenol content and composition, and antioxidant 

activity among heads or leaves of artichoke varieties (Gorny et al., 1999; Fratianni et al, 2007); 

several studies are available on phenolic components and antioxidant activity of artichokes 

(Lattanzio et al., 1994; Alamanni et al., 2003; Wang et al., 2003; Brecht et al., 2004; Fratianni et al., 

2007, Lattanzio et al., 2009; Lombardo et al., 2010, Coinu et al., 2007; Lutz et al., 2011; Di Venere, 

personal communication). 
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Phenolic content of artichoke heads is strictly related to winter or spring harvest and is 

dependent from the climatic conditions (temperature, rainfall, light, etc.) (Lombardo et al., 2010; Di 

Venere et al., 2005a). Lombardo et al. (2009) found that the different environmental and weather 

conditions influenced the phenolic bio-synthesis for some artichoke genotypes, and also that there is 

an inverse relationship between phenol content and tissue age. Some authors reported that the 

profiles of polyphenols and minerals of some artichoke varieties were significantly different 

amongst genotype and plant parts (Lombardo et al., 2009, 2010; 2011; Pandino et al., 2011a, 2011b) 

and some authors reported that phenol content of artichokes harvested in sping decreased compared 

to artichokes harvested in winter (Massignan et al., 2005; Bianco and Pace, 2009). 

 

1.1.3 Storage condition 

 

Artichoke production is essentially continuous throughout the year, although about 70% of 

the crop is harvested in a specific part of the year. Fields with winter-spring cycles produce the 

highest yields, and are continuously harvested from September through May (Lo Bianco, 2009). 

Highest quality heads show no violet discoloration on the inner bracts, a short pappus and 

outer bracts tightly closed and are free of blemishes (Miccolis et al., 1988; Mencarelli et al., 1993). 

Bract opening, external and internal blackening and wilting are the main factors limiting quality of 

artichokes during distribution (Escriche et al., 1982). 

Artichokes harvested in early production are, normally used for the fresh market, whereas 

the last part of the late production is industrially processed (canned or frozen).  

Delays between harvest and consumption or processing can result in losses of flavor and 

nutritional quality. Keeping intact fruits and vegetables within their optimum ranges of temperature 

and relative humidity is the most important factor in maintaining their quality and minimizing 

postharvest losses during the entire postharvest handling system. Storage temperature and relative 

humidity are the most important factors in postharvest quality maintenance of fresh produce. 

Atmospheric modification can be a very useful supplement to providing the proper temperature and 

relative humidity (Kader, 1990; 2002e; 2004). 

Temperature management is the most effective tool for extending the shelf-life of fresh 

horticultural commodities (Kader, 2002a). Low temperatures (between 0°C and 5°C) together with 

high relative humidity (90–95% RH) during storage are recommended to maintain quality of 

artichokes for longer durations (Mencarelli et al., 1993; Suslow and Cantwell, 1997). The storage 

potential of artichokes is generally less than 21 days as visual and sensory quality deteriorate rapidly 

(Suslow and Cantwell, 1997), and depend on temperature of storage; some authors have reported 

even shorter storability that does not exceed 2 weeks at 1–2°C, 10 days at 5°C and 5 days at 10°C 



13 
 

with RH > 90% (Saltveit, 1991). Gil et al. (2001) reported that visual quality of artichoke heads 

decreased considerably during storage at 9°C and 17°C; after 16 days, visual quality was considered 

acceptable only for artichokes stored at 0°C or 6°C. Another study showed that ‘Blanca de Tudela’ 

artichokes stored at different temperatures showed significant changes in total phenol contents (Gil-

Izquierdo et al., 2001).  

Currently, no other postharvest technologies beside temperature and humidity control are 

applied when storing artichoke heads, and also because they are generally consumed close to the 

production area.  

Relative humidity (RH) can influence water loss, decay development, incidence of some 

physiological disorders, and uniformity of fruit ripening. The optimum relative humidity during 

storage of fresh non-fruit vegetables ranges between 95-98% (Kader, 2002b).  

The physiological activity of plant tissue continues after harvest inducing wilting 

phenomena of tissue, a phenomenon primarily due to transpiration, i.e. the transfer of water 

contained within the plant tissue to the surrounding atmosphere. The dehydration depends on many 

factors including the temperature and relative humidity of the storage room, the air movement and 

the packaging material. The decrease in weight may be attributed to respiration and other 

senescence-related metabolic processes during storage (Watada and Qi, 1999); Agamia (1984) has 

shown that the weight loss of artichoke heads is due to both respiration and transpiration. Water loss 

is not only results in direct quantitative losses (loss of salable weigh), but also in losses in 

appearance (wilting and shriveling), textural quality (softening, flaccidity, limpness, loss of 

crispness and juiciness) and nutritional quality. The commodity’s dermal system (outer protective 

coverings) governs the regulation of water loss. The transpiration rate (evaporation of water from 

the plant tissues) is influenced by internal factors (morphological and anatomical characteristics, 

surface-to-volume ratio, surface injuries, and maturity stage) and by external, or environmental, 

factors (temperature, relative humidity, air movement, and atmospheric pressure) (Kader, 2002b). 

Condensation of moisture on the commodity (sweating) over long periods of time is probably more 

important in enhancing decay than is the RH of ambient air. Management of relative humidity is 

very important for storage of artichoke heads, in fact values RH> 95% assure a low weight loss 

avoiding the loss of turgidity of the outer bracts and of the stem and the wilting of the leaves (Lipton 

and Stewart, 1963; Suslow and Cantwell, 1997). A study of Leroy et al. (2010) showed that weight 

loss increased significantly during storage for artichokes stored at 4°C (60% RH) and 18°C 

(80%RH), while dry matter increased. 

Relative humidity can be controlled by one or more of the following procedures: adding 

moisture (water mist or spray, steam) to air by humidifiers, regulating air movement and ventilation 

in relation to produce load in the cold storage room, maintaining the refrigeration coils within about 
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1 °C of the air temperature, providing moisture berries that insulate storage room and transit vehicle 

walls, wetting floors in storage rooms, adding crushed ice in shipping containers or retail displays 

for commodities that are not injured by the practice, sprinkling produce with water during retail 

marketing (Kader, 2002b). 

One final method to extend storability of fresh produce is the modification of the storage 

atmosphere by reducing oxygen and increasing carbon dioxide partial pressure (Zhang et al., 2011).  

In modified atmospheres (MA) or controlled atmospheres (CA), gasses are removed or 

added to create an atmospheric composition around the commodity that is different from that of air 

(78.08% N2, 20.95% O2, and 0.03% CO2). Usually this involves reduction of oxygen (O2) and/or 

elevation of carbon dioxide (CO2) concentrations. The use of modified or controlled atmospheres 

should be considered as a supplement to proper temperature and relative humidity management 

(Table 1.3). The potential for benefit or hazard from using MA depends on the commodity, cultivar 

or variety, physiological age, atmospheric composition, temperature and duration of storage 

(Amanatidou et al., 1999; Kader, 2002c; Gorny, 2004; Colelli and Elia, 2009). CO2 is the most 

important gas in the modified atmosphere packaging of foods, due its bacteriostatic and fungi static 

properties. It inhibits the growth of the many spoilage bacteria and the inhibition rate is increased 

with increased CO2 concentrations in the given atmospheres. CO2 is highly soluble in water and fat, 

and the solubility increases greatly with decreased temperature (Sivertsvik et al., 2002). 

Atmospheres with low O2 levels inhibit the growth of most aerobic microorganisms, also this 

contributes to the maintenance of metabolic activities of the product (Farber, 1991; Klieber et al., 

1996; Beaudry, 1999; Saltveit, 2003; Soliva-Fortuny et al., 2004). 

MAP produces benefits by extending appearance and sensory quality, increasing overall 

marketability (Table 1.3).  

 

Table 1.3 – Modified Atmosphere Packaging (Gorny, 2004) 

Can Cannot
Increase	shelf‐life Substitute	for	Temperature	Control
Slow	Microbial	Growth Stop	Microbial	Growth
Maintain	Nutritional	Quality
Slow	Browning  

 

It aims to the creation of an ideal gas composition within the packaging, which can be 

directly generated by the commodity respiration, or actively created by flushing a gas mixture 

within the packaging before sealing it. Once the package is closed, no further control is possible and 

the gas composition will inevitably change due to produce metabolism and to film barrier properties 

(Sivertsvik et al., 2002; Gorny, 2004). 
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However, differences between beneficial and harmful atmosphere combinations may be 

small. One of the mayor problems encountered in using MAP is the accumulation of anaerobic 

metabolites (i.e. ethanol and acetaldehyde) in the packages: if the O2 level decreases below the 

fermentation threshold, anaerobic respiration is triggered leading to the production of off-flavors 

and stimulating the growth of some anaerobic psychotropic pathogens (Oms-Oliu et al., 2009); 

similarly, high CO2 concentrations can be harmful for vegetal tissues. Also, in some leafy green 

vegetables, increases in ammonia were observed with high CO2 atmospheres and were associated 

with darkening of tissues (Cantwell et al., 2009).  

A reduction in browning of the outer bracts is the major benefit from CA storage when 

artichoke buds are stored at temperatures higher than 0°C. However, the effectiveness of CA storage 

is dependent on bud maturity, cultivar, temperature and the particular atmosphere used (Andre et al., 

1980; Rappaport and Watada, 1958; Ryder et al., 1983). Optimal CA conditions vary widely among 

cultivars, ranging between 1 to 6% O2 and 2 to 7% CO2 (Andre et al., 1980; Escriche et al., 1982; 

Ryall and Lipton, 1979; Saltveit, 1997). Little or no beneficial effect on quality retention can be 

obtained by CA storage when artichoke buds are stored at 0°C (Miccolis and Saltveit, 1988). 

Therefore, no general recommendation can be made for CA storage; studies reported that conditions 

of 2-3% O2 and 3-5% CO2 delay discoloration of bracts and the onset of decay by a few days at 

temperatures around 5°C, while atmospheres below 2% O2, fixed as the fermentation threshold, may 

result in internal blackening of artichokes (Suslow and Cantwell, 1997; 1998). In MAP, the levels of 

O2 and CO2 within a package depend on the interaction between commodity respiration and the 

permeability properties of the packaging film and/or microperforations. Yommi et al. (1996; 2001) 

indicate that packing with HDPE reduced weight loss and extended postharvest life of artichoke 

heads. 

 

 

1.2 POTENTIAL USE OF THE ARTICHOKE FOR THE FRESH-CUT 
PROCESSING 

 

1.2.1 General information on fresh-cut artichokes 

 

Processing of fruit and vegetables has ever had as its principal objective to extend the 

shelf-life for a long time, allowing the consumption even during periods of absence of fresh 

produce. Artichoke heads are traditionally processed as canned (in oil or in brine) or frozen. 

However, fresh-cut vegetables market has grown rapidly in recent years as a result of changes in 
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consumer attitudes. Currently, consumer needs are principally focused on added-value products, in 

terms of quality, convenience, nutritional value and ease of preparation (Colelli and Calabrese, 

2009). For these reasons, there is a real need to find methods for preservation of minimally 

processed food products that can gain widespread acceptance by the industry. 

Artichoke is a very important crop in Southern Italy, but its use is limited because 

trimming is time-consuming and complex. In addition, the edible portion is the inner part of the 

head which is about 15–20% of its fresh weight, and about 50% of the whole head (Lattanzio et al., 

2009).  

The high percentage of discarded plant waste, together with complex and time-consuming 

trimming operation, make artichoke processing as a fresh-cut product desirable. The presentation of 

this vegetable as a minimally processed product, ready to use, would be very convenient for its 

commercialization, reducing transport costs, storage space and preparation time (Yommi et al., 

2001). A potential flow diagram of the operations for fresh-cut artichoke processing is showed in 

Figure 1.4. 

However, fresh-cut artichokes suffer several degradative reactions (especially enzymatic 

and non-enzymatic browning) mainly related to phenolic compounds, which limit their 

marketability and the technological transfer of this process. 

The shelf-life of fresh-cut of artichoke is, in fact, linked with reference to some operation 

listed in the flow diagram, in particular the cooling and temporary storage, the antibrowning 

treatment and the packaging (with particular references to the MAP: Modified Atmosphere 

Packaging).  

Some of these operation have been widely studied in other to find optimal solutions for the 

implementation of a fresh-cut process. 

Few authors studied how to develop the step of antibrowning treatment and packaging in 

order to improve the fresh-cut artichokes. In general, the major enzyme responsible for the 

browning reactions is polyphenol oxidase (PPO), a copper containing enzyme which also catalysis 

the orthohydroxylation of monophenols and the oxidation of o-diphenols to o-quinones (Lee and 

Whitaker, 1995). 

Lattanzio et al. (1989) investigated the use of citric and ascorbic acids to delaying 

browning of stored artichokes heads; more recently, Giménez et al. (2003) and Del Nobile et al. 

(2009) tested ascorbic acid dipping and edible coatings containing citric acid, respectively, on 

minimally processed artichokes. However the use of ascorbic acid and citric acid provides only 

temporary prevention of browning (Özoglu and Bayindirli, 2002). Recently Amodio et al. (2011), in 

a study where different compounds were tested, reported that ascorbic acid had little effect on 

delaying browning of cut artichokes, which could be observed only up to 3 h after cutting, whereas 
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citric acid had a postcutting effect not different from control samples. On the other hand, these 

authors reported that cysteine at 0.5% was the most effective treatment to prevent browning and its 

effectiveness was improved by increasing the pH of the solution from 2.2 to 3. On a further study 

Amodio et al. (2012) observed that fresh-cut artichokes treated with l-cysteine at pH 7 showed best 

appearance and lowest changes in color attributes, due to the higher inhibition of PPO activity. 
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Figure 1.4 – Flow diagram of the operations for fresh-cut artichokes(Colelli, 2010) 
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Non-enzymatic browning reactions are caused by iron-polyphenol complexes: chlorogenic 

acid, the most representative phenolic compound of artichoke heads, in presence of oxygen forms 

dark colored complexes with Fe3+, while the same substrate in anoxic conditions forms colorless 

complexes with Fe2+, but after exposure to air the complex Fe2+ is quickly oxidized to Fe3+ to give 

colored compounds (Lattanzio, 2003). Also, mechanical wounding enhances a diverse array of 

enzymatic pathways, many of which are associated with volatile accumulation, such as ammonia, 

ethanol and acetaldehyde, which leads to darkening of tissues and onset of off-flavors (Salunkhe 

and Do, 1976; Rolle and Chism, 1987). 

The use of modified atmospheres can promote or, otherwise, inhibit this degradative 

reactions, and differences between beneficial and harmful effects of gas mixtures may be small. 

Increased levels of CO2 are used in combination with low O2 concentrations to maintain the visual 

quality of several fresh-cut produce. Carbon dioxide is considered a competitive inhibitor of PPO, 

but increases in ammonia were observed in leafy tissues stored in high CO2 (Cantwell et al., 2010); 

similarly, if the O2 level in the package decreases below the fermentation threshold, anaerobic 

respiration is triggered leading the accumulation of anaerobic metabolites (i.e. ethanol and 

acetaldehyde) and stimulating the growth of some anaerobic pathogens (Oms-Oliu et al., 2009). The 

presence of a very high CO2 concentration (25%) in the storage atmosphere have been proved to be 

deleterious for fresh-cut artichokes (la Zazzera et al., 2012), while only slight beneficial effects were 

observed for lower concentrations (5 and 15%). Therefore, the avoidance of extreme conditions in 

terms of CO2 and O2 concentrations within the package should be the main objective when 

designing a modified atmosphere packaging (MAP) system for fresh-cut artichokes. 

Giménez, (et al. 2002) studied the impact of modified atmosphere packaging (MAP), on 

sensory quality (weight losses, color, texture and sensory acceptability) and on the growth of 

indicator micro-organisms (mesophiles, psychrotrophs, anaerobic micro-organisms, spore formers, 

fecal coliforms, Salmonella and Escherichia coli) in minimally processed artichokes packaged with 

five different films (two PVC and three P-Plus). 

The atmospheres obtained, together with the different permeability to water vapor of the 

films under study, determined the evolution of the visual and microbiological quality of the 

artichokes. 

For most of the batches, no correspondence was found between microbial growth and 

changes in appearance. Those batches where the equilibrium atmosphere was clearly anaerobic 

showed microbial counts below the legally established microbiological limits but also showed a 

rapid loss of sensory quality. On the other hand, some batches with an acceptable sensory evaluation 

had microbial counts higher than those allowed by the legislation. This last situation is particularly 
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dangerous from a health point of view since it allows the growth of micro-organisms (even 

pathogens) although the product may seem to be acceptable for consumption. 

This lack of correspondence constitutes an important point to be attended to on the 

microbiological safety of these foods, since the preservation technologies applied allow the 

prolonging of their sensory characteristics but, at the same time, may favor the growth of micro-

organisms. 

Moreover the final results may be affected by the thermical history of the product as well 

as by the harvest date. It has been reported that time and temperature of storage before cutting 

influenced quality attributes of cut artichokes, but to a different extent depending on the cultivar. 

“Violetto Foggiano” artichokes benefited from pre-cutting low storage temperature (0°C), whereas 

“Catanese” showed physiological injuries on outer bract surfaces, where brown spots occurred. In 

both cases low temperatures during pre-cutting storage (5°C and 0°C) reduced the browning rate of 

the cut surface which maintained a higher L* value, compared to artichokes stored at 12°C. 

Moreover, pre-cutting storage at 12°C resulted in a reduction of quality of artichokes due to growth 

of floral primordial in the form of reddish tissues at the base of the receptacle for both cultivars. 

Management of storage conditions before cutting is therefore critical in fresh-cut processing 

operations of artichokes (Ricci et al. 2013). 

On the same cultivar, Ricci (et al.2013) studied the effect of harvest date on post-cutting. 

quality of artichokes. Heads were harvested from December 2009 to May 2010 in 7 harvest dates 

(for “Violetto”) and from January to April 2010 in 4 harvest dates (for “Catanese”). For both the 

cultivar harvested in February and analyzed after 7 days of storage, the lowest color variation for 

bracts and receptacle was observed compared with the other harvesting date. Visual quality of fresh-

cut quarters decreased with the progress of the season, and for “Violetto foggiano”, with the 

decrease of the antioxidant activity. Total phenolic content and antioxidant activity were different 

among harvest dates for both cultivars studied, and for “Violetto foggiano” showed a significant 

polynomial trend, denoting 2 phases of antioxidant accumulation from December to February and 

then from middle of March to May. The natural decline of plants at the end of production may be 

the reason of the poor quality of cut-artichokes in the last sampling date, and in general, considering 

the average temperatures at harvest, quality of fresh-cut artichokes could be positively affected by 

the lowest temperatures occurring in February. 
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1.3 ANALYTICAL METHODS FOR THE MEASURE OF PHENOLS AND 
ANTIOXIDANT ACTIVITY 

 

1.3.1 Phenols 

 

The most common methods to analyse total phenolic contents is the Folin–Ciocalteu 

method (1927), better known as Folin–Ciocalteu reagent (FCR) or also called Gallic Acid 

Equivalence method (GAE). This method is a colorimetric in vitro assay of phenolic and 

polyphenolic antioxidants based on the reaction with a mixture of phosphomolybdate and 

phosphotungstate (Singleton et al., 1999). 

The F-C reagent is prepared by first dissolving 100 g of sodium tungstate (Na2WO4*2H2O) 

and 25 g of sodium Mo (Na2MoO4*2H2O) in 700 mL of distilled water. Then, the solution is 

acidified with 50 mL of concentrated HCl and 50 mL of 85% phosphoric acid. The acidified 

solution is boiled for 10 h, cooled, and 150 g of Li2SO4*4H2O is added. The resultant intense yellow 

solution is the F-C reagent (Huang et al, 2005; Singleton et al., 1999). Although the chemical nature 

of the F-C reagent has not been elucidated, it is believed to be composed of heteropoly – 

phosphotungstates – molybdates (Huang et al, 2005). Likewise, the exact chemical nature of the F-C 

reaction that leads to blue species [possibly (PMoW11O40)4] is unknown and likely to remain so 

due to its complexity (Singleton et al., 1999). However, it is assumed that the F-C reaction involves 

sequences of reversible one or two electron reduction reactions (Huang et al, 2005; Singleton et al., 

1999; Ainsworth and Gillespie, 2007). From the components of the FC reagent, molybdates are 

more easily reduced than tungstates, and thus it is suggested that most of the electron-transfer 

reactions in the assay are between the reductants and the molybdates. During the F-C assay, the 

reaction between PC and the F-C reagent takes place at a pH of ~ 10, which is reached by adding 

sodium carbonate. Under those basic conditions, dissociation of a phenolic proton leads to the 

formation of a phenolate ion, which is capable to reduce the F-C reagent (Huang et al, 2005; 

Singleton et al., 1999). The intensity of the blue color is than measured spectroscopically at 765 nm.  

The reagent does not only measure phenols, since it reacts with any reducing substance. It 

therefore measures the total reducing capacity of a sample, not just phenolic compounds. This 

reagent is part of the Lowry protein assay, and will also react with some nitrogen-containing 

compounds such as hydroxylamine and guanidine (Ikawa et al., 2003). The reagent has also been 

shown to be reactive towards thiols, many vitamins, the nucleotide base guanine, the trioses 

glyceraldehyde and dihydroxyacetone, and some inorganic ions. Copper complexation increases the 

reactivity of phenols towards this reagent (Everette et al., 2003). Due to these reason Sánchez -

Rangel et al. (2013) proposed a revisited method to simultaneously quantify TPC value and the 
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ascorbic acid reducing activity in plant food extracts, allowing to correct the value of TOC by 

subctraticng the contribution of ascorbic acid. 

One of the problems about measuring total phenols is that of extraction, since exhaustive 

treatment with alcoholic and aqueous-alcholic solvent can still leave behind much tannin and other 

phenolic bound at the cell wall. Measurement of total phenol is therefore often confined in practice 

to the soluble fraction, which after concentration in vacuum, is made up to a standard volume. 

A second problem is that, many different classes of phenol are going to be present in the 

extract and any method of measurement will be a compromise, since each class of phenol is likely 

to react differently with any given color reagent. This is also the reason why direct 

spectrophotometric measurement is usually ruled out, since it is impossible to select only one 

wavelength for such determinations. Spectrophotometry is only applicable if one class of phenol is 

predominant. 

The development of HPLC techniques has to a large extent provided the means of 

quantitatively analysis plant of phenolics, since with HPLC it is now possible to determine very 

accurately the amounts of individual compounds. Although HPLC does not directly provide a 

determination of total phenol, it is often possible to do this by summation.  

The HPLC conditions mainly include the use of C18 reversephased (RP) columns, a binary 

solvent gradient, and diode array detector or tandem mass spectrometry. The mobile phase usually 

consists of an aqueous solution of acid and an organic solvent (acetonitrile or methanol). HPLC-

mass spectrometry (MS) combines the separation of LC with the selectivity and sensitivity of the 

MS detector to permit the identification of individual compounds from the complex matrices 

(Pyrzynska and Sentkowska, 2015). Mass spectrometry (MS) can often be applied directly to a 

small (0.1 mg) sample of phenolic and is especially useful for determining the molecular weight, 

preferably in an apparatus which provides precise mass measurement. In the case of labile or 

involatile phenolics, the method to be preferred is fast atom bombardment (FAB)-MS, where the 

sample is dissolved in glycerol or thioglycerol before measurement. MS and FAB-MS cause 

breakdown of the sample, so that a “fragmentation” pattern is usually obtainable, which will give 

additional structural information. 

 

1.3.2 Antioxidant activity 

 

ABTS is an analytical method that uses a type measure spectrophotometrically to 

determine the antioxidant capacity of a sample. Using a spectrophotometer UV-Vis is measured the 

absorbance of a solution containing the radical ABTS+, generated by oxidation dell'ABST (2,2'-

azinobis (3-etilbenzotiazolin-6-sulfonate), a colorless substance that in a chemical configuration of 
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radical is colored absorbing at characteristic wavelengths of the visible range. The addition to the 

solution of ABTS+ (Figure 1.5 of antioxidant molecules, that may acts transferring or hydrogen or 

an electron, cause the reduction of the radical to form colorless and the discoloration of the reaction 

mixture. This discoloration, proportional to the quantity of antioxidant present, can be measured as 

decrease of absorbance during a fixed period and at a specific wavelength (734 nm). The 

antioxidant capacity is expressed by comparison with the absorbance values measured with known 

amounts of an antioxidant molecule selected as the reference standard, which is usually ascorbic 

acid or Trolox, a cell-permeable, water-soluble derivative of vitamin E, (in this case we speak of 

antioxidant activity TEAC Trolox Equivalent antioxidant Capacity), (Re et al., 1998). 

The measure of the antioxidant based on the use dell'ABTS has the advantage to be simple 

and rapid. Moreover, ABTS allows the measurement of both hydrophilic and lipophilic antioxidants 

in a wide pH range. However, it is necessary to remember that the radical employed (ABTS+) is not 

physiological and is not present in biological systems and often it is highlighted issues of 

repeatability of the measurement due to the reaction kinetics of the different antioxidants involved. 

 

 
Figure 1.5 – ABTS and Oxygen Radical 

 

The FRAP test measures the reducing capacity of antioxidants against the Iron ions. It is a 

method based on the transfer of electrons, in which iron ions pass from Fe3+ to Fe2+. In certain 

conditions of pH (3.6) and with the availability of TPTZ (2,4,6-tris (2-pyridyl) -s-triazine), these 

ions form complexes with different characteristics, in particular the derivative reduced (Fe2+-TPTZ) 

takes on a blue color that has an absorption maximum at 593 nm measured by spectrophotometry 

(Figure 1.6). The reducing ability of an antioxidant can then be measured as a variation in 
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absorbance of the solution containing the oxidant to the wavelength established for comparison with 

the variation relative to a standard (for example Ascorbic acid). 

 

 
Figure 1.6 – TPTZ (2,4,6-tris (2-pyridyl) -s-triazine) 

 

The FRAP test has been created for the measurement of the reducing power of the plasma, 

(Benzie and Strain, 1996) but it was then adapted to test the antioxidant capacity of pure mixtures 

and complex matrices. Since this method allows to evaluate only the reducing capacity through the 

transfer of electrons, completely ignoring the action of antioxidants that act via hydrogen transfer, it 

does not allow to measure the contribution of molecules, such as thiols and proteins that have a role 

antioxidant fundamental in biological fluids (for example blood). The advantage coming from the 

use of this method is that it is one of the most simple, quick and less expensive for the determination 

of antioxidant capacity in vitro. 

The 2,2-diphenyl-1-picrilidrazile (DPPH), Figure 1.7, is a nitrogen radical very stable and 

commercially available, characterized by an intense red-purple coloring, which loses color when 

reduced in the presence of a molecule with antioxidant capacity. Using spectrophotometric 

measurement at 517 nm of the absorbance variation of the DPPH solution after reaction with an 

antioxidant mixture, it is possible to quantify the reducing capacity of the substance tested if it is 

acting with the transfer of hydrogen or if it is acting with the transfer of electrons. The result is 

generally expressed as IC50: the quantity of antioxidant able to reduce of 50% the initial 

concentration of DPPH. 

It is a quick, simple and economical. The limits of this analytical technique are given by 

the possibility that the results of the analysis are distorted in the case in which the molecules under 

consideration absorb in the same range of the wavelength of the DPPH radical or in the presence of 

large molecules that do not sterically bulky arrive to react with the reactive part of the radical. This 

determines that the DPPH reacts with antioxidants up to 1000 times more slowly than peroxyl 

radicals (Borset et al., 1994). 
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Figure 1.7 – DPPH reduction 

 

 

1.4 NOT DESTRUCTIVE QUALITY EVALUATIONS 

 

Generally, for determination of fruits and vegetables maturity index and composition, 

analysis are destructive and involve a considerable amount of manual work and can require 

sophisticated equipment. In recent years, quality and safety are the key factor in modern food 

industry, so researches have been focused on the development of non-destructive techniques 

suitable to increase the number of fruit pieces that can be analyzed, which can be repeated more 

times on the same sample during its physiological evolution, and can allow to achieve real-time 

information (Costa et al., 2009). 

 

1.4.1 Overview of the most common techniques 

 

Optical sensing technologies have been investigated as potential tools for non-destructive 

evaluation and inspection for food quality and safety. In particularly, hyperspectral imaging (or 

imaging spectroscopy) (Sun, Da-Wen, 2010), which is based on two mature technologies of 

imaging and spectroscopy (Sun, Da-Wen, 2008), have been widely studied and developed, resulting 

in many successful applications in the food industry. 

There is also other imaging techniques as Magnetic resonance imaging, Soft X-ray 

imaging, Ultrasound imaging, Thermal imaging and Fluorescence imaging. 

Nuclear magnetic resonance (NMR) is a unique technology that measures the magnetic 

properties of spins that can then be related to the physical or chemical properties of subjects. With 

the NMR technique applying an external magnetic field the physical process of radiation aborbtion 

by the nucleus, whose magnetic moment is not zero, is studied. Detectors receive the NMR signals 
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released as electromagnetic radiation; these signals can then be sent to the computer and be 

converted into the image through data processing. Magnetical Resonance Image (MRI) machines 

make use of the fact that food tissue contains lots of water which gets aligned in a large magnetic 

field. Each water molecule has two hydrogen nuclei or protons. When food is put in a powerful 

magnetic field, the average magnetic moment of many protons becomes aligned with the direction 

of the field. A radio frequency transmitter is briefly turned on, producing a varying electromagnetic 

field. This electromagnetic field has just the right frequency, known as the resonance frequency, to 

be absorbed and flip the spin of the protons in the magnetic field. After the electromagnetic field is 

turned off, the spins of the protons return to thermodynamic equilibrium and the bulk magnetization 

becomes re-aligned with the static magnetic field. During this relaxation, a radio-frequency signal is 

generated and can be measured with receiver coils. Information about the origin of the signal in 3D 

space (Koeckenberger et al., 2004) can be learned by applying additional magnetic fields during the 

scan. A 3D image is compiled from multiple 2D images, which are produced from any plane of 

view. The image can be rotated and manipulated to be better able to detect tiny changes of 

structures within the food object. These fields, generated by passing electric currents through 

gradient coils, make the magnetic field strength vary depending on the position within the magnet. 

Because this makes the frequency of the released radio signal also depend on its origin in a 

predictable manner, the distribution of protons in the food can be mathematically recovered from 

the signal, typically using the inverse Fourier transformation. In the images, each pixel value 

reflects the NMR-signal intensity of a voxel in the measured material, which relates with the 

resonance density and the two main parameters (i.e., relaxation time: T1 and T2). 

MRI shows the image of the object structure making its physical and chemical information 

visible. In brief, the MRI system includes (Mariette, 2004): 

 the magnet and power-supply equipment that can produce a wide range of uniform, stable 

and constant magnetic field; 

 a set of gradient magnetic field coil, a controller and power-driven equipment; 

 a radio-frequency (RF) system; 

 a computer system with large storage capacity for data collection and processing; 

 some auxiliary equipment. 

MRI being a non-invasive technique, find application to retrieve structural information 

from plants and fruits (Gruwel et al., 2013), as for example to study growth and ripening of grapes 

since it allows to obtain the volume and the soluble solids distribution within a cluster (Andaur et 

al., 2004) and for detecting fluid flow (Scheenen et al., 2002; 2007) in typical vascular structures 

such as xylem and phloem. 
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X-ray, also called roentgen ray, is electromagnetic radiation with a wavelength range of 

0.01–10 nm. The photon energy of an X-ray is in the range of 0.1–120 keV, which leads to strong 

penetrability. 

X-ray, similar to other electromagnetic waves, can show the following phenomena: 

reflection, refraction, scattering, interference, diffraction, polarization and absorption. Usually, X-

rays whose photon energy is up to about 10 keV (10–0.10 nm wavelength) are classified as ‘‘soft’’ 

X-rays, and those of 10–120 keV (0.10–0.01 nm wavelength) are ‘‘hard’’ X-rays, due to their 

penetrating abilities. As hard X-rays pollute food, only the soft XRI technique is used in food 

inspection. 

The principle of soft XRI inspection is based on the density of the product and the 

contaminant, as shown in Figure 1.8 (a). As an X-ray penetrates a food product, it loses some of its 

energy. A dense area, such as contaminant, will reduce the energy even further. As the X-ray exits 

the product, it reaches a sensor. The sensor then converts the energy signal into an image of the 

interior of the food product. Foreign matter appears as a darker shade of grey that helps to identify 

foreign contaminants. The soft X-ray inspection system, as shown in Figure 1.8 (b), mainly 

comprises a computer-controlled X-ray generator (i.e. X-ray source tube), a line-scanning sensor for 

X-ray detection, conveying belt, stepping motor, image-acquisition card and computer. As a rapid, 

non-invasive assessment technique, XRI also produces 3D information that can be manipulated 

numerically. 

 

 
Figure 1.8 – Principle of soft X-ray imaging (a) and the soft X-ray inspection system (b), Chen et al., 2013 

 

XRI is relatively cheap to use and simple in accessibility. Unfortunately this technique has 

material restrictions, such as for ferromagnetic metals (Bischof et al., 2007), difficulty to recognize 

objects whose density is similar to that of water and cannot detect hair, paper and plastics. On the 

other side, X-ray is very effective for investigating the internal condition of foods (Morita et al., 



27 
 

2003). X-rays have strong penetration ability, so the image can directly reflect internal defects of 

food and agriculture products, and structural organization changes in quality. 

There are several application on food industry. Mousavi (et al., 2005; 2007) demonstrated 

the capability of an X-ray as a non-destructive technique to characterize the ice-crystal 

microstructure of mycoprotein products after freezing; Mendoza (et al., 2010), studied the shelf-life 

of frozen products, while many applications have been developed for the detection of foreign 

materials in foods (deboned poultry, packaged dry foods and fish bones in fish fillets (Tao et al., 

2001; Kwon et al., 2008; Narvankar et al., 2009; Mery et al.; 2011). 

Ultrasound Imaging implies mechanical waves at frequencies above 20 kHz, which is 

beyond the upper limit of the human auditory acoustic frequency range (viz 20–20000 Hz). They 

are propagated by vibration of the particles in the medium and may be reflected and transmitted 

when they pass from one medium to another (Cho et al. 2003). Detailed information about the 

different physical properties of materials can be acquired through the amount of energy reflected or 

transmitted through the objects depending on their relative acoustic impedances. In addition, the 

time-of-flight and the speed can also indicate a material property or changes in material 

characteristics, since ultrasound velocity depends on the density and the elastic property of the 

medium (Povey et al. 1988). Like light waves, incident ultrasound captures objects, and ultrasound 

energy attenuation differs for the internal structure of an object to produce a different echo, which 

leads to a series of points of light displayed on the screen, that is, the ultrasound image. Primarily, 

the image contrast depends on differences in densities and speeds of the sound, because these 

properties determine the scattering and the reflectivity of tissue. 

Thermal Imaging (TI) is an emerging, non-invasive analytical tool suitable for the food 

industry. The basic principle of TI is that all materials, above the absolute zero temperature (0 K), 

emit IR radiation, which is a band of invisible light with wavelengths of 0.75–100 μm. IR radiation 

can be divided into five regions: near (0.75–2.5 μm), short wave (1.4–3 μm), mid (3–8 μm), long 

wave (>8 μm) and extreme (15–100 μm). 

TI is not only a non-invasive, but also a non-contact system of recording thermal 

distribution by measuring IR radiation emitted by a body surface to produce a pseudo image of the 

temperature distribution of the surface (Arora et al., 2008).  

Thermal images can be obtained using passive or active TI systems. Passive thermography 

refers to TI without applying any external energy to the object; the features of interest are naturally 

at a higher or lower temperature than the background. Active thermography requires the application 

of thermal energy to produce a thermal contrast between the feature of interest and the background.  

TI systems typically comprise the following components: camera, an optical system (e.g., 

focusing lens, collimating lenses, and filters), detector array (e.g., microbolometers), signal 
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processing, and image-processing system. TI does not require an illumination source, but integrated 

systems for active thermography measurements contain a heating or cooling unit to provide a 

thermal differential. In TI cameras, the IR energy emitted from an object under investigation is 

converted into an electrical signal via IR detectors and displayed as a monochrome or color thermal 

image. The image-acquisition speed of the approach may be high enough (e.g., 50–60 images/s) to 

explore rapidly changing thermal conditions (Rahkonen and Jokela, 2003). 

TI, originally developed for military applications and for surveillance in night vision, was 

used in various fields, including medicine, materials science and fire safety. Actually is a system 

suitable also for the food industry, due to their portability, real-time imaging, and non-contact 

temperature-measurement capability (Goedeken et al., 1991; Ibarra et al., 2000; Varith et al., 2003; 

Vereycken et al., 2003; Fuller et al, 1998; Gariepy et al., 1989; Nanni Costa et al., 2010; Wang et 

al., 2006; FIto et al., 2004; Manickavasagan et al., 2006; Manickavasagan et al., 2008; 

Meinlschmidt and Maergner, 2002). 

Limitations and disadvantages of thermography are the price higher than visible-spectrum 

counterparts, the difficulties to interpret accurately when based upon certain objects, specifically 

objects with erratic temperatures, the accuracy of the camera (±2% in most case) that is lower than 

the contact methods and the thermal influence on the test of the ambient. 

Fluorescence is the emission of light by a substance that has absorbed light or other 

electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer 

wavelength, and therefore lower energy, than the absorbed radiation. Fluorescence will disappear 

immediately without the incident light. There are two kinds of fluorescence, which are 

autofluorescence and fluorescence with the help of fluorescent pigment. 

 

1.4.2 Techniques VIS -NIR 

 

Visible and near infrared (VIS-NIR) spectroscopy is widely used for rapid, low-cost and 

non-destructive analysis of inner properties of fruits. The use of VIS-NIR technology have been 

extensively used for prediction of SSC, pH, acidity, phenols and antioxidant activity of fruits and 

vegetables (Cozzolino et al., 2004; 2006; Nicolai et al., 2007). 

Near infrared radiation was discovered by Friedrich Wilhelm Herschel in 1800 (Davies, 

2000) and covers by definition the wavelength range from 780 to 2500 nm. When radiation hits a 

sample, the incident radiation may be reflected, absorbed or transmitted, and the relative 

contribution of each phenomenon depends on the chemical constitution and physical parameters of 

the sample. 
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Reflection is due to three different phenomena. Specular reflection causes gloss, whereas 

external diffuse reflection is induced by rough surfaces. Both only provide information about the 

surface of the sample. Scattering results from multiple refractions at phase changes inside the 

material. The main scattering elements in fruit and vegetables are the cell wall interfaces since they 

induce abrupt changes in refractive index (McGlone et al., 1997), but suspended particles, such as 

starch granules, chloroplasts and mitochondria may also induce scattering caused by diffraction at 

the particle surface where the refractive index is different from that of the surroundings (Il’yasov 

and Krasnikov, 1991). The scattering is also dependent on the size, the shape and microstructure of 

the particles. Scattering may also appear due to heterogeneities, such as pores, openings, capillaries 

that are randomly distributed through the sample. Multiple scattering events largely determine the 

intensity of the scattered light that is emitted (McGlone et al., 1997). The scattering process affects 

the intensity level of the reflected spectrum rather than the shape; the latter is more related to the 

absorption process. 

Most of the absorption bands in the near infrared region are overtone or combination bands 

of the fundamental absorption bands in the infrared region of the electromagnetic spectrum, which 

are due to vibrational and rotational transitions. In large molecules and in complex mixtures, such as 

foods, the multiple bands and the effect of peak-broadening, result in NIR spectra that have a broad 

envelope with few sharp peaks. The spectra are clearly very similar and are dominated by the water 

spectrum with overtone bands of the OH-bonds at 760, 970 and 1450 nm and a combination band at 

1940 nm (Polessello and Giangiacomo, 1981). This similarity is the reason why sophisticated 

multivariate statistical techniques are essential to extract useful information from an NIR spectrum. 

The equipment to perform the NIR analysis is the NIR spectrophotometer that consists of a 

light source (usually a tungsten halogen light bulb), sample presentation accessory, monochromator, 

detector, and optical components, such as lenses, collimators, beam splitters, integrating spheres and 

optical fibers. Spectrophotometers are conveniently classified according to the type of 

monochromator. 

NIR spectroscopy was first used in agricultural applications by Norris (1964) to measure 

moisture in grain. Since then it has been used for rapid analysis of mainly moisture, protein and fat 

content of a wide variety of agricultural and food products (Davies and Grant, 1987; Gunasekaran 

and Irudayaraj, 2001). Early applications in horticulture focused on dry matter content of onions 

(Birth et al., 1985), soluble solids content (SSC) of apples (Bellon-Maurel, 1992) and water content 

of mushrooms (Roy et al., 1993), but then many other applications have followed. As the 

propagation of NIR radiation in fruit and vegetable tissues is affected by their microstructure, it was 

soon discovered that NIR spectroscopy could also be used to measure microstructure-related 

attributes, such as stiffness (Lammertyn et al., 1998), internal damage (Clark et al., 2003a,b), and 
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even sensory attributes (Mehinagic et al., 2004). Recent developments which extend the potential of 

NIR spectroscopy further include multi- and hyperspectral imaging techniques which also provide 

spatial information (Martinsen and Schaare, 1998; Lu, 2003) and time-resolved spectroscopy which 

allows measurement of absorption and scattering processes separately (Cubeddu et al., 2001). 

The increasing importance of NIR spectroscopy in postharvest technology is linked with 

the fact that many manufacturers of on-line grading lines have now implemented NIR systems to 

measure various quality attributes. 

 

1.4.3 Hyperspectral images 

 

Hyperspectral imaging, known also as chemical or spectroscopic imaging, is an emerging 

technique that integrates conventional imaging and spectroscopy to attain both spatial and spectral 

information from an object (Gowen et al., 2007), which are both critical to the detection of food 

safety and to the evaluation of food quality attributes. A typical hyperspectral system consists of a 

light source, a wavelength dispersion device, and detector. The images are acquired over the visible 

and near-infrared (or infrared) wavelengths to specify the complete wavelength spectrum of a 

sample at each point in the imaging plane. These images are then combined and form a three 

dimensional hyperspectral cube, with two dimensions for describing spatial information (X and Y) 

and the third one for spectral information. In this hypercube, each spectral pixel corresponds to a 

spectral signature (or spectrum) of the corresponding spatial region, recording the entire measured 

spectrum of the imaged spatial points (Figure 1.9). Therefore the measured spectrum indicates the 

ability of the sample in absorbing or scattering the exciting light, representing the inherent chemical 

properties of a sample. As a result, the technology provides us with unprecedented detection 

capabilities, which otherwise cannot be achieved with either imaging or spectroscopy alone, 

providing information on where is what (Sun, Da-Wen, 2010). 

When a fruit is exposed to light, the reflected radiation can be measured and recoded as a 

reflectance spectrum. This spectrum is related to chemical composition of the fruit, and spectra 

collected from fruit at different quality levels can therefore be quite different (Elmasry et al., 2007). 

Hyperspectral imaging techniques have received much attention for food quality and safety 

evaluation and inspection. Many approaches and applications have shown the usefulness of 

hyperspectral imaging in the food industry (Sun, Da-Wen, 2008). 
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Figure 1.9 – Hypercube showing the relationship between spectral and spatial dimensions - Chen et al., 2013 

 

Hyperspectral imaging technique has been for soluble solid content, bitter pit, bruise and 

surface defects and contaminations in apple fruit, (Mehl et al., 2004; Peri et al., 2005; Xing et al., 

2005; Nicolaï et al., 2006), for the citrus fruit inspection (Moltó et al., 2010.), to predict the sugar 

content distribution in melons (Sugiyama and Tsuta, 2010), for measuring ripening of tomatoes 

(Polder and van der Heijden, 2010), for quality evaluation of mushroom (Gowen et al., 2010.), to 

detect defects of pickling cucumber (Ariana and Lu, 2010), to measure soluble solid content and 

firmness of strawberries and blueberries (Nagata et al., 2005; Leiva-Valenzuelaa et al., 2013), to 

monitor ripening on peaches and on banana (Lleó et al., 2011; Rajkumar et al, 2012) and to identify 

hidden bruise on kiwifruits (Qianga and Mingjie, 2012). 

Sometime it is necessary quantify the presence of substance and monitor the changes 

(increase or decrease) function of the epoch. Figure 1.11 shows the possibility to analyze the sugar 

distribution in a fruit like melon; the output from of the analysis is a map of the brix grade. The 

concentration of the substance defines univocally a color in the scale of color; so it is possible 

define a scale of color for each degree of Brix degree. 
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Figure 1.10 – RGB and monochromatic images (550 nm, 660 nm and 950 nm) of various mandarins (cv. Clemenules) - 

(Moltó, et al., 2010.) 

 

 
Figure 1.11 – Sugar distribution map for unripe, mature and fully mature melons - (Sugiyama, J., Tsuta, M. 2010) 
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1.5 CHEMIOMETRIC TECHNIQUES 

 

NIRS prediction models relate the spectral information of collective learning samples to 

quality parameters as measured using a reference method. Once developed, the model can be used 

to predict the content of other samples similar to those in the training (or calibration) group. 

Generally to extract relevant information from spectra, mathematical pre-treatments of spectral 

signals are needed, allowing to separate chemical information from merely physical variations (due 

to texture, size, geometry of the particles). In the spectroscopic signals, in facts, unwanted effects 

are normally included, also known as ‘noise’. These have different origins or causes and affect the 

spectrum differently. The components of the instrumentation used to record the spectrum 

(instrumental noise), variations of temperature, humidity or other environmental conditions during 

registration (environmental noise) or variations in the signal due to the nature of the sample can be 

some of the causes of noise. Among most used pretreatments we count "scatter" or scattered 

radiation called multiplicative correction of the effect of scatter, Standard Normal Variate (SNV), 

and Detrend (DT) (Shenk and Westerhaus, 1995a; Heise and Winzen, 2002; Naes et al., 2002; 

Nicolaï et al., 2007). Other pre-treatments are the Derivatives described by Savitzky and Golay 

(1964). Generally, by using the derivative (first and second), the scatter effects of spectra is reduced. 

The first derivative spectrum is the slope at each point of the original spectrum; it has peaks where 

the original has maximum slope, and crosses zero in correspondence of original peaks. The second 

derivative is the slope of the first derivative. It is more similar to the original spectrum in some 

ways, having peaks in roughly the same places, although they are inverted in direction (Naes et al., 

2002). 

Previous studies are advisable before applying techniques of preprocessing, as these may 

remove a fraction of the stored information. 

After signal pretreatment, necessary steps are directed to develop a calibration equation 

that can predict quality parameters of other unknown samples, but with similar characteristics to 

those belonging to the calibration sample (Shenk and Westerhaus, 1995b, 1996, Williams and 

Sobering, 1996). Available techniques are: Principal Component Analysis (PCA), methods of linear 

regressions (belonging to quantitative analysis) that are available for developing a calibration 

(Martens and Naes, 1989; Burns and Ciurczak, 1992, 2001), like Multiple Linear Regression 

(MLR), the Principal Component Regression (PCR) and the Partial Least Squares (PLS) (Shenk and 

Westerhaus, 1995b; Pérez-Marín et al., 2007). 

Qualitative analysis are based on the spectral characteristics of samples and are aimed to 

the development of classification models in response to those characteristics, grouping samples with 

similar spectra, which are separated from other with different spectra (Downey, 1994, 1996). This 
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applications is useful in the quality control of food products to identify unknown samples as for 

instance for distinction between varieties, shape, or dimensions. (Paz et al., 2009a and b; Sánchez et 

al., 2009). 

Most analytical methods relate similarity between the spectral characteristics of a group of 

samples. Such similarity can be expressed based on different tools such as spectral correlation, 

logical operations or calculating distances (Pérez-Marín, 2005). The most common methods of 

classification are: Linear discriminant analysis (LDA), Soft Independent Modelling of Class 

Analogy (SIMCA), and PLS-Discriminant Analysis (PLS-DA) (Naes and Indahl, 1998; 

Vandeginste et al., 1998; Vigneau et al., 2000; Naes et al., 2002). 

 

1.5.1 PCA: Principal Component Analysis 

 

Principal Component Analysis (PCA) is a technique used at any stage of the data 

processing to study the spectra population in order to achieve information on the variables 

(wavelengths) and on the sample distribution and to detect abnormal samples. This technique is 

used to find the principal components (PC's) explaining maximum variability of the samples and use 

them as new coordinate axes. 

Each main component contains different relevance information describing the most 

important source of variation data. 

PCA is used to detect those samples with different behavior, called ‘outliers’, whose 

malfunction can be caused by both physic-chemical and spectroscopic features. Normally the outlier 

detection is based on the distances between the spectra of the various samples in a n-dimensional 

space which is generally, calculated applying the Mahalanobis distance (Shenk and Westerhaus, 

1995b, 1996). Mahalanobis distance is defined by a distance measure based on a set of multivariate 

data (the training data) that are used to describe it and whose Euclidean length varies according to 

the direction in the space in which it is being measured. The equivalent Euclidean length is large in 

the direction (dimension) where the data are spread out and small in the direction in which the data 

are compact. 

A detailed description of possible causes of abnormal spectra, was performed by Williams 

and Norris (2001) which suggested that detection, interpretation and possible elimination of these 

anomalous samples is a critical step in the development of prediction models, due to the great 

influence of their presence on the results. 

These procedures are performed prior to define the collective calibration either for the 

construction of calibration equations (quantitative analysis) or for classification models (qualitative 

analysis). 
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Different methods of linear regressions are available for developing a calibration (Martens 

and Naes, 1989; Burns and Ciurczak, 1992, 2001), the most common methods being the Multiple 

Linear Regression (MLR), the Principal Component Regression (PCR) and the Partial Least Squares 

(PLS) (Shenk and Westerhaus, 1995b; Pérez-Marín et al., 2007). 

 

1.5.2 Quantitative Analysis 

 

Research in science and engineering often involves the use of controllable and/or easy-to-

measure variables (factors) to explain, regulate, or predict the behavior of other variables 

(responses). When the factors are few in number, are not significantly redundant (collinear), and 

have a well-understood relationship to the responses, then multiple linear regression (MLR) can be a 

good way to turn data into information. However, if any of these three conditions breaks down, 

MLR can be inefficient or inappropriate. In such so-called soft science applications, the researcher 

is faced with many variables and ill-understood relationships, and the object is merely to construct a 

good predictive model. 

Partial least squares (PLS) is a method, introduced almost 30 years ago by Wold (et al., 

2001), for constructing predictive models when the factors are many and highly collinear, taking 

into account, for the calculation of these variables, not only spectral information but also the 

reference value of the parameter measured for each sample (Westerhaus et al., 2004). Note that the 

emphasis is on predicting the responses and not necessarily on trying to understand the underlying 

relationship between the variables. 

MLR can be used with many factors; however, if the number of factors gets too large (for 

example, greater than the number of observations), you are likely to get a model that fits the 

sampled data perfectly but that will fail to predict new data well. This phenomenon is called over-

fitting. In such cases, although there are many manifest factors, there may be only a few underlying 

or latent factors that account for most of the variation in the response. The general idea of PLS is to 

try to extract these latent factors, accounting for as much of the manifest factor variation as possible 

while modeling in a good way the responses. For this reason, the acronym PLS has also been taken 

to mean “projection to latent structure”. It should be noted, however, that the term ‘‘latent’’ does not 

have the same technical meaning in the context of PLS as it does for other multivariate techniques. 

In particular, PLS does not yield consistent estimates of what are called ‘‘latent variables’’ in formal 

structural equation modelling (Dykstra, 1983; 1985). 

The extracted factors X-scores are used to predict the Y-scores, and then the predicted Y-

scores are used to construct predictions for the responses. This procedure actually covers various 

techniques, depending on which source of variation is considered most crucial. 
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Interpretation of the relationship between X-data and Y-data (the regression model) is then 

simplified as this relationship is concentrated on the smallest possible number of latent variables. 

The method performs particularly well when the various X-variables express common information, 

i.e., when there is a large amount of correlation, or even co-linearity, which is the case for spectral 

data of intact biological material. PLS regression can be easily extended to simultaneously predict 

several quality attributes. In this case the algorithm is called PLS2 (Næs et al., 2004). 

The use of these techniques presents, among many others, the advantage of not having to 

select the wavelengths with which the model is developed, (Mark and Workman, 1991; Workman, 

1992). As indicated by Shenk and Westerhaus (1995a), the PLS algorithm for food products is more 

accurate and stable on the base of the number of factors selected by cross validation regression 

(Shenk and Westerhaus, 1995a). Cross-validation is an algorithm that selects different groups of 

calibration and validation spectra within a specific population. The procedure consists of dividing 

the collective calibration sample in several groups (depending on the number of samples); once the 

equation is developed each validation group is predicted from other groups. This procedure also 

prevents model overfitting (Shenk and Westerhaus, 1995a; Williams, 2001), which would give poor 

results with external calibration. 

Some statistical indices are used to select the best models for regression model: coefficient 

of correlation for calibration (R), coefficient of determination for calibration (R2) and coefficient of 

determination for cross-validation (r2). In addition, there are the standard error of calibration (SEC) 

which is defined as the standard deviation of residuals (difference between the value provided by 

the reference method and the value estimated by the equation) for the group of calibration 

(Williams, 2001); while the standard error Prediction (SEP) is known as the standard deviation of 

the differences, for a validation group, between the value determined by the reference method and 

the value estimated by NIRS analysis and is the statistical more used to estimate the predictive 

ability of a calibration equation NIRS (Mark and Workman, 1991; Shenk and Westerhaus, 1995b; 

Williams, 2001; Wise et al., 2006). Finally, there is the standard error of cross-validation (SECV) 

which together SEC defines the error of a model of regression. A good model should have a low 

SEC, a low SECV and high determination coefficients, but also a small difference between SEC and 

SECV (Shenk and Westerhaus, 1995b; Williams, 2001). 

Several software packages are available for multivariate calibration. The Unscrambler 

package (http://www.camo.com) it is a menu-driven, very easy to use and offers a range of 

preprocessing techniques. The Grams Suite is a general purpose software package for handling 

spectroscopic data including chemometrics and is distributed by the Thermo Scientific company 

(http://www.thermo.com). The Matlab PLS toolbox of Eigenvector Research 

(software.eigenvector.com) offers the flexibility of Matlab for applications in which programming is 
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required. Many statistical packages, such as SAS (http://www.sas.com) and statistica 

(http://www.statsoft.com) also provide multivariate calibration but are less convenient to use for 

processing spectral data. 

 

1.5.3 Qualitative analysis 

 

Classifying means, in a general sense, to assign an individual (sample) to one or more 

categories based on a set of measurements used to describe or characterize the object itself. From a 

geometrical standpoint, this corresponds to identifying regions in the hyperspace of the variables 

corresponding to the different classes (Marini, 2010). 

Specifically, the term class or category indicates a collection of objects sharing similar 

characteristics; it is very important to highlight that the definition of these characteristics is 

problem-dependent, so that the same set of samples can be grouped in different ways, according to 

the final scope of the modelling. 

Classification methods can be grouped in different ways depending on the properties of 

interest. 

A first fundamental differentiation can be made between those methods which are focused 

on discriminating among different categories (discriminant classification) and those which are rather 

directed towards modelling classes (class-modelling) (Albano et al., 1978). 

The discriminant techniques are focused on the differences between samples coming from 

different classes; the class-modelling methods are based on capturing the similarities among 

samples from the same category. 

Geometrically, the discriminant techniques produce as result hypersurfaces 

(multidimensional surfaces), dividing the variable space in as many regions as the number of 

available categories. The class-modelling methods identifies a volume in the multidimensional 

space enclosing the class, so that if a sample falls within that volume it is accepted by the particular 

category, while if it falls outside, it is rejected by that class model. 

A second distinction is based on the mathematical form of the functional relationship 

representing the classification rules in terms of the measured variables (or, alternatively, on the 

geometrical shape of the decision boundaries in the multidimensional space). The main 

differentiation is made between linear and non-linear methods (that can be subdivided according to 

the kind of non-linearity). 

Lastly, it is possible to further differentiate classification methods, based on whether they 

explicitly assume a probability distribution of the data or not. 
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Starting from similarity between the spectral characteristics of a group of samples, 

classification methods can be applied to discriminate among different groups. Such similarity can be 

expressed based on different tools such as spectral correlation, logical operations or calculating 

distances (Pérez-Marín, 2005). The most common methods of classification are: artificial neural 

networks (ANN), Soft Independent Modelling of Class Analogy (SIMCA), and PLS-Discriminant 

Analysis (PLS-DA) (Naes and Indahl, 1998; Vandeginste et al., 1998; Vigneau et al., 2000; Naes et 

al., 2002). 

LDA and PLS belong to discriminant classification methods, instead SIMCA belong to the 

class-modelling methods. 

Linear discriminant analysis (LDA), is the oldest and most studied supervised pattern 

recognition method. It was originally proposed by Fisher in 1936. It is a linear technique, that is the 

decision boundaries separating the classes in the multidimensional space of the variables are linear 

surfaces (hyperplanes). From a probabilistic standpoint, it is a parametric method, as its underlying 

hypothesis is that, for each category, the data follow a multivariate normal distribution. 

PLS (Partial Least Squares) algorithm was originally introduced to build calibration 

models, and then reformulated to solve the classification problem in terms of a regression equation 

(PLS discriminant analysis, PLS-DA). 

The model seeks to correlate spectral variations (X) with defined classes (Y), trying to 

maximize covariance between the two types of variables. In this type of approach, the variables are 

artificial or fictitious categorical variables ("dummy"), created by assigning the value 0 to the 

sample of category A and the value 1 to the sample of category B (Heise and Winzen, 2002; Naes et 

al., 2002; Kramer et al., 2004). 

When there are only two classes to discriminate PLS1 algorithm can be applied since there 

is one independent variable to each outlet collective learning sample giving a value of 0 or 1. The 

criteria for classification unknown samples in either category will depend on if the predicted value 

is nearer to 0 or to 1, respectively. If more than two classes need to be discriminated, the use of the 

algorithm PLS2 multivariate regression would be advisable. However, this algorithm can be also 

used when there are only two classes (Naes et al., 2002). The significance of the dummy variables 

changes slightly when applying PLS2. In this approach, the independent variable becomes a vector 

of classes, so that each sample has a value of 1 in the class to which it belongs, and a value of 0 for 

the other classes (Vandeginste et al., 1998; Heise and Winzen, 2002; Naes et al., 2002). Meanwhile, 

for the prediction of unknown samples, we obtain a value of the discriminatory variable for each of 

the classes provided, so a value of 1 in the categories represent a perfect assignment thereof, while a 

value of 0 would indicate no such class membership. For the same sample, if the dummy variable 

values used are 0 and 1, the predicted values obtained for each class must give a sum of 1. 
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As PLS is a component-based technique, even when it is used for classification, in the 

model building phase, it is necessary to estimate the optimal complexity in terms of the number of 

latent variables leading to the best results. Usually, this choice is made based on some sort of 

internal or external validation procedure. 

The SIMCA classification (Soft Independent Modelling of Class Analogy), proposed by 

Wold et al. (1976), has been extensively described in the chemiometric literature (Wold et al., 1983; 

Sharaf et al., 1986; Beebe et al., 1998). SIMCA is a method based on disjoint PCA modelling 

realized for each class in the calibration set. Unknown samples are then compared to the class 

models and assigned to classes according to their analogy with the calibration samples. Each class is 

modelled using separate PCA models. A number K of principal components is used to build the 

model. These K components define the inner space, the space of the structure, and the other 

principal components are the outer space, the space of the noise. The SIMCA model is a hyper 

volume in the space of the significant components, delimited by the range of the scores (normal 

range). The sensitivity of a class model is the fraction of the objects belonging to that class accepted 

by the model. The specificity of a model is the fraction of objects belonging to other classes rejected 

by the studied class model. An unknown sample is compared with each group in turn by computing 

two distances: the Euclidean distance from the spectrum to its projection into the model for that 

group (distance from the model) and the Mahalanobis distance from the projected spectrum to the 

group mean (distance within the model), and comparing these distances with thresholds derived 

from the training data. If both distances are less than the threshold, the unknown is a possible 

member of that group. After all the comparisons have been made, the unknown sample may be 

identified as a possible member of none, one, or more than one of the groups. 
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2.1 OBJECTIVE 

 

Nowadays it is increasing the needs to know the quality and safety of the food products. 

These requirements call for on-line detection techniques which have the advantages of be assembled 

in the production line and take place under realistic environment, know early detection of possible 

failures, have permanent monitoring of the conditions and know assessment of conditions at any 

desired time. 

 Hyperspectral imaging is an innovative technique that integrates conventional imaging and 

spectroscopy to attain both spatial and spectral information from an object (Gowen et al., 

2007)..The images are acquired over the visible and near-infrared (or infrared) wavelengths to 

specify the complete wavelength spectrum of a sample at each point in the imaging plane. These 

images are then combined and form a three dimensional hyperspectral cube, with two dimensions 

for describing spatial information (X and Y) and the third one for spectral information. In this 

hypercube, each spectral pixel corresponds to a spectral signature (or spectrum) of the 

corresponding spatial region, recording the entire measured spectrum of the imaged spatial points 

The choice of this type of analysis is dictated by reduction in analysis time and the possibility to 

analyze several attributes on the same sample, also at different times, since it is a non destructive 

method. 

Scope of the present work was to use hyperspectral images of artichoke quarters acquired 

in the VIS-NIR range to classify samples by cultivar (“Violetto” and “Catanese”), by harvest time 

and days of storage and to predict the internal content of phenols and antioxidant activity in 

artichoke “Violetto”. 

  

 

2.2 CULTIVAR CLASSIFICATION: “VIOLETTO” vs “CATANESE” 

 

2.2.1 Experimental design 

 

Artichoke heads were harvested from December to May (7 harvest dates) for “Violetto 

foggiano” and from January to April for “Catanese” (4 harvest dates) from commercial fields 

located respectively in the area of San Ferdinando di Puglia and Brindisi (Puglia Region, Italy). 

Harvest dates during years 2009/10, together with data on mean temperatures (°C) and days of 

rainfall (in days) during the 15 days preceding harvest are reported in Table 2.1. At the first harvest 

20 plants for each field were randomly-chosen and labelled in order to reduce field variability 
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among different harvest dates. Artichokes were directly transported to the postharvest laboratory at 

the University of Foggia and processed on the same day. 

Artichokes were processed in a cold room 10 °C under suitable hygienic conditions. Heads 

were hand trimmed using sharp stainless steel knives in order to remove external bracts, leaves and 

stalks and then washed in a NaClO solution (0.01%, w/w of free chlorine) to eliminate soil and 

insect residues. After washing, head trimming was completed in a cold room by further removal of 

external greener and tougher bracts (inedible fraction) so as to retain just the inner most tender 

bracts. The upper portion of artichokes was removed and then hearts were cut into quarters and 

immersed for 1 minute in a 0.01 % NaOCl solution, rinsed with tap water and dried with paper. 

 

Table 2.1 – Harvest dates, mean temperature (°C) and rainfall (in days) recorded during 15 days before harvest for 

“Violetto foggiano” and “Catanese” artichokes. 

 

Cultivar Harvest	dates	(2009/10) Temperature	(°C) Rainfall	(Days)
Violetto	foggiano Dec‐15 10 5

Jan‐18 8 4
Feb‐3 6 4
Mar‐1 12 6
Mar‐15 9 5
Apr‐21 14 4
May‐3 19 0

Catanese Jan‐11 11 4
Feb‐1 8 5

Mar‐17 10 8
Apr‐21 14 5  

 

Each artichoke replicate was cut into quarters and then placed in plastic trays and stored in 

humidified flow of air at 5 °C. One quarter for each artichoke was analyzed during storage at day 0, 

day 2, day 5 and day 7. 

 

2.2.2 Hyperspectral image acquisition 

 

Hyperspectral images were acquired using a hyperspectral scanner (version 1.4, DV srl, 

Padova, Italy) consisting in a charge-coupled device (CCD), a 12-bit camera connected to a 

spectrograph (ImSpector V10, Specim Ltd., Haarlem, The Netherlands) coupled with a standard C-

mount f16 mm lens (Figure 2.1). The optics of this imaging system allowed to study the sample 

properties associated to the spectral range 400-1000 nm of reflectance with 5 nm of resolution. The 

light source consisted of a 150W halogen lamp (EKE 21V150 W, Japan) mounted at a 45°angle 
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respect to the horizontal plane, and of an optic fibre that transfer the radiation to a linear light 

diffuser. The camera spectrograph assembly was supplied with a stepper motor to move the unit 

through the field of view of the camera and line-by-line scan the sample (Figure 2.2). The spectral 

images were collected in a dark room where only the halogen light source was used The 

hyperspectral images were firstly corrected with a white and a dark reference. The dark reference 

was used to remove the effect of dark current of the CCD detectors, which are thermally sensitive. 

 

 
Figure 2.1 – Hyperspectral scanner (version 1.4, DV srl, Padova, Italy)

 

Two scan per samples, were acquired, the first for the external surfaces of the outer bracts 

and the second for the cut surfaces of all artichoke quarters. On the external surfaces of each 

artichoke quarter (per replicate) a region of interest corresponding to the maximum inscribed 

rectangle was manually selected, while for the cutting surfaces, two individual regions, 

corresponding to the receptacle and the cut inner bracts were selected. 
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Figure 2.2 – Spectral Scanner acquisition process
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2.2.3 Data analysis 

 

Spectral data were analyzed using the Unscrambler packing software version X (CAMO 

ASA, Oslo, Norway) and PLS toolbox in Matlab (version 2014a). 

Spectral data set included 736 samples (400 for “Violetto” and 336 for “Catanese”). 

All the reflectance measurements were firstly transformed to absorbance values using 

log(1/R) according to the law of Lambert-Beer. Then different pretreatments were applied, 

smoothing of second polynomial order, Multiplicative Scatter Correction (MSC), II derivative and 

Mean Center. 

The spectra were firstly analyzed with a PCA (Principal component analysis) for a first 

exploration of the data and to identify and eliminate defective spectral outliers (Massart et al., 1998; 

Naes et al., 2002). 

As for classification, SIMCA and PLS-DA analysis were carried out using the SIMCA 

(Soft Independent Modelling of Class Analogy), defining a Training set of 308 samples for 

“Violetto” and 244 for “Catanese” and a Test set of 92 samples for “Violetto” and 76 for 

“Catanese”. The external set of data was used to test the model in prediction. 

The SIMCA model was developed by building PCA models for each “variety”, which were 

subsequently used to classify external spectra. The PCA scores represent the weighted sums of the 

original variables without significant loss of useful information, whereas loadings (weighting 

coefficients) allow to identify major variables responsible for specific features appearing in the 

scores. 

The PLS-DA model was developed applying the PLS2 algorithm- Briefly, PLS-DA uses a 

training set to develop a qualitative prediction model which may subsequently be applied for the 

classification of new unknown samples. This model seeks to correlate spectral variations (X) with 

defined classes (Y), attempting to maximise the covariance between the two types of variable. In 

this type of approach, the Y variables used are not continuous, as they are in quantitative analysis, 

but rather categorical “dummy” variables created by assigning different values to the different 

classes to be distinguished (Naes et al., 2002). Spectral variations were correlated with the 2 

established categories, corresponding to the two varieties. All models were constructed using full 

cross-validation (leave-one-out), suitable for small sample sets (Naes et al., 2002). 

The goodness of a model can be defined with the evaluation of the capacity to individuate, 

among different samples or classes of samples the ones with the expected characteristics for the 

model class; this evaluation was driven by two parameters: sensibility and specificity. These 

parameters can be measured physically as probabilistic percentage and they are not complementary 

and there is no proportion between them. 
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Sensibility of a test is the probability that the sample, effectively with the characteristic 

awaited, is positive to the test. 

Specificity of a test is the probability that the sample, effectively without the characteristic 

awaited, is negative to the test. 

If we define: 

 A: samples belonging to class A and correctly classified in class A; 

 B: samples belonging to class B and incorrectly classified in class A; 

 C: samples belonging to class A but incorrectly classified in class B; 

 D: samples of class B correctly not classified in class A. 

Sensibility = A/(A+C). 

Specificity = 1-B/(B+D). 

Another important aspect or characteristic that confirms that the model is robust is the 

accuracy of a measurement: the degree of closeness of measurements of a quantity to that quantity's 

true value.  

In our analysis the prediction error of a calibration model is defined as the root mean 

square error for calibration (RMSEC), cross validation (RMSECV) when cross validation is used 

and for prediction (RMSEP) when external validation is used (Naes et al., 2004). 
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with np the number of validated objects, and ŷi and yi the predicted and measured value of the ith 

observation in the test set, respectively. This value gives the average uncertainty that can be 

expected for predictions of future samples. The number of latent variables in the calibration model 

is typically determined as that which minimizes the RMSECV or RMSEP. 

Another useful statistic parameter is the R2 value. In the analysis performed it essentially 

represents the proportion of explained variance of the response variable in de calibration (R2
c) or 

validation (R2
v) set. 

Calibration models are called robust when the prediction accuracy is relatively insensitive 

towards unknown changes of external factors. 
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2.2.4 PCA explorative analysis 

 

The spectra were pretreated applying MSC, and then the data were mean centered before 

PCA analysis. PCA model with three components described 97.39% of the variation in the 

experimental data (PC1: 76.42%; PC2: 16.21%; PC3: 4.85%). Figure 2.3. shows the plot of PCA 

scores using the first two components. It can be observed that a high degree of overlapping between 

the two varieties is present, with a tendency for Catanese samples to occupy the left part of PC1. 
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Figure 2.3 – PCA analysis based on 2 PCs on spectra of “Violetto” and “Catanese” cultivars on the spectra 

preprocessed with the Second Derivative and the Mean Center 

 

Figure 2.4 reports the scores of the first three principal components. The dashed line 

divides “Violetto” from “Catanese” samples (on the right). Continuous lines define the harvest 

times (7 for “Violetto” and 4 for “Catanese”). There is no clear differentiation of the spectra, but it 

is evident how some samples are grouped, particularly for days of storage. 
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Figure 2.4 – Scores of PC1, PC2 and PC3 for all the samples

 

When using a different signal pretreatment prior to PCA analysis, some differentiation 

between the two varieties becomes clearer Figure 2.5 shows the results of the PCA made on spectra 

transformed using the second derivative using 4 principal components, and the scores of PC1 vs 

PC4 are here reported. In spite of the high overlapping, “Violetto” samples (red points), takes 

mainly positive values and “Catanese” (green points), takes mainly negative ones on PC4. 

In Figure 2.6 the loadings on PC4 suggest a modification (which appears in the form of 

sign changes in the contribution to PC4) of the absorption band in the range 650-900 nm with a 

positive contribution peak (at 720 nm) surrounded by two negative ones. Looking at the signal 

(Figure 2.7a) we can see that a big peak of different shape is present for the two cultivars, 

suggesting that the main difference, which appears as a sign change in the loadings, is related to a 

different convolution effect of the peaks underlying the highlighted absorption area. In Figure 2.7b 

the zoom allows to observe the different structure of the peaks for the two cultivars: “Violetto” 

appears to have a sharper absorption peak, with an additional absorption after 750 nm. 
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Figure 2.5 – PCA analysis based on 4 PCs on spectra of “Violetto” and “Catanese” cultivars on the spectra 

preprocessed with the Second Derivative and the Mean Center 
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Figure 2.6 – Loadings on PC4 by wavelength 
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Figure 2.7a – Comparison of signal for the “Violetto” 

 and “Catanese” cultivar 
Figure 2.7b – Zoom Figure 2.7a for the range  

650-800 nm 

 

 

2.2.5 SIMCA Classification 

 

In order to evaluate the classification of the two cultivars on the basis of the Vis-NIR 

spectrum, a two-class Soft Independent Model of Class Analogies (SIMCA) was computed. The 

two classes were modeled separately by computing a PCA model, choosing the dimensionality on 

the basis of the best sensitivity and specificity in cross-validation on a training set. Prediction 

capability was evaluated in the same terms on a set of left-out samples, selected in order to represent 

the most of the variability of the complete dataset. 

“Violetto” PCA model was built considering nine Principal Components, while “Catanese” 

was modeled by means of six Principal Components. Figures 2.8 and 2.9 show the distances to the 

model for “Violetto” and “Catanese” class respectively. The results in terms of sensitivity and 

specificity are reported in Table 2.2 for the training set and 2.3 for the external test set: the 

sensitivity for each class is satisfactory, but low specificity is quite low, especially for “Catanese” 

vs. “Violetto”. 
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Figure 2.8 – “Violetto” PCA model: 9PC
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Figure 2.9 – Catanese PCA model: 6PC
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Table 2.2 – SIMCA results of classification between “Violetto” and “Catanese” samples of the training set 

TRAINING SET 
Real class: 

Violetto Catanese 

Predict as: 
Violetto 291 176 
Catanese 77 231 

 TOT 308 244 
SENS Violetto: 95% SPEC Violetto vs Catanese: 68% 

SENS Catanese: 95% SPEC Catanese vs Violetto: 43% 

 

Table 2.3 –SIMCA results of classification between “Violetto” and “Catanese” samples of the external test set 

TEST SET 
Real class: 

Violetto Catanese 

Predict as: 
Violetto 90 54 
Catanese 22 70 

 TOT 92 76 
SENS Violetto: 98 % SPEC Violetto vs Catanese: 71% 

SENS Catanese: 92% SPEC Catanese vs Violetto: 41% 

 

These results are confirmed in prediction, when the left-out samples are projected onto 

each model (Figures 2.10 and 2.11 and Table 2.2 and 2.3). 
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Figure 2.10 – Result of prediction of external set plotted on the model of “Violetto”. Red curve denote the 

threshold of classification between the two cultivars. 
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Figure 2.11 – Result of prediction of external set plotted on the model of “Catanese”. Red curve denote the 

threshold of classification between the two cultivars. 
 

SIMCA results show that, to some extent, it is possible to classify the two varieties, 

although this method shows a great degree of overlapping of the two. The great differences in terms 

of specificity suggest that the variability of the signal Vis-NIR recorded on the internal part of 

“Catanese” artichoke is included in the variability of the signal recorded on the internal part of 

“Violetto” artichoke. To evaluate which are the spectral regions mainly responsible for the 

differentiation of “Violetto” samples from the “Catanese” model, it is possible to focus the attention 

on the PCA model built on “Catanese” artichokes and evaluate the contributions to Q (Distance 

from a class model) and T2(Distance in score space inside class model) distances both for class 

samples and for the “Violetto” projected samples. 

Figure 2.12 and 2.13 show in black the profiles of the contributions to the distance Q and 

T2 for all samples of “Violetto” projected on the PCA model calculated on “Catanese”. The same 

contribution profiles can be computed for “Catanese” samples projected onto the model (test set): 

these samples should represent the variability “compatible” with the model, therefore they can be 

used as an evaluation of random variability for contributions. Yellow and red lines represent the 

percentile limits, corresponding respectively to 95 and 99% confidence limit. It can be observed 

(especially for Q distance) that almost all samples present significant contribution in the range 
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between 630 and 800 nm, which corresponds to the loadings of PC4 already analyzed for the PCA 

global model previously assessed. 

 

0 495 595 695 795 895 995
-3

-2

-1

0

1

2

3
x 10

-3

wavelength

Q
 c

o
n

tr
ib

u
ti

o
n

 
Figure 2.12 – Q distance for all samples of “Violetto” projected on the PCA model calculated on “Catanese” 
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Figure 2.13 – T2 distance for all samples of “Violetto” projected on the PCA model calculated on “Catanese” 
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2.2.6 PLS-DA Classification 

 

The same datasets analyzed with SIMCA whit the same chosen pretreatment where 

elaborated also by means of a Discriminant Analysis method, Partial Least Squares – Discriminant 

Analysis. Since SIMCA focuses on the variability which, independently, characterizes each class, it 

is possible that specificity results might be poor when the two classes have very similar variability, 

such as in the case of the two cultivars here discussed. A discriminant method, which exalts the 

sources of differentiation among the classes, might therefore be more suitable for the purpose of 

distinguishing the two cultivars. 

Cross-Validation results for Training set, as showed in Figure 2.14 are very satisfactory. In 

the figure the blu line define all the predict values for all the samples assigned to “Violetto” grade 

and the green one the one to “Catanese”. 
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Figure 2.14 – Cross-validation results for training set (4LV)

 

Applying the rules of assignment based on the biggest value, the result are reported in 

Tables 2.4 and 2.5: 
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Table 2.4 – PLS-DA result of classification between “Violetto” and “Catanese” samples of the training set 

TRAINING SET – FIT 
Real class: 

Violetto Catanese 

Predict as: 
Violetto 297 0 
Catanese 11 244 

 TOT 308 244 
SENS Violetto: 96% SPEC Violetto vs Catanese: 96% 

SENS Catanese: 100% SPEC Catanese vs Violetto: 100% 

 

Table 2.5 – PLS-DA results of classification between “Violetto” and “Catanese” samples of the training set in cross 

validation 

TRAINING SET – CV 
Real class: 

Violetto Catanese 

Predict as: 
Violetto 284 0 
Catanese 24 244 

 TOT 308 244 
SENS Violetto: 92% SPEC Violetto vs Catanese: 90% 

SENS Catanese: 100% SPEC Catanese vs Violetto: 100% 

 

These results are confirmed in prediction (Table 2.6): 

 

Table 2.6 – PLS-DA results of classification between “Violetto” and “Catanese” samples of the external test set 

TEST SET 
Real class: 

Violetto Catanese 

Predict as: 
Violetto 92 0
Catanese 0 76

 TOT 92 76
SENS Violetto: 100% SPEC Violetto vs Catanese: 100% 

SENS Catanese: 100% SPEC Catanese vs Violetto: 100% 

 

The results show a good discrimination of the two classes and a reduced overlap (good 

specificity) of each one towards the other. These findings are confirmed in prediction on the left-out 

samples in the test set: for both classes, sensitivity and specificity reach 100%, as shown in Figure 

2.15.  

By evaluating the regression coefficients and Variance Importance in Prediction (VIP) 

scores, shown in Figure 2.16, it is possible evaluate which part of the signal is more relevant for the 

discrimination among the two classes. It is clear that the main area is around 700 nm and is made by 

four peaks: 680 nm, 705 nm, 730 nm and 755 nm. Due to the fact that we are analyzing a second 

derivative of the original signal, the peaks must be considered altogether and correspond to changes 

of shape of original signal. 
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Figure 2.15 – Prediction test set
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Figure 2.16 – Regression coefficients and VIP scores by wavelength
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2.2.7 Conclusions 

 

In this experimental classification example, the ability of the Vis-NIR signal acquired on 

the internal part of artichokes to distinguish two cultivar (“Violetto” and “Catanese”) has been 

evaluated. After a preliminary exploration of the data, which allowed understanding the variability 

of the two sets and suggested the use of a derivative pretreatment to enhance the differentiation, two 

classification methods were tested: a class-modeling / pattern recognition method (SIMCA) and a 

discriminating method (PLS-DA). The results show that, for this set of data, the discriminant 

approach is superior to the class-modeling, mostly because of the two classes having a very similar 

general profile of the spectrum and one of them (“Violetto”) having an inner variability which 

encloses the one of the other class (“Catanese”). When forcing the discrimination by means of PLS-

DA, the differences between the two classes are exalted, and the classification is obtained with very 

interesting results. Since the region of the spectrum all the methods insist to find as most important 

for the differentiation corresponds to an absorption of the red portion of the Vis region, the main 

distinction between the two varieties must be due to a different shade of green. 

 

 

2.3 CLASSIFICATION BY HARVEST TIMES AND DAYS OF STORAGE 

FOR EACH CULTIVAR 

 

2.3.1 Classification Models 

 

The same spectra of “Violetto” used in the paragraph 2.2 were used for the classification by 

harvest times and days of storage, after cutting.  

Classification models for harvest times were constructed comparing 2 classification 

methods: SIMCA (Soft Independent Modelling of Class Analogy) using the Unscrambler X 

software, and PLS-DA (Partial least squares discriminant analysis) using the toolbox in Matlab 

(version 2014a). A training set (308 spectra) and an external test set (92) were used for both the 

analysis. 

For the classification by days of storage only the PLS-DA model was used. The analysis 

was made on 4 classes: day 0, day 2, day 5 and day 7 after harvest time, using 75 samples for each 

day as Training set and 25 samples for Test set. 
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2.3.2 Classification by harvest times: results 

 

SIMCA (Soft Independent Modelling of Class Analogy) 

The SIMCA model was developed by building PCA models for each harvest time for all 

the samples. In order to find the mathematical transformation which best allowed to differentiate 

among spectra from different harvest dates, different pre-treatment methods were tested. 

Transformed data were used to build PCA models. After data pre-treatments it was found that the 

Smooting (Second Derivative) plus MSC allowed the complete separation of the PC1 score among 

harvest dates. 

 

Table 2.7 – SIMCA classification results by harvest times on the training and test set. 

Training 
set 

TOT 
Predicted Value 

Specificity 
HT1  HT2 HT3 HT4 HT5 HT6 HT7

O
b
se
rv
e
d
 d
at
a 

HT1 10  10  5 10 7 0 0 0 95 

HT2 5  0  5 1 3 0 1 0 30 

HT3 9  3  7 9 3 0 0 1 71 

HT4 11  0  11 4 11 0 8 9 41 

HT5 13  0  0 0 0 13 0 0 100 

HT6 13  0  13 3 12 0 13 11 69 

HT7 14  0  13 1 13 0 10 14 66 

Test set  TOT 
Predicted Value 

Specificity 
HT1  HT2 HT3 HT4 HT5 HT6 HT7

O
b
se
rv
e
d
 d
at
a 

HT1 3  0  3 1 3 0 3 3 100 

HT2 2  0  1 1 1 1 1 1 43 

HT3 3  0  0 0 0 3 0 0 71 

HT4 3  0  0 0 0 3 0 0 64 

HT5 5  0  0 0 0 5 0 0 100 

HT6 5  0  4 1 3 1 4 3 70 

HT7 4  0  4 1 4 0 4 3 71 
 

Comparing the predicted value with the observed one, sensibility and specificity for each 

class can be observed by table (Table 2.7) sensibility is 100% for all the class. Specificity was high 

for HT1 (95% in Training set and 100% in Test set) and HT5 (100% in Training set and 100% in 

Test set) and particularly low for HT2 (30% in Training set and 43% in Test set), since its samples 

were also predicted in HT3, HT4 and HT7 and for HT4, which was also confused with HT2, HT3, 

HT6 and HT7 (Table FFF). Specificity for HT 3, HT6 and 7 ranged between 66 and 71% with 

similar value in Training set and Test set. 
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PLS-DA model 

The PLS-DA model was developed applying the PLS2 algorithm and using the toolbox in 

Matlab (version 2014a). Briefly, PLS-DA uses a training set to develop a qualitative prediction 

model which may subsequently be applied for the classification of new unknown samples. This 

model seeks to correlate spectral variations (X) with defined classes (Y), attempting to maximise the 

covariance between the two types of variable. In this type of approach, the Y variables used are not 

continuous, as they are in quantitative analysis, but rather categorical “dummy” variables created by 

assigning different values to the different classes to be distinguished (Naes et al., 2002). Particularly 

The independent variable becomes a vector of classes, so that each sample has a value of 1 in the 

class to which it belongs, and a value of 0 for the other classes (Vandeginste et al., 1998; Heise and 

Winzen, 2002; Naes et al., 2002). Meanwhile, for the prediction of unknown samples, we obtain a 

value of the discriminatory variable for each of the classes provided, so a value of 1 in the 

categories represent a perfect assignment thereof, while a value of 0 would indicate no such class 

membership. Spectral variations were correlated with the 7 established categories.  

In the Table 2.8 are shown the result for the calibration model using a Training set of 73 

samples and the prediction model using a Test set of 25 samples. On the right side the values of 

Sensibility and Specificity are reported. 

 

Table 2.8 – PLS-DA classification results by harvest times on the training and test set. 

Training set  CV 
Predicted Value  TOT Global 

HT1  HT2  HT3 HT4 HT5 HT6 HT7    SENS  SPEC 

O
b
se
rv
ed

 d
a
ta
  HT1 10  0  0 0 0 0 0 10 100  100

HT2 0  3  0 1 0 1 0 5 60  99

HT3 0  0  9 0 0 0 0 9 100  100

HT4 0  0  0 10 0 0 0 10 100  98

HT5 0  0  0 0 13 0 0 13 100  100

HT6 0  1  0 0 0 11 1 13 85  98

HT7 0  0  0 0 0 0 13 13 100  98

TOTAL     73 Non error rate = 92 

Test set  CV 
Predicted Value  TOT Global 

HT1  HT2  HT3 HT4 HT5 HT6 HT7    SENS  SPEC 

O
b
se
rv
ed

 d
a
ta
  HT1 3  0  0 0 0 0 0 3 100  95

HT2 0  1  0 0 0 1 0 2 50  100

HT3 0  0  3 0 0 0 0 3 100  100

HT4 1  0  0 1 0 1 0 3 33  100

HT5 0  0  0 0 5 0 0 5 100  100

HT6 0  0  0 0 0 5 0 5 100  85

HT7 0  0  0 0 0 1 3 4 75  100

TOTAL     25 Non error rate = 80 
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It is evident how the Sensibility is high (100%) for all harvest times, except HT2 and HT6, 

when values of 60 and 85%, are respectively obtained However for the test set 100% of sensibility 

is observed only for HT1, HT3, HT5 and HT6 and a very low value of 33% is observed for HT5, 

followed by HT 2 (50%) and HT7 (75%).Specificity was a value generally high, above all for HT1, 

HT3, and HT5 in Training set and in Test set, generally higher than 95% except than for the HT6 in 

the test set when a value of 85% has been obtained. 

The best result for Sensibility and Specificity is carried out by HT3 and HT5 that confirm 

the 100% of the value in Training and Test set. 

Another parameter that can be calculated for the PLS-DA is the “Non Error Rate” that is 

the average of the sensibility calculated over the classes. This calculation was not assessed on 

SIMCA since in SIMCA the same sample could be assigned to more than one class each time. In 

Training test the “Non Error Rate” is 92%, instead in the Test set is 80% . 

The discussed value recorded in the Table 2.8, are plotted in the diagram of 2.17 and 2.18 

were is possible to see graphically what discussed. 

 

 
Figure 2.17 – PLS-DA classification results by harvest times on the training set. 
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Figure 2.18 – PLS-DA classification results by harvest times on the test set

 

2.3.3 Conclusion 

 

Comparing the result coming from the analysis made with SIMCA and PLS model, it is 

evident how the PLS-DA is the most performing method for this application. Both model gave 

100% of sensibility and Specificity for HT5 and few point percentage less for the HT1 for 

specificity; SIMCA allowed to obtain always 100 % of sensibility but generally with a very low 

specificity; PLS-DA on the other side gave higher values for specificity compared to sensibility. It 

should be noticed that while PLS-DA is a true discriminating method, always classifying one 

sample in one and only one class, SIMCA is here used in its class modelling original formulation. 

Therefore, SIMCA model can, and do assign one sample to more classes which can have similar 

variability, thus giving poor specificity values. 

.  

2.3.4 Classification by days of storage: results 

 

In the table 2.9 classification results are shown. It is evident how the highest sensibility and 

specificity of the training set was obtained for day 0.  

Concerning Day 2, 5 and 7, we find specificity values higher than the sensibility for both 

Training and Test set. Moreover for class 5 days the lowest value of sensibility were found for both 
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training (55%) and test set (52%), with most of the sample being classified in class 7, and some in 

class 2. This confusion between class 5 and 7 is not necessary due to the low power of classification 

of the model, but is possible that samples after 5 days were very similar to samples after 7 days. 

Intermediate value in Training set and Test set are recorded for day 2 and 7. Generally for this 

classification a “Non Error Rate” of 74% and 79% was obtained, for the training set and the test set, 

respectively. 

 

Table 2.9 – PLS-DA classification results by days of storage on training an test set (4 classes). 

Training set  CV 

Predicted 
Value  TOT 

Global 

0  2  5  7  SENS  SPEC 

O
b
se
rv
ed

 

d
a
ta
 

0  72 3 0 2 77 94 91 

2  18 50 5 4 77 65 92 

5  0 10 42 25 77 55 92 

7  2 5 13 57 77 74 87 

TOTAL     308 Non error rate = 72 

Test set  CV 

Predicted 
Value  TOT 

Global 

0  2  5  7  SENS  SPEC 

O
b
se
rv
ed

 

d
a
ta
 

0  23 0 0 0 23 100 96 

2  3 18 1 1 23 78 98 

5  0 4 12 7 23 52 99 

7  0 1 2 20 23 87 97 

TOTAL     92 Non error rate = 79 

 

Standing to these consideration a second analysis was aimed to reduce the number of 

classes to 3, by grouping day 5 and 7 in one class. From the result carried out with these three 

classes it is evident how the sensibility and specificity for the days higher than 5 increased in 

Training and Test set. The classification for samples (Table 2.10) at day 0 maintained the highest 

values in Training set (sensibility 95% and specificity 95%) and Test set (sensibility 96% and 

specificity 96%), whereas as before, the worst results were obtained for day 2 in Training set 

(sensibility 62% and specificity 97%) and Test set (sensibility 74% and specificity 98%). Most of 

these samples for the training set were classified as class >5 (19) and some as class day 0 (10). 

The results can be explained by the fact that the event of cutting has a strong impact soon 

after day 0 and that there are less differences due to the time after cutting (from 2 to 7 days).  
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Specificity values are higher than sensibility for all the classes in Training and Test set and 

the “Non Error Rate” increased compared to the classification based on 4 classis to 84 and 87% for 

training and test set, respectively. 

 

Table 2.10 – Classification by days of storage with PLS-DA model (3 classes) 

Training set  CV 

Predicted 
Value  TOT

Globali 

0  2  5  SENS  SPEC 
O
b
se
rv
ed

 

d
a
ta
  0  73 3 1 77 95 95 

2  10 48 19 77 62 97 

> 5  1 5 148 154 96 87 

TOTAL  308 Non error rate = 84 

Test set  CV 

Predicted 
Value  TOT

Globali 

0  2  5  SENS  SPEC 

O
b
se
rv
ed

 

d
a
ta
  0  22 1 0 23 96 96 

2  3 17 3 23 74 98 

> 5  0 4 42 46 91 99 

TOTAL     92 Non error rate = 87 

 

 

2.3.5 Conclusion 

 

For the classification by days of storage the PLS-DA model has for all the classes high 

value of specificity, and for some classes low values of sensibility. Particularly in the model with 4 

classes lower value were obtained for day 2 (65% for the Training set and 78 for the Test set), and 

day 5 (55% in the Training set 55 and 52% in the Test set). For results with 3 classes lower values 

were obtained for day2 (62% in the Training set and 74% in the Test set), indicating at the same 

time that eventually the time after cutting is not impacting to much artichoke quality and spectra-

than 95% except for the day7 and days >5 in Training set. For both models the best value of 

sensibility and specificity are recorded for day 0: model with 4 classes, sensibility 94% and 

specificity 91% in Training set and sensibility 100% and specificity 96% in Test set; model with 3 

classes, sensibility and specificity 95% in Training set and sensibility and specificity 96% in Test 

set. 

These results suggest that is possible to discriminate samples just cut from samples cut and 

stored for some days, but that is more difficult to exactly separate samples depending on the days of 

storage. Most likely this is not due to a low efficiency of the model but to the changing proprieties 
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of the samples that are not so dissimilar between 2 and 7 days of storage, but becoming more 

evident with the passing of the time.  

As indicated by the “Non Error Rate”, the model performance improved, in fact, reducing 

the number of classed from 4 to 3. 

 

 

2.4 PREDICTION OF THE CONTENT OF PHENOLS AND 

ANTIOXIDANT ACTIVITY IN ARTICHOKE “VIOLETTO” 

 

The same spectral data set of “Violetto” artichoke utilized for the classification have been 

used with the intent to build a model able to predict the content of phenols and antioxidant activity. 

Spectral data were analysed using the Unscrambler packing software version X (CAMO 

ASA, Oslo, Norway). All the reflectance measurements were firstly transformed to absorbance 

values using log(1/R) according to the law of Lambert-Beer and then spectra were pre-treated by 

different mathematical methods: Smoothing, Normalization, Multiple Scatter Correction, Noise, 

Norris Derivative, Savitzky-Golay Derivative and Baseline. 

The analysis to be carried out was a function of a relevant number of variables below listed 

and quantified: 

- Harvest period (7), 

- Days of storage (4), 

- Sequence number of the artichoke (18), 

- Wavelengths (400-1000 nm), 

- Type of transformation (9 for antioxidant activity and 8 for phenol), 

- Setting parameters of the transformations. 

All the possible combinations of variables, generated a high source of variation which is 

added to the instrumental noise and to other variation related to acquisition. 

Therefore we decide to use the spectra obtained at Day 0, in order to test the model before 

including the variation due to the time of storage. 

Moreover to test the contribute of different wavelength ranges to the antioxidant prediction 

the following spectral ranges were tested: 

- Ranges of wavelengths: (400-1000 nm, 400-800 nm, 400-650 nm, 650-800 nm, 650-1000 

nm). 

Finally the effect of 8 different mathematical transformations on the final ability of the 

model to predict phenols and antioxidant activity were applied. 
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The spectra were analyzed with a PCA (Principal component analysis) central model to 

identify and eliminate defective spectral outliers (Massart et al., 1998; Naes et al., 2002). 

A Partial least squares (PLS) algorithm was applied on transformed spectra for each of the 

measured chemical parameters (phenols measured as gallic acid/100 g and antioxidant activity 

measured as trolox equivalents) with the aim of developing predictive models based on spectral 

information. The analysis was performed first only in cross validation and then also in prediction 

using a training (308 spectra) an external test set of data (92 spectra). 

 

2.4.1 Analytical determination of total phenolic content and antioxidant activity 

 

Samples, after spectra acquisition, were frozen in liquid nitrogen and stored at -80 °C until 

use for chemical analysis. On frozen samples total phenol content (inner bracts and receptacle) and 

antioxidant activity (inner bracts and receptacle) were measured. 

The same extraction was carried out for analyses of total phenolic content and antioxidant 

activity. Five grams of artichoke tissues were homogenized in an Ultraturrax (IKA, T18 Basic; 

Wimington, NC, USA) for 1 min with 20 mL of extraction medium, 2 mM NaF methanol: water 

solution (80:20) (Tomás-Barberán et al., 2001) The homogenate was filtered through 2 cheesecloth 

and then centrifuged at 5 °C at 9000 rpm for 5 minutes. The pellet was discarded and the 

supernatant was retained and used as extract, which was further diluted (1:20). Total phenolic 

contents were determined according to the method of Singleton and Rossi (1965). Each diluted 

extract (100 μL) was mixed with 1.58 mL distilled water, 100 μL of Folin–Ciocalteu reagent and 

300 μL of sodium carbonate solution (200 g L−1). After 2 hours standing in darkness, the 

absorbance was read at 725 nm against a blank using a spectrophotometer (UV-1700, Shimadzu, 

Jiangsu, China). Total phenolic content was calculated on the basis of the calibration curve of 

chlorogenic acid and was expressed as grams of chlorogenic acid equivalents per 100 g of fresh 

weight (f.w.).  

The antioxidant assay was performed following the procedure described by Brand-

Williams et al. (1995) with minor modifications. The diluted sample of 50 μL, was pipetted into 

0.95 mL of DPPH (diphenylpicrylhydrazyl) solution to initiate the reaction. The cuvettes were 

closed with a stopper and secured with parafilm to prevent evaporation during 24 hours in darkness. 

The absorbance was read, spectrophotometrically, after 24 hours in darkness, at 515 nm. Trolox (6-

Hydroxy-2, 5, 7, 8-tetramethylchromane-2-carboxylic acid) was used as the standard of the 

measurement and the antioxidant activity was reported as g of Trolox equivalents (TE) per 100 g of 

fresh weight (f.w.). 
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2.4.2 Explorative Analysis of analytical variables 

 

For the internal part of the samples it has been prepared the below reports Box-Whiskers 

(Figures 2.19 and 2.20) in order to display the distribution of phenols and gallic acid content for the 

different combination of harvest period with days after the harvest period. Through the report it is 

possible to estimate, based on the distribution of the values, the variability of the sample, comparing 

in a non-parametric way groups corresponding to different conditions. The rectangular shape 

defines the interquartile range (75th and 25th percentile) and contains the 50% of the measure of a 

defined group. The internal line of the box is the median (50th percentile), the red point instead is the 

average. The lines that extend from the box (whiskers) can be used to obtain an indication of the 

dispersion of the values around the central tendency (in this case the median), in analogy to what is 

the confidence interval for the mean for a distribution normal (the more the values follow a normal 

distribution, the higher the symmetry of the box-plots than the median). Points beyond the whiskers 

are reported as outliers. 

Harvest period 1-3 has a different trend compared with the 4-7. Inside each harvest period 

there are more or less obvious trend of progressive variation in correspondence of the increase of 

days after harvest period. It is evident as the variability of results tends to make quite similar to each 

other the different days by cutting (for harvest period 4-7 the trend is highly absent and the values 

appear constants). For some samples there are particularly high and outside the box-whisker 

representation, which may indicate the presence of outliers. 

 

 
Figure 2.19 – Distribution of phenols with Box-Whiskers representation
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Figure 2.20 – Distribution of antioxidant activity with Box-Whiskers representation 

 

In the Figure 2.21 is displayed the relationship between the antioxidant activity on y axis 

and the phenol on x axis. 

It is evident the presence of two different groups: the sample of the harvest period 1 that at 

a fix range of phenols have antioxidant activity lower than the one of the other harvest period. The 

sample of the harvest period 4 and 5 show a variability as phenol concentration higher than the other 

harvest period, with a tendency of the samples of the time 4 to have lower values than other one. For 

the harvest period 7 there are two value that we can consider like outlier for the antioxidant analysis. 
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Figure 2.21 – Report relationship antioxidant activity with gallic acid 
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2.4.3 Explorative Analysis on Vis-NIR spectra 

 

Spectral image of artichoke quarters acquired by VIS-NIR technique with reflectance, 

plotted in the Figure 2.22 A, were transformed in absorbance Figure 2.22 B. In the figure it is 

evident the presence of noise, above all at the extreme part of the wavelength range, that we tried to 

attenuate processing the dates with a smoothing filter Savisky-Golay (polynomial 2° order with 13 

point), as per Figure 2.22 C. Other transformation has been applied in the Figures 2.22 D and E, 

respectively Normalization (MSC) setting of main center (MC) by column and Derivate II with the 

setting of main center (MC) by column. 
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Figure 2.22 A – Wavelength-Reflectance 
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Figure 2.22 B – Wavelength-Absorbance
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Figure 2.22 C – Wavelength-smoothing Savisky-Golay
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Figure 2.22 D – Wavelength- MSC + MC
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Figure 2.22 E – Wavelength-Derivate II + MC
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2.4.4 PLS-calibration models 

 

The first analysis was carried out using only samples of Day 0, in order not to include 

many sources of variability in the model and to find the optimal preprocessing. In the following 

tables (2.11 to 2.12) 8 different preprocessing were compared for 5 different spectral ranges. The 

best result of the analysis, based on the highest R and the lowest RMSE in calibration and in cross 

validation were obtained when out Smoothing (Polynomial second order with 13 point selected) was 

combined with MSC. Before to run the PLS for all analysis spectra were also mean centered. 

 

Table 2.11 – PLS results for phenols content prediction after mathematical preprocessing and for selected wavelength range 

(day 0 for all harvest times) 

PHENOLS

  
CALIBRATION CROSS‐VALIDATION 

Fa
ct
o

r 

SLOPE  OFF SET RMSEC R
2

SLOPE OFF SET RMSECV  R
2
 

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐1000 
SMOOTING  0.209  333.0 87.02 0.209 0.155 356.6 92.91  0.106  4 

MSC  0.031  408.0 96.32 0.031 0.010 416.7 98.38  0.023  1 

1° DERIVATIVE GOLAY 0.110  374.6 92.29 0.110 0.082 386.5 95.25  0.065  2 

BASELINE  0.182  344.4 88.49 0.182 0.135 364.6 93.66  0.108  3 

DETREND POL 1  0.194  339.6 87.87 0.194 0.156 354.3 92.48  0.119  3 

DETREND POL 2  0.110  374.7 92.30 0.110 0.068 392.2 96.86  0.051  3 

2° DERIVATIVE GOLAY 0.389  257.2 76.47 0.389 0.230 321.2 99.16  0.022  5 

SMOOTING+MSC  0.424  240.8 73.18 0.424 0.276 302.8 90.40  0.135  7 

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐800 
SMOOTING  0.121  370.2 91.75 0.121 0.096 380.7 95.36  0.080  2 

MSC  0.271  306.9 83.53 0.271 0.122 370.4 94.08  0.073  3 

1° DERIVATIVE GOLAY 0.230  324.1 85.84 0.230 0.168 349.6 94.10  0.097  4 

BASELINE  0.170  349.7 89.17 0.170 0.126 368.1 93.92  0.093  3 

DETREND POL 1  0.255  313.6 84.44 0.255 0.202 337.2 91.90  0.127  4 

DETREND POL 2  0.278  303.9 83.12 0.278 0.205 335.7 92.24  0.141  4 

2° DERIVATIVE GOLAY 0.411  248.1 75.10 0.411 0.350 272.6 85.07  0.262  6 

SMOOTING+MSC  0.465  223.9 70.57 0.465 0.368 263.8 84.23  0.243  8 

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐650 
SMOOTING  0.356  271.0 78.50 0.356 0.270 306.7 89.56  0.169  7 

MSC  0.444  234.0 72.94 0.444 0.312 290.9 88.79  0.200  7 

1° DERIVATIVE GOLAY 0.208  333.4 87.07 0.208 0.175 346.6 90.71  0.163  2 

BASELINE  0.219  328.7 86.46 0.219 0.174 347.9 92.21  0.141  4 

DETREND POL 1  0.425  242.0 74.17 0.425 0.303 294.6 89.22  0.176  7 

DETREND POL 2  0.178  346.2 88.72 0.178 0.136 363.9 93.77  0.087  3 

2° DERIVATIVE GOLAY 0.422  243.5 74.42 0.422 0.350 274.7 82.81  0.292  5 

SMOOTING+MSC  0.511  129.1 53.58 0.691 0.511 202.9 78.69  0.351  20

ANALYSIS DAY 0 ‐ WAVELENGTH 650‐800 
SMOOTING  0.347  274.8 79.05 0.347 0.26 311.6 92.19  0.101  7 

MSC  0.393  255.6 76.23 0.393 0.292 298.4 92.42  0.149  7 

1° DERIVATIVE GOLAY 0.248  316.4 84.82 0.248 0.196 339.2 92.04  0.131  5 

BASELINE  0.410  248.4 75.15 0.410 0.330 281.8 88.02  0.205  7 

DETREND POL 1  0.231  323.6 85.78 0.231 0.186 343.4 90.47  0.147  3 

DETREND POL 2  0.337  279.3 79.69 0.337 0.278 304.0 87.21  0.213  6 

2° DERIVATIVE GOLAY 0.350  273.6 78.87 0.350 0.282 301.4 87.41  0.223  5 

SMOOTING+MSC  0.445  231.9 71.82 0.445 0.368 264.5 81.91  0.305  8 
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ANALYSIS DAY 0 ‐ WAVELENGTH 650‐1000 
SMOOTING  0.130  366.2 91.25 0.130 0.100 378.6 94.67  0.081  2 

MSC  0.443  234.5 73.02 0.443 0.262 308.8 93.19  0.104  5 

1° DERIVATIVE GOLAY 0.080  387.2 93.83 0.080 0.060 395.9 95.76  0.060  1 

BASELINE  0.181  345.0 88.57 0.181 0.133 364.1 94.14  0.087  3 

DETREND POL 1  0.204  335.1 87.29 0.204 0.152 357.2 93.02  0.118  3 

DETREND POL 2  0.062  394.9 94.76 0.062 0.036 405.7 97.49  0.03  1 

2° DERIVATIVE GOLAY 0.379  261.6 77.13 0.379 0.221 326.9 95.15  0.051  5 

SMOOTING+MSC  0.398  251.9 74.84 0.398 0.262 308.6 91.06  0.113  7 

 

Table 2.12 – PLS results for antioxidant activity content prediction after mathematical preprocessing and for selected 

wavelength range (day 0 for all harvest times) 

ANTIOXIDANT ACTIVITY

  
CALIBRATION CROSS‐VALIDATION 

Fa
ct
o

r 

SLOPE OFF SET RMSEC R
2

SLOPE OFF SET  RMSECV  R
2
 

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐1000 
SMOOTING  0.520 595.902 380.73 0.520 0.454 666.955  433.32  0.393  6

NORMALIZZATION  0.513 605.000 383.62 0.513 0.416 736.016  439.06  0.368  5

MSC 0.673 406.363 314.40 0.673 0.501 611.811  444.68  0.358  6

1° DERIVATIVE GOLAY  0.574 528.670 358.61 0.574 0.511 614.017  429.59  0.393  7

BASELINE  0.420 720.744 418.71 0.420 0.345 810.334  473.27  0.284  5

SNV 0.627 465.315 334.83 0.627 0.516 601.443  419.73  0.408  5

DETREND POL 1  0.618 476.530 338.84 0.618 0.491 632.016  426.01  0.419  6

DETREND POL 2  0.634 457.245 331.91 0.634 0.519 608.825  404.28  0.459  5

2° DERIVATIVE GOLAY  0.674 407.074 313.17 0.674 0.557 559.791  413.71  0.441  7

SNV + DETREND POL 1 + 2° DERIVATIVE GOLAY 0.701 373.231 299.87 0.701 0.579 528.078  408.16  0.450  7

SNV + DETREND POL 2 + 2° DERIVATIVE GOLAY 0.70 374.556 300.40 0.700 0.574 537.657  410.75  0.459  7

MSC + DETREND POL 1 + 2° DERIVATIVE GOLAY 0.686 389.656 307.87 0.686 0.583 523.815  410.95  0.462  7

MSC + DETREND POL 2 + 2° DERIVATIVE GOLAY 0.549 559.764 369.00 0.549 0.464 658.884  428.47  0.411  4

SMOOTING +MSC  0.707 353.468 255.79 0.707 0.629 447.844  307.33  0.584  7

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐800 
SMOOTING  0.492 630.671 391.68 0.492 0.403 740.787  483.81  0.218  7

NORMALIZZATION  0.597 500.053 348.76 0.597 0.518 599.942  436.00  0.385  7

MSC 0.536 576.822 374.58 0.536 0.472 657.300  447.12  0.368  5

1° DERIVATIVE GOLAY  0.366 787.569 437.69 0.366 0.304 864.435  501.12  0.213  5

BASELINE  0.390 758.300 429.48 0.390 0.340 817.878  469.70  0.293  5

SNV 0.586 516.518 352.77 0.586 0.505 632.702  445.71  0.364  5

DETREND POL 1  0.596 504.373 348.60 0.596 0.528 587.885  434.11  0.371  7

DETREND POL 2  0.586 517.029 352.94 0.586 0.520 605.807  441.79  0.348  7

2° DERIVATIVE GOLAY  0.600 499.097 346.77 0.600 0.540 567.178  412.42  0.464  7

SMOOTING +MSC  0.805 234.944 208.54 0.805 0.739 314.858  284.27  0.642  14

ANALYSIS DAY 0 ‐ WAVELENGTH 400‐650 
SMOOTING  0.440 695.220 411.23 0.440 0.379 768.415  455.69  0.327  6

NORMALIZZATION  0.626 465.199 336.39 0.626 0.506 604.67  419.93  0.421  7

MSC 0.469 659.636 400.57 0.469 0.412 729.265  458.35  0.311  6

1° DERIVATIVE GOLAY  0.500 625.475 390.06 0.497 0.430 727.288  449.02  0.348  7

BASELINE  0.558 549.261 365.52 0.558 0.465 664.159  445.06  0.354  7

SNV 0.638 452.403 330.15 0.638 0.560 550.199  436.88  0.382  7

DETREND POL 1  0.607 490.743 343.85 0.607 0.523 596.814  415.42  0.444  7

DETREND POL 2  0.446 691.985 408.31 0.446 0.397 747.325  456.57  0.320  5

2° DERIVATIVE GOLAY  0.565 543.567 361.89 0.565 0.495 625.29  441.97  0.378  7

SMOOTING +MSC  0.761 287.871 230.83 0.761 0.709 349.077  297.3  0.614  12
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ANALYSIS DAY 0 ‐ WAVELENGTH 650‐800 
SMOOTING  0.496 626.286 390.31 0.496 0.442 693.273  445.31  0.369  7

NORMALIZZATION  0.578 524.571 357.21 0.578 0.533 581.108  408.20  0.442  6

MSC 0.583 517.500 354.80 0.583 0.528 587.126  426.96  0.390  6

1° DERIVATIVE GOLAY  0.473 654.308 398.95 0.473 0.383 768.194  474.11  0.263  7

BASELINE  0.613 480.501 341.88 0.613 0.534 582.390  444.36  0.364  7

SNV 0.617 478.027 339.37 0.617 0.584 538.816  415.57  0.448  6

DETREND POL 1  0.624 446.649 328.04 0.642 0.621 458.929  401.33  0.484  7

DETREND POL 2  0.577 528.800 356.94 0.577 0.524 582.176  419.44  0.417  7

2° DERIVATIVE GOLAY  0.540 574.474 372.03 0.54 0.496 618.468  423.35  0.437  7

SMOOTING +MSC  0.754 296.612 234.31 0.754 0.715 348.18  276.10  0.669  10

ANALYSIS DAY 0 ‐ WAVELENGTH 650‐1000 
SMOOTING  0.607 488.236 344.62 0.607 0.517 599.870  430.44  0.398  7

NORMALIZZATION  0.653 431.457 323.96 0.653 0.514 602.510  420.26  0.424  6

MSC 0.686 390.554 308.22 0.686 0.539 568.715  409.84  0.473  6

1° DERIVATIVE GOLAY  0.515 602.544 382.84 0.515 0.449 684.930  432.02  0.396  6

BASELINE  0.610 484.988 343.47 0.610 0.452 682.361  452.47  0.338  6

SNV 0.691 385.740 304.85 0.691 0.554 553.254  390.69  0.501  6

DETREND POL 1  0.708 364.969 296.53 0.708 0.542 571.524  410.10  0.464  7

DETREND POL 2  0.700 375.061 300.61 0.700 0.562 551.002  402.01  0.48  6

2° DERIVATIVE GOLAY  0.582 522.721 354.88 0.582 0.503 620.112  420.31  0.426  5

SNV + DETREND POL 1 + 2° DERIVATIVE GOLAY 0.569 538.490 360.19 0.569 0.512 603.138  403.79  0.459  4

SNV + DETREND POL 2 + 2° DERIVATIVE GOLAY 0.569 537.942 360.01 0.569 0.504 611.473  412.60  0.432  4

MSC + DETREND POL 1 + 2° DERIVATIVE GOLAY 0.579 523.169 356.74 0.579 0.532 654.839  402.71  0.473  4

MSC + DETREND POL 2 + 2° DERIVATIVE GOLAY 0.579 523.184 356.74 0.579 0.534 587.338  408.66  0.459  4

SMOOTING +MSC  0.813 225.173 204.16 0.813 0.738 322.669  284.97  0.644  14

 

Based on the highest R2 of calibration and validation and on the lowest RMSEC and 

RMSECV, the transformation Smooting + MSC was the optimal transformation to predict the 

phenols in the range 400-650 nm and antioxidant activity in the range 650-800 nm, value 

highlighted in the tables in grey. 

Considering all days of storage, new models were generated applying the best 

transformation obtained for day 0 (Smoothing plus MSC) on all considered spectral range. It is 

possible in fact that the time of storage affects different part of the spectra compared to day 0. 

Moreover since explorative analysis highlighted the presence of difference between artichoke from 

HT1 and the artichokes from other harvest times, three models were developed for each spectral 

range corresponding to “Hall Harvest Times”, “Harvest Time 1” and “Other Harvest Times” (from 

HT2 to HT7).  

In the Tables 2.13 and 2.14 are reported the statistics of the analysis for each spectral range 

and sample grouping highlighting for each group the best model. 
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Table 2.13 – PLS results for phenols content prediction after mathematical preprocessing and for selected wavelength range 

(all days of storage grouped by different harvest times) 

PHENOLS ‐ SMOOTING+MSC

  
CALIBRATION CROSS‐VALIDATION 

Fa
ct
o

r 

SLOPE  OFF SET RMSEC R
2

SLOPE OFF SET RMSECV  R
2
 

WAVELENGTH 400‐1000 
HALL HARVEST TIMES 0.461  257.266 106.882 0.461 0.403 285.382 119.435  0.331  14 

HARVEST TIME 1  0.555  227.665 74.461 0.555 0.529 240.330 78.942  0.493  1 

OTHER HARVEST TIMES 0.483  244.222 107.555 0.483 0.434 268.447 120.699  0.353  14 

WAVELENGTH 400‐800 
HALL HARVEST TIMES 0.422  276.107 110.726 0.422 0.391 290.495 117.579  0.352  11 

HARVEST TIME 1  0.631  189.675 65.053 0.631 0.565 223.150 75.994  0.489  4 

OTHER HARVEST TIMES 0.403  280.140 123.454 0.403 0.366 297.208 131.738  0.322  11 

WAVELENGTH 400‐650 
HALL HARVEST TIMES 0.329  320.663 119.326 0.329 0.288 339.231 126.997  0.242  14 

HARVEST TIME 1  0.637  186.385 64.487 0.637 0.554 227.744 79.187  0.497  5 

OTHER HARVEST TIMES 0.316  322.771 123.648 0.317 0.277 341.181 131.556  0.232  10 

WAVELENGTH 650‐800 
HALL HARVEST TIMES 0.417  278.500 111.205 0.417 0.396 288.835 116.556  0.362  10 

HARVEST TIME 1  0.562  225.100 70.868 0.562 0.524 243.412 76.626  0.533  3 

OTHER HARVEST TIMES 0.362  299.003 127.542 0.362 0.331 314.345 134.345  0.297  10 

WAVELENGTH 650‐1000 
HALL HARVEST TIMES 0.412  280.786 111.661 0.412 0.371 299.881 120.230  0.324  14 

HARVEST TIME 1  0.755  125.998 53.021 0.755 0.646 182.311 74.796  0.560  6 

OTHER HARVEST TIMES 0.409  279.175 114.994 0.409 0.365 300.056 124.603  0.312  13 

 

Table 2.14 – PLS result for antioxidant activity by harvest time and wavelength range (all days of storage grouped by 

different harvest times) 

ANTIOXIDANT ACTIVITY ‐ SMOOTING+MSC

  
CALIBRATION CROSS‐VALIDATION 

Fa
ct
o

r 

SLOPE  OFF SET RMSEC R
2

SLOPE OFF SET RMSECV  R
2
 

WAVELENGTH 400‐1000 
HALL HARVEST TIMES 0.531  620.778 313.950 0.531 0.484 681.722 345.177  0.438  14 

HARVEST TIME 1  0.499  379.919 158.136 0.499 0.421 437.694 182.879  0.328  4 

OTHER HARVEST TIMES 0.513  687.129 293.968 0.513 0.464 7575.04 326.668  0.403  11 

WAVELENGTH 400‐800 
HALL HARVEST TIMES 0.464  708.909 335.496 0.464 0.436 746.277 354.116  0.406  10 

HARVEST TIME 1  0.382  469.097 175.718 0.382 0.351 492.173 185.068  0.295  1 

OTHER HARVEST TIMES 0.522  674.675 291.292 0.522 0.4896 721.739 313.089  0.449  12 

WAVELENGTH 400‐650 
HALL HARVEST TIMES 0.426  760.270 347.442 0.426 0.360 842.113 389.597  0.281  20 

HARVEST TIME 1  0.375  474.707 176.766 0.375 0.340 500.689 187.142  0.353  2 

OTHER HARVEST TIMES 0.346  922.474 340.610 0.346 0.315 962.975 359.238  0.275  10 

WAVELENGTH 650‐800 
HALL HARVEST TIMES 0.464  709.894 335.729 0.463 0.427 757.314 358.200  0.393  14 

HARVEST TIME 1  0.435  429.098 168.060 0.435 0.383 468.996 184.288  0.343  3 

OTHER HARVEST TIMES 0.425  810.661 319.301 0.425 0.409 832.638 331.407  0.389  9 

WAVELENGTH 650‐1000 
HALL HARVEST TIMES 0.528  624.190 314.812 0.528 0.477 694.594 352.472  0.414  19 

HARVEST TIME 1  0.484  391.534 160.536 0.484 0.417 443.935 177.795  0.423  3 

OTHER HARVEST TIMES 0.487  724.551 301.867 0.487 0.437 791.252 340.403  0.351  14 
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For phenols the classes “All Harvest Times” and “Other Harvest Times” gave better results 

in the wavelength range of 400-1000 nm showing high values of R2
C 0.46 and 0.48 and R2

CV 0.33 

and 0.35 respectively and low values of RMSEC and RMECV: 106.88 and 119.44 for “All Harvest 

Time” and 107.56 and 120.7 for “Other Harvest Time”. Phenol content for “Harvest Time 1” 

instead is better predicted in the range 650-1000nm with R2
C 0.76, R2

CV 0.56, RMSEC 53.02 and 

RMECV 74.8. 

For Antioxidant activity is confirmed that for the classes “All Harvest Times” and “Other 

Harvest Times” the best results were obtained in the wavelength range 400-1000 nm with value of 

R2
C 0.53 and 0.51 and R2

CV 0,44 and 0.40 respectively and value of RMSEC and RMECV: 313.95 

and 345.18 for “All Harvest Times” and 293.97 and 326.67 for “Other Harvest Times”. “Harvest 

Time 1”, as for phenols content is better predicted in the range 650-1000nm with R2
C 0.48 and R2

CV 

0.42 and values of RMSEC 160.54 and RMECV 177.8. 

 

2.4.5. PLS prediction models 

 

After having defined the PLS-calibration model (paragraph 2.4.4), the model is used to 

predict, starting from a Training set (calibration value), a Test set of unknown samples (calibration 

value). 

Considering the fact that for harvest period 1 all the samples showed lower concentration 

of antioxidant activity with the same phenols concentration, this harvest period was modeled 

separately. 

Starting with this consideration, the analysis for gallic acid and antioxidant activity were 

carried out considering three model: “All Harvest Times”, “Harvest Time 1” and “Other Harvest 

Times” on the spectral range individuated in 2.4.4. and particularly the whole range 400-1000, 

except that “Harvest Time 1” was also modeled in the range 650-1000. Table 2.15 and 2.16, 

respectively for phenols and antioxidant activity record the statistical value of the Cross-Validation 

model. 

As obtained in cross validation phenols content was well modeled in the wavelength range 

400-1000 nm for the classes “All harvest Times” and “Other Harvest Times” with high value of 

R2pred and low value of RMSEP, respectively 49% and 94 (“All Harvest Times”), and 37% and 

166 (“Other Harvest Times”). Figures 2.23 and 2.24 show the results of the prediction for ”All 

harvest times”, both for the training and the test set, respectively. For “Harvest Time 1” the range 

650-1000 was also tested. In this range R2pred was 62% with an RMSEP of 72, compared to the 

33% and 95 obtained in cross validation. 
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Table 2.15 – PLS results for prediction on phenol content on the external test set by wavelength range (all days of storage 

grouped by different harvest times) 

N Model Name # LV”s RMSEC RMSECV R2fit R2CV RMSEP R2pred 
WAVELENGTH RANGE 400-1000 

1 
ALL HARVEST 

TIMES 
14 86 97 54% 43% 94 49% 

2 HARVEST TIME 1 6 63 95 68% 33% 85 46% 

3 
OTHER HARVEST 

TIMES 
14 110 124 45% 32% 166 37% 

WAVELENGTH RANGE 650-1000
4 HARVEST TIME 1  78 81 51% 46% 72 62% 
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Figure 2.23 – Prediction results on the Training set for phenols content (All Harvest Times, spectral range400-1000 

nm) 
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Figure 2.24 – Prediction results on the test set for phenols content  

(All Harvest Times, spectral range 400-1000 nm) 

 

The antioxidant activity was also better modeled in the range 400-1000 nm for the classes 

“All harvest Times” and “Other Harvest Times” with R2pred and RMSEP, respectively 46% and 

356 (All Harvest Times), and 44% and 340 (Other Harvest Times). The class HT1 was better 

modeled in the range 650-100 nm than 400-1000 nm, showing R2pred of 67% and RMSEP of 126 

versus R2pred 60% and RMSEP 140 obtained in the range 400-1000 nm. Figures 2.25 and 2.26 

show the results of the prediction (for the training and the test set) for the “Harvest Time 1” in the 

wavelength 400-1000 nm, whereas the Figures 2.27 and 2.28 show the prediction results for the 

“Other Harvest Times”, respectively for the training and the test set. Generally for both considered 

spectral ranges, using artichokes only for “Harvest Time 1” allowed to have much higher results for 

the prediction of phenols and antioxidant activity, suggesting that part of the variance of the data 

when considering all the samples. was due to other variables not directly related to changes in 

composition. It may be also possible that some of this variance could be generated by instrumental 

noise or changed conditions during the acquisition. Further studied may be therefore needed to 

validate these models. 
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Table 2.16 – PLS results for prediction on antioxidant activity on the external test set by wavelength range (all days of 

storage grouped by different harvest times) 

N Model Name # LV”s RMSEC RMSECV R2fit R2CV RMSEP R2pred 
WAVELENGTH RANGE 400-1000

1 
ALL HARVEST 

TIMES 
14 356 396 47% 36% 356 46% 

2 HARVEST TIME 1 4 125 151 65% 48% 140 60% 

3 
OTHER HARVEST 

TIMES 
11 284 321 53% 41% 340 44% 

WAVELENGTH RANGE 650-1000
4 HARVEST TIME 1 13 163 197 48% 28% 126 67% 

 

 
Figure 2.25 – Prediction results on the Training set for antioxidant activity (HT1, spectral range 400-1000 nm) 
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Figure 2.26 – Prediction results on the Test set for antioxidant activity (HT1, spectral range 400-1000 nm) 
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Figure 2.27 – Prediction results on the Training set for antioxidant activity (Other Harvest Times, spectral range 400-

1000 nm) 
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Figure 2.28 – Prediction results on the test set for antioxidant activity  

(Other Harvest Times, spectral range 400-1000 nm) 

 

2.4.6 Conclusions 

 

Results of these work allowed to test the feasibility of using spectral information generated 

by hyperspectral imaging to predict phenols and antioxidant activity of cut artichokes. Among all 

the pre-processing techniques Smooting + MSC gave the best results for the further prediction of 

both phenols and antioxidant activity content. Since some variation due to the harvest time was 

noticed both on spectral data and analytical analysis and particularly that data of “Harvest Time 1” 

showed a different behavior compared to the remaining harvest time, 3 models were generated-: 

“All Harvest Time”, “Harvest Time 1” and “Other Harvest Time”. Generally using the whole 

spectral range 400-1000 could be predicted phenol content and antioxidant activity for the classes 

“All Harvest Time” and Other Harvest Time”, whereas a more accurate prediction for “Harvest 

Time 1” was obtained using the spectral range from 650 to 1000.  
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Moreover the efficiency of the model was always higher when using only sample from 

“Harvest Time 1” suggesting that other source of variation were included in the data set for the 

following samplings. 

Starting from this considerations and from obtained results it may be interesting to further 

investigate the effect of the harvest time on the phenolic and antioxidant activity prediction to try to 

improve prediction results. Moreover also the instrumental setting can be improved, trying to 

standardize as much as possible the acquisition conditions. 
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3.1 CONCLUSION 

 

Fresh-cut vegetables market has grown rapidly in recent years as a result of changes in 

consumer attitudes that prefer added-value products, in terms of quality, convenience, nutritional 

value and ease of preparation for which they are even willing to pay a higher price. 

Artichoke heads are traditionally processed as fresh, canned (in oil, vinegar or in brine) or 

frozen but the high percentage of discarded plant waste, together with complex and time-consuming 

trimming operation, make artichoke processing as a fresh-cut product desirable, allowing to 

maintain the high nutritional value due to its composition very high in phenol and antioxidant 

activity. 

On the other hand, due to the dual role of phenols, they are also the substrates of oxidative 

reactions which nowadays limit the possibility of the production and commercialization of fresh-cut 

artichokes. For these reason it may be important to monitor the concentrations of phenols and 

antioxidant activity in artichokes, as one of the key factors to monitor in order to produce high 

quality ready-to-use-products.  

Moreover since phenols and antioxidant activity varies with the cultivar and that it has 

been widely shown that cultivar selection is the first key step in the implementation of the whole 

process for fresh-cut artichokes, the cultivar identification is demonstrated to be another step to 

monitor. In addition since the “Violetto” cultivar grown in the area of Brindisi (Puglia region) 

known as “Cariciofo Brindisino” received the Protected Geographical Indication (IGP) having a 

tool to identify the cultivar once the artichoke is cut may be very valuable. 

To this aim, a system for the classification of two artichoke cultivars, “Violetto” and 

“Catanese” was implemented. Two classification methods were tested (using a derivative 

pretreatment): a class-modeling / pattern recognition method (SIMCA) and a discriminating method 

(PLS-DA). The discriminant approach gave best performance compared to the class-modeling, 

mostly because having observed a very similar spectral profile for the two classes, forcing the 

discrimination by means of PLS-DA, allowed to highlight the difference between the two classes. 

A second aim of the classification analysis was also to discriminate artichokes from 

different harvest times and days of storage. Also for the classification by harvest period PLS-DA 

was the most performing method, allowing to separate classes with high sensibility and specificity. 

Results of the classification by days of storage after cutting (0, 2, 5 and 7) suggested that is possible 

to discriminate samples just cut from samples cut and stored for some days, but that is more difficult 

to exactly separate samples depending on the days of storage. Most likely this is not due to a low 

efficiency of the model, but to the changing proprieties of the samples that are not so dissimilar 

between 2 and 7 days of storage. As indicated by the “Non Error Rate”, the model performance 
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improved, in fact, reducing the number of classed from 4 to 3, corresponding to day 0, day 2 and 

days from 5 to 7. 

Finally the part aimed to test the feasibility of using spectral information generated by 

hyperspectral imaging to predict phenols and antioxidant activity of cut artichokes gave interesting 

results which encourage further studies. Some variation not directly correlated to the antioxidant 

content, was in fact detected. Particularly the data of “Harvest Time 1” showed a different behavior 

compared to the remaining harvest times and for this reason the prediction models were tested on 3 

classes: “All Harvest Times”, “Harvest Time 1” and “Other Harvest Times”. The efficiency of the 

model was always higher when using only sample from “Harvest Time 1”, suggesting that other 

sources of variation were included in the data set for the following samplings. 

Starting from this considerations and from obtained results it may be interesting to further 

investigate the effect of the harvest time on the phenolic and antioxidant activity prediction to try to 

improve prediction results. Moreover also the instrumental setting can be improved, trying to 

standardize as much as possible the acquisition conditions.  

Generally results of this thesis explored new area of research developing tools that may be 

used to increase the value of local productions, by mean of a better characterization and 

identification and by providing innovative non destructive-tools to be used online during the 

minimally processing operations for selecting raw material based also on its internal composition. 

These methods may be in fact be extended to other crops, and may be improved and adapted to 

increase quality of raw and processed products. 
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