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ABSTRACT

Introduction: Crossing the boundaries of innovation in healthcare, this research
delves into the depths of hospital efficiency and health policies in the Apulia region
of Italy. With an approach that skillfully intertwines advanced machine learning
techniques and data analysis, the beating heart of this work is the adoption of the
revolutionary Cluster Principal Data-Envelopment and ANOVA (CPDA) method.
This methodology not only promises a holistic evaluation of hospital efficiency but
also pays meticulous attention to the perceived quality of services and their
resilience in the face of the population's evolving needs.

Materials and Methods: The journey begins with a thorough analysis of healthcare
performance in Apulia, where CPDA becomes the tool to decipher efficiency and
quality perception, unveiling the vital importance of service adaptability. This
initial phase opens the door to a detailed comparison between the healthcare
systems of Apulia and Emilia-Romagna, where efficiency and quality parameters
intertwine to explore operational practices and resource management in different
regional contexts. Moving forward, attention shifts to hospital energy efficiency
and its socio-economic impact, bridging the gap between energy resource
management, healthcare economics, and service quality. A further qualitative leap
is achieved with the introduction of neural network models for an in-depth
examination of operational efficiency in hospitals, considering variables such as
energy costs, personnel costs, and the effectiveness of medical device utilization.

Results: Efficient structures emerge at various levels, while technical efficiency is
decomposed into pure technical efficiency (PTE) and allocative efficiency (SE),
painting a landscape of significant differences in efficiency across different hospital
levels. The integration of the Particle Swarm Optimization (PSO) algorithm into
the CPDA model elevates the model's discriminative capacity, refining the
performance evaluation. Furthermore, a direct correlation between hospital
efficiency and the perceived quality of healthcare is revealed, indicated by a
negative linear relationship between scale efficiency and patients' propensity for
hospitalization. The analysis then delves into the complex interaction between
hospital organizational structures, patients' propensity for hospitalization, and the
resulting energy costs. The increase in medical devices in public hospitals in Apulia
is directly linked to rising energy costs, highlighting the importance of a balanced
approach towards the adoption of new medical technologies.

Conclusions: The research proposes a decision support system for healthcare in
Apulia, based on advanced analytical methodologies and data-driven decisions.
This system aims to optimize the efficiency, effectiveness, and sustainability of
healthcare services in the region, representing a significant contribution to the field
of healthcare analysis. Demonstrating how the integration of advanced machine
learning techniques can improve operational efficiency in hospitals and positively
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influence health policies, the work emphasizes the crucial importance of
technological innovation for optimized resource management and evidence-based
decision support.

Keywords:
Hospital Efficiency, Machine Learning, CPDA, Neural Networks, Optimization
Algorithms, Resource Management.



RIASSUNTO IN ITALIANO

Introduzione: Attraversando i confini dell'innovazione in campo sanitario, la
presente ricerca si immerge nelle profondita dell'efficienza ospedaliera e delle
politiche sanitarie nella regione Puglia in Italia. Con un approccio che intreccia
abilmente tecniche avanzate di machine learning e analisi dei dati, il cuore pulsante
di questo lavoro ¢ l'adozione del rivoluzionario metodo Cluster Principal Data-
Envelopment ¢ ANOVA (CPDA). Questa metodologia non solo promette una
valutazione olistica dell'efficienza delle strutture ospedaliere ma pone anche
un'attenzione scrupolosa sulla qualita percepita dei servizi e sulla loro resilienza di
fronte alle esigenze in continua evoluzione della popolazione.

Materiali e metodi: Il viaggio inizia con un'analisi meticolosa della performance
sanitaria in Puglia, dove il CPDA diventa lo strumento per decifrare I'efficienza e
la percezione della qualita dell'assistenza, svelando l'importanza vitale
dell'adattabilita dei servizi sanitari. Questa fase iniziale apre le porte a un confronto
dettagliato tra i sistemi ospedalieri di Puglia ed Emilia-Romagna, dove parametri di
efficienza e qualita si intrecciano per esplorare le pratiche operative e la gestione
delle risorse in contesti regionali diversi.

Proseguendo, l'attenzione si sposta sull'efficienza energetica ospedaliera e il suo
impatto socio-economico, tracciando un ponte tra la gestione delle risorse
energetiche, l'economia sanitaria e la qualita del servizio. Un ulteriore salto
qualitativo si realizza con l'introduzione di modelli di reti neurali per una disamina
approfondita dell'efficienza operativa ospedaliera, prendendo in considerazione
variabili quali 1 costi energetici, i costi del personale e 1'efficacia nell'utilizzo dei
dispositivi medici.

Risultati: Strutture efficienti si delineano a vari livelli, mentre I'efficienza tecnica
si scompone in efficienza tecnica pura (PTE) ed efficienza allocativa (SE),
disegnando un panorama di differenze significative nell'efficienza tra i vari livelli
ospedalieri. L'integrazione dell'algoritmo di ottimizzazione PSO nel modello
CPDA eleva la capacita discriminante del modello, affinando la valutazione delle
prestazioni ospedaliere. Inoltre, emerge una correlazione diretta tra l'efficienza
ospedaliera e la qualita percepita dell'assistenza sanitaria, rivelata da una relazione
lineare negativa tra l'efficienza di scala e la propensione dei pazienti
all'ospedalizzazione. L'analisi si addentra poi nella complessa interazione tra le
strutture organizzative ospedaliere, la propensione dei pazienti all'ospedalizzazione
e 1 costi energetici risultanti. L'incremento dei dispositivi medici negli ospedali
pubblici pugliesi si lega direttamente all'aumento dei costi energetici, sottolineando
l'importanza di un approccio bilanciato verso l'adozione di nuove tecnologie
mediche.
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Conclusioni: La ricerca propone un sistema di supporto decisionale per 'assistenza
sanitaria in Puglia, basato su metodologie analitiche avanzate e decisioni guidate
dai dati. Questo sistema mira a ottimizzare l'efficienza, 1'efficacia e la sostenibilita
dei servizi sanitari nella regione, rappresentando un contributo significativo al
campo dell'analisi sanitaria. Dimostrando come l'integrazione di tecniche avanzate
di machine learning possa migliorare l'efficienza operativa ospedaliera e
influenzare positivamente le politiche sanitarie, il lavoro enfatizza 1'importanza
cruciale dell'innovazione tecnologica per una gestione ottimizzata delle risorse
sanitarie e un supporto decisionale basato su prove.

Parole chiave
Efficienza ospedaliera, Machine learning, CPDA, Reti neurali, Algoritmi di
Ottimizzazione, Gestione delle risorse.
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SESSION 1

HEALTHCARE PERFORMANCE ANALYTICS BASED ON
THE NOVEL CPDA METHODOLOGY FOR ASSESSMENT OF
EFFICIENCY AND PERCEIVED QUALITY OUTCOMES: A
MACHINE LEARNING APPROACH

1. INTRODUCTION

Identifying the quality of healthcare is more complex compared to other services
because the evaluation is based on the patients themselves and their quality of life
(Eiriz & Antonio Figueiredo, 2005). The patient's perceived quality is not a
straightforward definition, but rather structured by multiple components that
complete its explanatory model. A significant component of perceived quality is
the sense of inclusion generated between patient and caregiver. The possible sense
of solidarity produced strengthens the patient's well-being (Nygren Zotterman et
al., 2016).

Certainly, the ability of the hospital to effectively treat complex and particular
conditions, hence a high ratio between the hospital's specialization and the
complexity of clinical cases treated, is a determining factor. Another determining
factor is the reputation of the doctors who work there. These components can be
emphasized by marketing policies pursued (Falavigna & Ippoliti, 2013).
Assessing the determinants of patient choice is challenging due to the
multidimensional nature of quality and the limited observability of important
attributes. The choice of hospital, influenced by changes in clinical quality, suggests
that promoting an informed patient choice, such as disseminating information to the
public about hospital quality, can produce beneficial effects even in highly
regulated contexts. Patients' sensitivity to changes in quality makes hospitals with
better health outcomes more attractive (Lippi Bruni et al., 2021).

The study of patient care facility choices is integrated into the identification of
determinants of hospital mobility. Policy makers assume that patients "actively"
choose the facility they go to, simultaneously seeking the best quality of care and
minimizing the cost to obtain it. The determinants of international hospital mobility
are quite heterogeneous: each health system, in a legal-formal sense, is not in a
vacuum but rather reflects political choices, social objectives, and territorial
peculiarities. Thus, when a health system fails to meet, quantitatively or
qualitatively, all the needs expressed by the target population, it endogenously
generates a "demand" for mobility, that is, a certain rate of escape (Evangelista,
2016).

Many countries have introduced competition in the hospital care market to improve
quality and reduce costs (Oliver & Mossialos, 2005), but the effectiveness of this
strategy is still a matter of debate (Berta et al., 2016). Perceived quality of care is
an important factor in user choice and drives migration from the South to the North
in Italy (Berta et al., 2021). The Covid-19 pandemic has further influenced the
resources available for health systems, affecting their performance (Mirmozaffari
et al., 2022). To ensure high-quality health services for customers and save costs,
some institutions are implementing process optimization and automation strategies.
In summary, providing high-quality health services requires continuous adaptation
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to the changing needs and priorities of the population, as well as effective
management of available resources.

The use of data mining algorithms in this context allows for the analysis of large
amounts of data, identification of patterns and correlations, and provides
recommendations for improving healthcare and healthcare system efficiency.
Through data analysis, it is possible to improve the quality of care and healthcare
system efficiency, taking into account patient satisfaction as an indicator of quality
(Koh & Tan, 2005). Furthermore, the use of advanced computer tools enables the
efficient and precise management and analysis of large amounts of data, discussing
vital issues involving Data Mining as an important applied technique in solving
healthcare problems (Ekwonwune et al., 2022).

Computer science and data mining can help identify the factors that influence
patient choice regarding hospital mobility. Analysis of healthcare data can identify
patient preferences and hospital performance in terms of efficiency, quality of care,
and patient satisfaction. Moreover, collected data can be used to make informed
decisions on hospital mobility and the distribution of healthcare resources in a fair
and efficient manner. Information technology has enabled the analysis of patient
mobility on a large spatial scale, with significant practical implications. Particularly
in developing countries with limited healthcare resources, optimizing patient
mobility is a crucial goal for policymakers (Ding et al., 2023).

The present paper is organized as follows. After this introduction, which describes
the problem and the goals of the work, the next paragraph presents the
methodological background in which the work is based, and a description of the
context to which it has been applied. This is followed by a chapter with the details
of the study conducted and the most interesting results. These are then critically
discussed in the next chapter, along with an evaluation of the innovativeness,
potential, and limitations of the proposed approach. The conclusions complete the
work by evaluating the implications of the methodology for decision support at
various levels and outlining possible future developments.

2. BACKGROUND

Within the healthcare sector, the ongoing quest to optimize operational efficiency
and ensure high-quality patient care has become an increasingly pressing challenge.
In this context, efforts to evaluate the efficiency of healthcare processes and the
perceived quality of outcomes have taken on fundamental importance. However,
traditional evaluation methodologies often encounter limitations in capturing the
complex interplay between efficiency and quality.

To address this complexity, opportunities have emerged in recent years through the
application of advanced data analysis techniques, machine learning, and innovative
methodologies. This study focuses on introducing the "Cluster Principal Data-
envelopment and Anova analysis" (CPDA) methodology, an innovative approach
designed to thoroughly assess the efficiency of healthcare operations and the
perceived quality of results by harnessing the potential of machine learning.
Efficiency in the healthcare sector translates to resource optimization, improved
workflows, cost reduction, and waste minimization. Simultaneously, quality of care
encompasses parameters such as patient satisfaction, adherence to clinical
guidelines, and achieving positive outcomes. However, the interaction between
efficiency and quality is complex and often involves balanced choices among
different objectives.
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Incorporating machine learning into the CPDA methodology offers the opportunity
to analyze substantial and heterogeneous data, extract models and insights that
might otherwise remain hidden. Machine learning algorithms excel in identifying
non-linear relationships, predicting trends, and identifying factors influencing both
efficiency and quality of outcomes. Through the implementation of machine
learning, the CPDA methodology can provide a data-based foundation for informed
decision-making. This supports healthcare administrators, policymakers, and
professionals in seeking optimal decisions to optimize care processes and enhance
patient experiences.

Furthermore, the CPDA methodology's emphasis on perceived outcome quality
acknowledges the importance of patient-centered care. Patient experiences, their
satisfaction, and achieved outcomes constitute valuable perspectives that
complement traditional clinical measurements. The CPDA approach, which merges
clinical data with patient perspectives, promises a comprehensive evaluation of
healthcare performance.

This research study contributes to the field of healthcare analysis, presenting the
CPDA methodology as an innovative and comprehensive approach to assessing
healthcare performance. By combining the power of data analysis and machine
learning, this methodology based on Cluster, Principal components, Data-
envelopment and Anova analysis has the potential to reshape how efficiency and
quality are evaluated within the healthcare context.

A key factor in our investigation was to conduct analyses within a machine learning
environment for even more rigorous and accurate insights. This approach, involving
the fusion of PCA-DEA and statistical algorithms with machine learning, has the
potential to radically reshape how efficiency and quality are assessed in the hospital
context.

Through the application of cluster analysis, factorial analysis, and reliability
analysis, a comprehensive investigation was conducted on the structure and
coherence of the data. Cluster analysis revealed clear structures and significant
correlations among variables, while factorial analyses identified consistent latent
factors supported by robust correlations within each cluster. Reliability analysis
further reinforced these results, demonstrating high internal consistency of
measures within both clusters. Building on these findings, subsequent PCA analysis
was performed considering a single principal component for each cluster, providing
a robust methodological foundation for data interpretation.

The subsequent sections of this study will delve into the components of the
methodology, its application in real healthcare scenarios, and the potential impact
it could have on the entire healthcare sector. Through this research, our aim is to
lay the groundwork for a more efficient, patient-centered, and data-driven
healthcare system.

2.1 RELATED WORKS

Previous studies in the field of healthcare efficiency measurement have
predominantly relied on Data Envelopment Analysis (DEA) compared to
deterministic and stochastic frontier analysis methods. This preference for DEA is
attributed to its flexibility in specifying inputs and outputs and formulating
production correspondences, which proves advantageous when data availability is
limited. The application of DEA in healthcare efficiency measurement has been
widely adopted in various studies. A significant step forward was taken in the study
conducted by Hajiagha et al. in 2023, which examined the application of the three-
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stage, Principal Components — Factor — Two Levels Data Envelopment Analysis
(PCA-FA-TLDEA) methodology. This study catalyzed our approach, leading us to
use the PCA-DEA combination in our research effort. This decision conferred
greater discriminatory power within the evaluation model, further enriched by the
incorporation of ANOVA statistical algorithms. These were leveraged to examine
the efficiency outcomes attributed to hospitals based on their network membership
and hospital type.

Data Envelopment Analysis (DEA) has been applied to evaluate the effectiveness
of COVID-19 pandemic management strategies. The study conducted by Mohanta
et al. in 2021 provides valuable insights into varying levels of efficiency in COVID-
19 crisis management among different Indian states. By applying DEA, the study
contributes data-driven understanding of the effectiveness of strategies employed
during the pandemic, aiding policymakers in identifying successful approaches and
optimizing resource allocation for a more efficient response to similar challenges
in the future.

Several studies have extensively utilized DEA to evaluate the efficiency of public
healthcare systems, while highlighting the importance of refining methodologies,
considering various factors, and staying updated on evolving research trends to
effectively measure and enhance healthcare service efficiency in the public sector
(Jung et al., 2023).

The present study is following the same patterns as described by Hagjiagha et al.
(2023) in their study on Iranian hospitals, demonstrates its suitability for accurately
calculating the technical efficiency of hospitals in the Apulian region, and also
applied to the New Zealand District Health Boards (Andrews, 2022). It includes
statistical methodologies, including the combination of Principal Component
Analysis (PCA) and Data Envelopment Analysis (DEA).

In the healthcare sector and other social fields, the application of principal
component analysis is a widely used approach in the literature to calculate the
efficiency of Decision-Making Units (DMU). This approach provides a
comprehensive perspective to evaluate the performance and efficiency of healthcare
services provided by hospitals.

The combination of PCA and DEA is particularly suitable for measuring the
efficiency of complex systems, such as investment efficiency in hospital
construction (Lan et al., 2021).

Combining machine learning techniques, such as clustering, with the traditional
DEA approach is important for gaining a more nuanced view of learning process
performance. This hybrid approach demonstrates how it can aid hospital
administrators in recognizing best practices, efficiently allocating resources, and
enhancing learning outcomes in teaching hospitals (Hasni et al., 2021). A recent
study aimed to examine the efficiency of technological, healthcare, and consumer
funds through a global DEA approach, providing key insights into how resources
are utilized in these sectors (Proenga et al., 2023).

A recent study conducted in Italy evaluates the performance of public healthcare
services considering factors like hospital energy demand, socioeconomic
efficiency, and service quality. The machine learning workflow composed of
Principal Component Analysis, Linear Regression, and ANOVA Analysis
algorithms, applied to key variables used in calculating hospital efficiency using
the DEA method as identified in literature, offers a valuable perspective for
administrators and healthcare policy makers, enabling informed decisions that
promote efficiency, sustainability, and improved service quality in the public
healthcare sector (Santamato et al., 2023).
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Building upon this context, to further enrich our analysis, we have chosen to utilize
the CPDA methodology within a machine learning framework to achieve a more
thorough and accurate assessment of learning process performance. This hybrid
approach promises to provide a strong methodological foundation for interpreting
data and obtaining more reliable and relevant results, further contributing to
enhancing healthcare service efficiency and quality within hospital settings.

2.2 CPDA IN HOSPITAL EFFICIENCY EVALUATION: ADVANTAGES,
IMPLICATIONS, AND LIMITATIONS

The CPDA methodology, harnessing soft computing techniques like cluster
analysis, Principal Component Analysis (PCA), Data Envelopment Analysis
(DEA), and Analysis of Variance (ANOVA), emerges as a pioneering approach in
hospital efficiency evaluation. This synergistic blend of techniques offers a plethora
of advantages, setting the stage for profound insights and potential implications in
the results.

Advantages of adopting the CPDA methodology:

e  Analytical Versatility: The fusion of these techniques provides a multifaceted
view, capturing both macro and micro aspects of hospital efficiency.

e Advanced Segmentation: Cluster analysis allows for segmentation of
hospitals based on similar characteristics, facilitating homogeneous and relevant
comparisons.

e Complexity Reduction: PCA condenses essential information by reducing
data dimensionality, making the analysis more manageable and less prone to
multicollinearity errors.

e Relative Efficiency: DEA evaluates the relative efficiency of decision-making
units, providing a clear picture of how each unit performs relative to "best
practices."

e Identification of Significant Variables: ANOVA allows determining which
factors significantly impact efficiency, providing valuable insights into potential
areas of intervention.

Implications for Results:

e In-depth Analysis: Due to its comprehensive nature, the CPDA methodology
can uncover interactions and trends that might remain hidden with traditional
methodologies.

e Robust Results: The integration of multiple techniques enhances result
robustness, reducing the risk of drawing incorrect conclusions.

e Interpretative Complexity: While the CPDA methodology offers a rich
overview, its complexity might make interpreting results challenging, demanding a
sound understanding of each involved technique.

Additional Details:

Through the combined use of these techniques, CPDA provides a comprehensive
view of hospital efficiency, not only evaluating efficiency itself but also underlying
factors and interactions influencing it. For instance, the PCA and DEA fusion
allows not only for efficiency evaluation but also for identifying the primary
variance directions in the data contributing to such efficiency. Simultaneously,
ANOVA's integration allows isolating and evaluating specific factors or variables'
importance.
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Despite its myriad advantages, the CPDA methodology also has inherent
limitations:

Computational Complexity: The combined use of various techniques can escalate
computational complexity, potentially making the analysis longer and more error-
prone, especially with large datasets.

Interpretation: Combining multiple techniques might complicate result
interpretation. A deep understanding of each technique is essential for accurate
interpretation.

Outlier Sensitivity: Techniques like DEA are especially sensitive to outliers. A
single anomalous data point can significantly skew results, leading to potentially
misleading conclusions.

Efficiency Assumption: DEA, in particular, assumes decision-making units are
efficient, which might not always be the case in reality. This can lead to some units'
efficiency overestimation.

Segmentation Limitations: While cluster analysis provides segmentation based on
similar characteristics, there's always a risk of suboptimal segmentation or
misinterpreting the resulting clusters.

Data Dependency: Like all analysis techniques, CPDA heavily relies on input data
quality. Inaccurate, incomplete, or misleading data can yield incorrect results.
Generalizability: Due to the analysis's specificity and depth, results obtained in
one context or dataset might not easily generalize to other contexts or datasets.
Overfitting Risk: Using advanced techniques, especially when integrated into a
machine-learning framework, can lead to overfitting, where the model too closely
fits the training data and loses its ability to generalize over new data.

2.3 APPLICATION CONTEXT

The region of Apulia represents an extremely interesting context for studying
hospital efficiency in terms of quality perceived by resident patients, for several
reasons. Firstly, the region has undergone a significant healthcare system reform in
recent years, resulting in a complete reorganization of the entire system with the
aim of improving efficiency and quality of healthcare services. Additionally, Apulia
has a diverse population, composed of a variety of heterogeneous groups, making
it an ideal area for studying the relationship between quality of care and
socioeconomic differences.

The Regional Healthcare Service of Apulia is composed of six Local Health
Authorities (ASL) covering the entire region. Hospital facilities are divided
between the regional public network and the accredited private network of the Local
Health Authority, representing 52.5% and 47.5% of the total respectively. The
regional public network includes 24 ASL Direct Hospital Facilities, an Integrated
Hospital Company with the National Health System (NHS), an Integrated Hospital
Company with the University, and a Public Institute for Research and Treatment.
The accredited private network includes 26 accredited private clinics, two Private
Scientific Institutes for Research, Treatment and Care, a Public Scientific Institute
for Research, Treatment and Care, and a Classified or Assimilated Hospital. To
classify the hospital facilities in Apulia, there are 5 second-level hospitals, 17 first-
level hospitals, 4 Scientific Institutes for Research, Treatment and Care, 9 basic
hospitals, and 24 private nursing homes.

With reference to the regional healthcare system, it refers to an organized set of
structures, both public and private, accredited and present within a specific region.
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This system is considered as a regional healthcare industry, as defined by Falavigna
and Ippoliti in 2013.

A considerable and constant flow of patients (and money) moves from southern
Italy (especially from Calabria, Campania, Apulia, and Sicily) to selected regions
in central and northern Italy. At the micro level, patients migrate when the perceived
quality of care in another region compensates for the costs of migration (Brenna &
Spandonaro, 2015). The Apulia Region has also been selected as the sample region
in southern Italy, the subject of our study, to study hospital efficiency in terms of
perceived quality by patients residing within the regional borders.

2.4 ASSESSING THE EFFICIENCY AND PERCEIVED QUALITY OF
HOSPITALS: A CLOSER LOOK AT APULIA

In the realm of academic research, choosing a specific region as a case study is
pivotal to ensure relevance and applicability of findings. Apulia, with its unique
blend of urban and rural settings, stands out as an ideal benchmark to scrutinize the
Italian healthcare system. A significant variable in this backdrop is the quality of
care as perceived by local residents. Their insights provide a lens to gauge the
efficacy of healthcare facilities and adopted policies. Apulia's distinct geography,
coupled with the availability of detailed data, facilitates an in-depth exploration of
healthcare dynamics, even when incorporating this dimension. However, it's crucial
to weigh the generalizability of outcomes. While conclusions drawn from Apulia
might resonate in regions with similar dynamics, they might not be entirely
transferable to different settings. Alternatives like Lombardy, Lazio, or regions
outside Italy would present varied challenges and opportunities, swayed by factors
such as culture and socioeconomic context. Assessing perceived quality in these
alternate realities might add nuanced layers to the discourse. Despite potential
alternatives, Apulia offers a valuable framework, but caution is essential when
extrapolating findings to broader scopes, considering variables that could influence
outcomes. The quality of care as perceived by local residents significantly
influences the outcomes of any study that assesses hospital efficiency. Here's how
it might affect results:

Objective vs. Subjective Measure: While hospital efficiency can be gauged
through objective metrics, like length of stay or cost per patient, perceived quality
introduces a subjective dimension grounded in patients' firsthand experiences. This
difference in perspectives might lead to misaligned results.

Depth of Analysis: Incorporating perceived quality, the study can offer a more
holistic view of hospital efficiency. A hospital might seem efficient in objective
metrics, but if patients don't perceive high-quality care, it might point to underlying
issues or areas for improvement.

Generalizability: Quality perception might vary significantly across different
regions or countries due to cultural variances, expectations, and prior experiences.
Thus, while results related to hospital efficiency might be generalizable to regions
with similar healthcare setups, quality perceptions might not.

Policy Implications: If research indicates a disparity between hospital efficiency
and perceived quality, it might suggest the need for policy interventions to enhance
quality perception without compromising efficiency.

Practical Relevance: Perceived quality directly impacts patients' trust in the
healthcare system. Therefore, even if a hospital is efficient, a low-quality perception
might lead to diminished trust and, consequently, reduced adherence to proposed
treatments.
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Incorporating the perceived quality of care by local residents into a study on
hospital efficiency can enrich the findings, providing a more comprehensive view
of hospital performance. However, it also introduces additional complexities that
must be carefully considered in the evaluation and interpretation of results.

2.5 DATA ANALYSIS TECHNIQUES USED IN THE PROPOSED
METHOD

The data manipulation algorithm used to create the dataset is crucial for data
preprocessing. There are numerous techniques for data manipulation, such as
variable selection, missing value replacement, data transformation, and adding new
variables (Kumar et al., 2022) -:The main objective is to create a clean and consistent
dataset with relevant variables and all necessary information for data analysis. This
phase is important to ensure data confidence and the accuracy and significance of
subsequent analysis.

The cluster analysis will be carried out on a set of 17 healthcare variables previously
identified in the literature, in order to filter them consistently and partition them
into clusters that confirm their respective membership in the input and output of the
subsequent DEA analysis for evaluating hospital efficiency based on patient-
perceived quality. Data clustering algorithms, serve as a valuable tool for grouping
data homogeneously, thereby enhancing the overall accuracy of the models
employed in data analysis (Dansana et al., 2023).

The standardization algorithm for numerical health variables is a process that
transforms numerical variables so that they have a mean of 0 and standard deviation
of 1. This is important because when analyzing data from different sources, the
units of measurement may be different, and therefore variables may have different
scales. Standardization allows all variables to be put on the same scale, so that they
can be compared fairly and accurately. Furthermore, standardization is often used
as a first step before applying multivariate analysis techniques such as PCA, in order
to have a common starting point for all numerical variables. Standardizing data is
an important step in data analysis, including the use of the data mining algorithm
for PCA. Standardization is necessary to ensure that different variables within the
dataset have the same scale, to avoid variables with higher values dominating those
with lower values. This can affect PCA and produce inconsistent or misleading
results. By standardizing the dataset, a more accurate analysis and better
understanding of the data can be obtained (Mohammed et al., 2023).

To ensure the robustness of the model and guide the selection of principal
components, we employed two statistical techniques: exploratory factor analysis
(EFA) and reliability analysis. EFA allowed us to identify latent factors and assess
the internal consistency of measurements within each cluster. Reliability analysis
evaluated the internal consistency of the selected variables. These analyses
provided a solid foundation for the principal component analysis.

The PCA (Principal Component Analysis) algorithm is a multivariate analysis
technique that can be used to reduce the dimensionality of a dataset by identifying
linear combinations of input variables that capture most of the variance in the data.
This allows for simplification of data understanding and improvement in
visualizing relationships between variables.

In the present study, the PCA algorithm was applied to input variables to identify
the key factors that influence hospital performance. Additionally, the PCA
algorithm was applied to output variables to identify the key factors that influence
the quality of hospital care. In particular, using PCA to reduce the number of
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original variables into two principal components simplifies the understanding of
health data and provides useful information on the effectiveness of hospital
organization and the quality of healthcare provided by the hospital.

Applying the DEA output-oriented algorithm to evaluate hospital efficiency
(Ferreira et al., 2023) in producing Propensity for hospitalization, considering
hospital organization as input and Propensity for hospitalization as output. Patient
mobility can be used as an indicator of the quality of service provided (Falavigna
and Ippoliti, 2013).

The Analysis of Variance (ANOVA) applied in hospital settings (Noudeh et al.,
2022), allows for the evaluation of whether there are significant differences in
efficiency values assigned to hospital facilities through DEA analysis, based on the
hospital level.

Finally, the use of the CPDA methodology, which combines various data mining
algorithms such as CLUSTER, PCA, DEA, and ANOVA, allows for a more
complete evaluation of hospital efficiency, integrating the analysis of various
aspects such as hospital organization, propensity for hospitalization, hospital size,
and type of management (public or private).

The inclusion of neural networks and the Particle Swarm Optimization (PSO)
algorithm represents a significant advancement in the evaluation of hospital
efficiency. The use of neural networks enhances the model's discriminative power,
allowing for a more accurate classification of hospitals in terms of efficiency. At
the same time, PSO optimizes the model's parameters, strengthening the robustness
and reliability of the efficiency scores. The combined use of the two algorithms
serves to optimize the model (Ma et al., 2023).

This complex approach not only provides a more comprehensive evaluation but
also serves as a cross-validation tool, making it highly useful for resource
management in the healthcare sector.

However, the effectiveness of the CPDA methodology depends on the quality and
completeness of the data used in the analysis and the correct application of data
mining algorithms. Therefore, it is important to ensure that the data used is reliable
and that the algorithms are applied correctly to obtain meaningful and useful
information for improving hospital performance.

2.6 DEFINING AND ANALYZING RESEARCH QUESTIONS FOR
HOSPITAL EFFICIENCY EVALUATION

In this context, the study aims to present an innovative computer methodology
"CPDA" (Cluster-PCA-DEA-ANOVA Analysis), in a data mining environment
that, through a single workflow resulting from the combination of statistical-
economic algorithms, can answer the following research questions:

Q+: How does the efficiency of hospitals in the Apulia region, calculated in terms
of efficiency scores based on hospital organization, influence the perceived quality
of healthcare by resident patients?

Q,: Can the differences in efficiency and inefficiency among different levels of
hospitals in Apulia, based on calculated hospital efficiency scores, provide support

for managerial decisions with policy implications?

Q3: How can the application of the CPDA method, based on the combination of
analysis (Cluster-Pca-Dea-Anova) in a data mining environment, enhance the
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discriminant capability compared to traditional DEA analysis models for hospital
efficiency evaluation?

Advantages of the adopted research questions:

e Specificity: The proposed questions are closely aligned with the CPDA
methodology and the data mining environment, ensuring that the results obtained
are directly relevant and applicable.

e Scope of Analysis: These questions cover a broad spectrum, from the
perception of care quality to hospital efficiency, providing a holistic view of
hospital dynamics.

e Relevance to Decision-Makers: The questions are crafted to yield results that
can have direct policy and managerial implications, offering valuable tools for
decision-makers.

Impact on Results:

The adoption of these specific research questions will influence the nature and
scope of the results. As the questions are closely tied to the CPDA methodology
and the data mining environment, the results will be particularly suited to
pinpointing specific patterns and trends in hospital efficiency and the perception of
care quality. However, this might also limit the generalizability of the findings to
other contexts or methodologies.

In conclusion, while the chosen research questions offer a range of distinct
advantages and are closely tied to the study's methodology, it's essential to consider
potential limitations and implications for the interpretation and application of the
results.

Alternatives to the proposed research questions:

1. How do regional health policies influence the perception of quality and
hospital efficiency in the Apulia region?

2. To what extent do the infrastructure and resources available in different
hospitals in Apulia impact their operational efficiency?

3.  What are the main factors contributing to variability in the perception of care
quality among resident patients from different areas of Apulia?

While our primary research questions drive the essence of our study and outline our
central focus, we acknowledge the importance of exploring and reflecting upon
alternative angles. The complexity and multifaceted nature of factors influencing
hospital efficiency and the perception of care quality demand holistic and multi-
dimensional consideration. Presenting alternative research questions not only
showcases our depth of thought but also offers insights for future investigations in
the field. Although these alternative questions are not the main crux of our study,
they provide additional perspectives that could further enrich discussions in the
realm of hospital efficiency.

The core research questions provide a comprehensive exploration of hospital
efficiency and perceived quality of care in Apulia, delving into how efficiency
influences perception and the implications for managerial and policy decisions.
Highlighting the application of the innovative CPDA methodology in a data mining
context underscores the study's cutting-edge relevance. The inclusion of alternative
questions showcases a rigorous critical assessment, offering diverse perspectives

21



on regional health policies and hospital infrastructure. These alternatives not only
enhance the paper's transparency and depth but also suggest potential avenues for
future research, emphasizing the study's thoroughness and the broader applicability
of its findings.

3. METHODOLOGY

3.1. VARIABLE SELECTION

The data were collected from various sources including the National Health Service
Database (NHS Database) of the Ministry of Health, the National Outcomes
Program of the National Agency for Regional Health Services, and the new
National Statistical Institute Database (ISTAT Database), for the year 2020. These
data contain information on various inputs and outputs considered in various studies
on hospital efficiency.

We initially divided all the variables under study into two groups: the group of input
variables and the group of output variables. This division was based on a review of
the scientific literature. The choice of input and output variables generally depends
on the research goals and data availability. In our case, we selected the variables
that appeared most relevant for evaluating hospital efficiency in Apulia in 2020,

based on previous studies and the scientific literature (Table 1).

Table 1 Hospital Efficiency Evaluation Measures.

. " Data
Variables Definition References
sources
INP1 BP Number of beds provided * (Santamato et al., 2023; Bagci et al., 2022; Briestensky et al., 2021; Cordero et
- al., 2023; Falavigna & Ippoliti, 2013; Gutierrez-Romero et al., 2021; Hajiagha et
NHS Datab
al., 2023; Henriques & Gouveia, 2022) § Database
INP2_BU Number of beds used *
INP3_DP Number of departments planned
(Santamato et al.; 2023; Colombi et al., 2017) NHS Database
INP4_DU Number of departments used
INP5_MN Number of male nurses
INP6_FN Number of female nurses
(Santamato et al., 2023; Bagci et al., 2022; Briestensky et al., 2021; Cordero et
.. al., 2023; Falavigna & Ippoliti, 2013; Gutierrez-Romero et al., 2021; Hajiagha et | NHS Database
INP7_MP Number of male physicians al., 2023; Henriques & Gouveia, 2022)
INP8_FP Number of female physicians
INP9_HS Total number of hospital staff
Apulian resident population X . ISTAT/ NHS
INP10_RESP distributed by hospital physicians (Santamato et al., 2023; Gutierrez-Romero et al., 2021) Database
Number of hospitalizati (Santamato et al., 2023; Bagci et al., 2022; Hajiagha et al., 2023; Kucsma &
umber of hospitalizations
OUTI_HOS reported by the Ministry of Health Varga, 2021) NHS Database
Intra-regional mobility active by . -
OUT2_MOB - (Santamato et al., 2023; Falavigna & Ippoliti, 2013) .
= territorial scope National
Number of deaths at 30 days after Outcomes Plan
OUT3_DEA hospitalization according to the (Santamato et al., 2023; Briestensky et al., 2021)

NOP

22



Number of interventions according

(Santamato et al., 2023; Bagci et al., 2022; Hajiagha et al., 2023; (Kucsma &

OUT4_INT to the NOP Varga, 2021)
OUT5 REA Number of hospital r'eadnjnsswns at (Santamato et al., 2023; Hajiagha et al., 2023)
- 30 days after hospital discharge
OUT6_INP Inpatient days
(Fazria & Dhamayanti, 2021; Alharbi et al., 2023) NHS Database
OUT7_AVA Available days

* Day Hospital beds are not included in the analysis. Data collected in February 2022.

We also included the number of physicians, nurses, and total staff as explanatory
variables to assess the organization and human resources of the hospital.
Additionally, we considered the number of departments and the actual and expected
bed utilization as additional input variables to evaluate hospital efficiency. These
input variables are crucial in understanding the working environment and available
material resources.

On the other hand, we included several output variables that reflect the outcomes
of hospital services and have an impact on patient choice. These output variables
include 30-day mortality rates after discharge, the number of readmissions within
30 days, the total number of hospitalizations, the number of surgical procedures and
the number of impatient/available days. These measures were selected as they
represent important indicators for evaluating the quality of care provided by the
hospital and contribute to patients' decisions in choosing healthcare facilities.

The selection of both input and output variables was based on previous studies and
scientific literature, aiming to provide a comprehensive assessment of hospital
efficiency and the factors influencing patient choice.

We also created two derived variables: one for the inputs, representing the
catchment area of the hospital, and one for the outputs, expressing the intra-regional
active mobility of patients residing in Apulia (par.3.2.).

To confirm the correct assignment of variables to the input and output clusters, we
conducted a comparison among various clustering algorithms. The aim was to
obtain a data clustering that confirmed their respective belonging to the input and
output clusters for the subsequent DEA analysis. The cluster analysis involved a set
of 17 healthcare variables selected based on their relevance for the evaluation of
hospital efficiency. The results of the analysis confirmed the division of data into
two distinct clusters, one containing the input variables and the other containing the
output variables, filtering out the variables that conform to the selection from the
literature (par.3.5.).

3.2 DERIVEDVARIABLES

Apulian resident population distributed by hospital physicians:

Regarding the input variables, we used the resident population of Apulia as of
December 31, 2020, distributed based on the number of hospital physicians, to
estimate the size of the facility in terms of user and service basin.

To calculate the Apulian resident population distributed by hospital physicians, we
first identified the number of residents in each municipality in Apulia for the year
2020. Next, we identified the municipalities that make up each ASL (Local Health
Authority) and summed up the number of residents to obtain the total population
for each ASL (Tot,, ). Then, we determined the total number of physicians for
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each ASL by summing up the physicians working in hospitals within each ASL
(Tot Physicians,g;). Finally, we calculated the Apulian resident population
distributed based on the number of hospital physicians for 2020 using the following
formula:

TotreSAsl

INP10ggsp = Population,.; = x Physiciansyospitais (1)

Tot Physicians,g,

Intra-regional active mobility of patients residing in Apulia:

In the present study, a patient's decision to seek treatment where they perceive better
quality, subject to their economic availability and the medical offer proposed, is
considered. 'Positive mobility' is defined as the flow of 'immigrants,' residents in
the Apulia Region in 2020, who reach a hospital located in a different ASL from
the one where the patient is a resident. Only intra-regional movements, i.e., within
the region, made by patients resident in the region, have been evaluated. Therefore,
admissions of non-resident patients are not considered.

To calculate intra-regional active mobility in kilometers, we first calculated the
interpolated distance between the patient's ASL of residence and the city where the
hospital providing the service is located (Dist_kmpy,spitar). Next, we summed the
total number of active hospitalizations for each ASL ((Hospi,s;) and for each
territorial area (HoSpiyyeo) Within the region. Finally, we calculated intra-regional
active mobility in kilometers using the following formula:

OUT2_MOB = Active mobilityinfrq-regionar = (HOSPias, + HOSPigreq)
ve DiSt—kaospital (2)

This variable of intra-regional active mobility in kilometers represents the distance
traveled by patients within the same region to access hospital services provided by
different ASLs. It can be used to assess patient preference in choosing a hospital
and may be correlated with the perceived quality of hospital services.

3.3 DATA SOURCES AND VARIABLE SELECTION IN HOSPITAL
EFFICIENCY ASSESSMENT

Alternative Data Sources:

While experiments drew from recognized databases such as the National Health
Service, the National Institute of Statistics, and the National Outcomes Program,
there are alternative data sources that might be explored:

e  Surveys and Interviews: Direct data collection from hospital staff, patients,
or administrators could provide detailed, specific insights.

e Hospital Registries: These might contain granular data on patient care,
resources, and outcomes.

¢  Governmental Health Reports: Often offering a comprehensive overview of
regional health metrics and benchmarks.

Advantages of Chosen Data Sources:

The chosen datasets offer several benefits:

e Reliability and Credibility: Being official databases, they assure data
accuracy.

e Completeness: These databases encompass a broad range of variables
essential for evaluating hospital efficiency.
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e Standardization: Data from these sources often follow standard metrics,
facilitating comparison and analysis.

Implications on Results:

Adopting data from these established sources ensures robustness in the outcomes.
However, results might lean towards macro insights, possibly overlooking finer
details that alternative sources like direct surveys might capture.

Alternative Variables:

Beyond the chosen input and output variables, potential alternatives include:

e Input Variables: Number of specialized equipment, patient-to-nurse ratio, or
details on hospital funding and budget.

e  Output Variables: Patient satisfaction scores, post-treatment recovery rates,
or the frequency of medical errors.

Advantages of Selected Variables:

The variables picked for the study offer:

e Relevance: They are directly related to the primary goal of measuring hospital
efficiency in Apulia.

e Literature Backing: The selection is based on extensive research and prior
studies, assuring their relevance.

e Holistic View: Collectively, these variables provide a comprehensive view of
both the operational aspects (input) and the outcomes (output) of hospitals.

Implications on Results:

The choice of these specific variables ensures that the findings are tailored to the
study's objectives. While conclusions will provide a detailed understanding of
hospital efficiency as defined by these variables, there might be other facets of
efficiency or patient care that the study might not delve into due to variable
selection.

In conclusion, while the chosen data sources and variables are suited to the study's
objectives, it's crucial to acknowledge the potential nuances and insights that other
sources or variables might offer.

3.4 THE METHODOLOGICAL WORKFLOW

Robust data mining tools were incorporated into the methodological flow of the
present study (Mirmozaffari et al., 2022). Knime, an open-source data mining tool
with graphical capabilities that is widely used by various organizations, was
employed during the data processing and transformation phase to generate the
dataset with original input and output variables (Fig. 1). Orange, a Python-based
software with a graphical front-end design for analyzing experimental data, was
used for implementing the CPDA methodology.

The data was extracted and organized into tables using spreadsheets, and then
analyzed using KNIME, an open-source platform for data modeling and analysis.
The workflow consisted of three sections representing different data sources: the
National Outcomes Plan for output data, the National Health System for input data,
and the derived indicator for the distribution of the resident population in Apulia
from ISTAT source. Various tools and KNIME nodes were used to clean, merge,
and filter the data to obtain the final dataset for analysis.
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Using Orange, the original variables identified by Knime were first analyzed using
cluster analysis to identify input and output groups. Then, the variables were
standardized to optimize two separate Principal Component Analyses on the
identified clusters. The resulting two components were adjusted to ensure positivity
for the subsequent DEA analysis. Finally, ANOVA analyses was carried out using
Orange for different hospital networks and levels, respectively (Fig. 2). The PIM-
DEA software was utilized for calculating hospital efficiency, utilizing the most
recent theoretical developments in Data Envelopment Analysis (DEA) for optimal
data analysis (Emrouznejad & Thanassoulis, 2013).

We used the statistical software Jamovi to perform the exploratory factor analysis
and reliability analysis applied to the clusters identified by the cluster analysis.
The methodological workflow of the analyses used in this study is depicted in
Figure 3.

1 Exploratory Factor
P ey Reliability Analysis

CPDA Methodology

Principal Data Envelopment ANOVA Analysis

Component Analysis Analysis

Figure 3 The workflow of the CPDA Methodology.

The "CPDA" analysis (is the acronym for Cluster, Principal Component, Data
Envelopment, Anova Analysis) aims to overcome data instability caused by
information variation (Xu et al., 2015), by providing an accurate selection of inputs
and outputs through the application of cluster analysis to the variables identified in
the literature. Subsequently, the application of exploratory factor analysis and
reliability analysis to the two identified clusters has allowed for the identification
of latent factors that best represent the variables and confirm their coherence within
the identified clusters. Furthermore, in the present study, data accuracy has been
improved by integrating variables on patients' perceived quality, expressed as
propensity for hospitalization and choice of healthcare facility.

3.5 DATA PREPROCESSING PHASE WITH KNIME SOFTWARE

Knime is an open-source data analysis platform. Within it, operations are
represented by "nodes". Each node performs a specific function, such as reading
data or filtering results. By connecting nodes, users construct visual, modular
workflows to efficiently process data. The workflow in Knime (Figure 1) is divided
into color-coded subsections for easier comprehension. The first three subsections
are categorized based on the data source.
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3.5.1. YELLOW BOX: NATIONAL OUTCOME PLAN DATA

Input: 4 Excel tables with data on mortality 30 days post-hospitalization,
readmissions 30 days post-discharge, number of interventions, and regional
mobility.

Operations Executed:

¢  Column filtering with Column Filter node.

e Data aggregation with GroupBy node.

e Tables union with Joiner node.

e  Ratio computation between aggregated data with Math Formula node.

Output: A table [59x6]. Rows: Name of 59 Apulian Health Facilities. Columns:
Facility code, Facility name, Total km covered, Total interventions, Total mortality,
Total readmissions.

Table 2 uses a color-coding system ranging from red to green to represent the values
in each column. In this coding, red indicates low values while green represents high
values. Each variable in the column has a specific meaning: the "Facility Code" is
a unique identifier for each healthcare facility, while the "Facility Name" indicates
the actual name of the facility. The "Total km covered" represents the total distance
traveled for healthcare interventions, highlighting regional mobility. The "Total
Mortality" reports the total number of deaths occurring within 30 days of
hospitalization, the "Total Interventions" shows the total number of healthcare
interventions performed, and the "Total Readmissions" indicates the total number
of patients readmitted within 30 days of discharge.

The use of the color-coded matrix in Table 2 offers several advantages. It facilitates
an intuitive visualization, allowing for the quick identification of extreme values in
various categories and enabling the immediate recognition of facilities with the best
or worst performance. Additionally, it allows for a direct visual comparison
between different healthcare facilities for each variable, helping to highlight trends
and anomalies. This visual support is particularly useful for decision-makers, who
can use this information to direct interventions and resources where necessary.
Finally, the color-coded matrix condenses a large amount of data into an easily
interpretable format, enhancing the overall understanding of the dataset without the
need to analyze each numerical value individually.

Table 2. Color-Coded Matrix of the Yellow Box Output Dataset.

Facility Facility Name Total km Tota! ' Total‘ To‘tal.
Code covered mortality interventions readmissions

160078 Ospedale Regionale EE 'Miulli' Acquaviva Delle Fonti (BA) 346856,74 2704 2914 1543
160157 Ospedale Della Murgia - Perinei Altamura (BA) 64934,02 988 199 341
160140 Casa Di Cura Anthea Bari (BA) 72932,11 1333 810 309
160147 Casa Di Cura C.B.H. Mater Dei Hospital Bari (BA) 248510,43 2341 1620 457
160087 Casa Di Cura Santa Maria Bari (BA) 130806,77 1472 1331 433
160907 Consorziale Policlinico Bari Bari (BA) 314578,53 4826 2928 1358
160906 Ics Maugeri SPA Societa' Benefit Bari (BA) 35292,39 378 0 258
160901 Istituto Tumori Giovanni Paolo Il Bari (BA) 31141,29 764 954 49
160169 Ospedale Di Venere Bari (BA) 181312,93 2036 860 545
160158 Ospedale San Paolo Bari (BA) 196367,61 2283 1019 762
160902 IRCCS 'Saverio De Bellis' Castellana Grotte (BA) 56820,26 506 395 9
160098 Casa Di Cura - Villa Lucia Hospital Conversano (BA) 54380,73 73 890 447
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160159
160100
160160
160101
160151
160170
160162
160161
160174
160177
160178
160180

160105
160047
160102
160125
160181
160910
160102
160164

160905
160163
160152
160167
160165
160110
160063
160107
160150
160108
160109
160171
160166
160080
160062
160168
160146
160074
160141
160075
160111
160112
160114
160115
160116
160149

Ospedale Monopoli Monopoli (BA) 60873,78
Casa Di Cura ' Monte Imperatore' - Noci (BA)

Ospedale Putignano Putignano (BA) 25905,12
Casa Di Cura 'Salus' Brindisi (BR)

IRCCS 'E.Medea’ - Brindisi (BR)

Ospedale Perrino Brindisi (BR) 208664,34 2567 1314 774

Ospedale Francavilla Fontana Francavilla Fontana (BR) 87457,47 466 170
Ospedale Ostuni Ostuni (BR) 36934,17 527 439

Ospedale Andria Andria (BT) 64846,20 1749 925 397

Ospedale Barletta - 'Mons. R. Dimiccoli' Barletta (BT) 49933,13 1270 387 464

Ospedale Bisceglie Bisceglie (BT)

Ospedale Opera Don Uva Bisceglie (BT)

Casa Di Cura Leonardo De Luca Castelnuovo Della Daunia
(FG)
Ospedale Cerignola 'S.Tatarella' Cerignola (FG) 66195,18

Casa Di Cura Prof. Brodetti Foggia (FG)

Casa Di Cura Universo Salute - Don Uva Foggia (FG)
Case Cura Riunite Villa Serena-S. Francesco Foggia (FG) 52795,15
Ospedali Riuniti Di Foggia Foggia (FG)

Casa Di Cura 'S.Michele' Gest. Brodetti Manfredonia (FG)

Ospedale Manfredonia Manfredonia (FG)
Ospedale Casa Sollievo Della Sofferenza San Giovanni

Rotondo (FG) S
Ospedale San Severo - Teresa Masselli San Severo (FG) 96295,50
Casa Di Cura Riabilitativa Euroitalia - Casarano (LE) _
Ospedale Casarano Casarano (LE) 66074,08
Ospedale Copertino Copertino (LE) 671 180 355

Casa Di Cura San Francesco Galatina (LE)

Ospedale Gallipoli 'Sacro Cuore Di Gesu' Gallipoli (LE) 119352,60 985 237 351
Casa Di Cura 'Prof. Petrucciani' SRL Lecce (LE) 37515,01 332 _
Casa Di Cura Citta' Di Lecce Lecce (LE) 119174,63 1645 1500 426

Casa Di Cura Villa Bianca Lecce (LE)

Casa Di Cura Villa Verde - Lecce (LE)

Ospedale Lecce 'V. Fazzi' Lecce (LE) 300858,92

Ospedale Scorrano Scorrano (LE) 134705,94 1191 234 528
Ospedale Regionale EE 'G. Panico' Tricase (LE) _ 2581 931
Ospedale Galatina 'S. Caterina Novella' Galatina (LE) 24816,02 247
Ospedale Castellaneta Castellaneta (TA) 73903,08
Centro Medico Riabilitazione Ics Maugeri Ginosa (TA) _
Ospedale Manduria 'Giannuzzi' Manduria (TA) 52257,42

Ospedale Civile Martina Franca (TA) 115830,21

Casa Di Cura Villa Bianca SRL - Martina Franca (TA)

Casa Di Cura Bernardini Taranto (TA) 29805,28
Casa Di Cura D'Amore SRL Taranto (TA)
Casa Di Cura San Camillo Taranto (TA)

Casa Di Cura Santa Rita SRL Taranto (TA)

Casa Di Cura Villa Verde SRL Taranto (TA) 70016,76 1712

Fondazione Cittadella Della Carita’ Taranto (TA)
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160172

Presidio Ospedaliero centrale Taranto (TA) 276536,88 1783 1431 1053

3.5.2. RED BOX: NATIONAL HEALTH SERVICE DATA

Input: Two tables on private and public health facilities.

Operations Executed:

e  Filtering rows and columns for the Apulia region with Column Filter node.
e Concatenation of the filtered tables with Concatenate node.

Output: A table [59x16]. Rows: Name of 59 Apulian Health Facilities. Columns:
Facility code, Facility name, Predicted bed capacity, Predicted departments, Used
bed capacity, Used departments, Total staff, Male doctors, Female doctors, Male
nurses, Female nurses, Hospitalizations, ASL name, Hospital level, Inpatient and
Available days.

Table 3 referred to as the employs a color-coding system from red to green to
represent the values in each column. In this system, red indicates low values while
green represents high values. Each column variable has a specific meaning: the
"Facility Code" is a unique identifier for each healthcare facility, and the "Facility
Name" indicates the actual name of the facility. The "Predicted Bed Capacity" and
"Predicted Departments" represent the forecasted number of beds and departments,
respectively, while "Used Bed Capacity" and "Used Departments" show the actual
usage. "Total Staff" indicates the total number of staff members, with further
breakdowns into "Male Doctors," "Female Doctors," "Male Nurses," and "Female
Nurses." "Hospitalizations" denotes the total number of hospital admissions, "ASL
Name" identifies the associated health service area, "Hospital Level" categorizes
the level of care provided, and "Inpatient Days" and "Available Days" capture the
total inpatient days and the availability of the facility.

The color-coded matrix in Table 3 is particularly useful because it immediately
highlights the differences in data among various healthcare facilities. This visual
approach allows for the quick identification of anomalies and trends that might not
be readily apparent from numerical data alone. Decision makers can leverage this
representation to pinpoint areas needing improvement or additional resources.
Moreover, the color visualization aids in understanding the relative performance of
facilities, making it easier to compare and analyze the overall data. Ultimately, the
matrix transforms a vast set of complex data into a user-friendly analytical tool,
enhancing the ability to make informed decisions.

31



21998 1692€ ovby 439 |13 1 96T <] fas fas 781 81 Jodyien nse0 1. a_%““uam. Jodyen aepacsg  £5009T REEINESTE] ELRLS
otz | mwe | st | mr s | o | @ [ 9 9 .m0 cuncen ovsooue ues ) 1g 5T OITOST  SINOHONISUNNALYAN 3115V
8295% 0EETZ (3744 [433 sz st €T 95 L 3 141 8¢l (31) outado) oupuado) ajepadso 597091 13A3135vE ELRL
88719 Ob0SE 9t 06 3 €9 €51 8L fas ¥T 891 91 (37) ouesese) ouesese) ajepadso £9T09T 13A3135vE 3115%
95TPT 9v08T | 99 I (37) ouesesed -ejepoany eney|iqely AN Ig BSeD  ZSTOST  SIACH ONISYNN ALVARNA 3115V
¥6E9S €682 875% 08§ 33 9 08T 8 ¥T 8T SST otz PR — Lw_h_ _osanag ues ajepadsy  E9T09T RETE TS| 9475%
wa B B
61€ [43 8 4] (o4) eluopaiue euopaluely 3)epadso 91091 RELEIEL ] 9415V
mapoig uuw% _“__“”w_u .“__.“.mu_:u @ eses ZOTO9T  SINCH ONISYNNILVAN 9475V
(94) 13304 e1804 1 niuny 11epadso 016091 13A31ANODIS 9475
e13304 035330814 .m&cwﬁ elnowuny ey asey  TBT0SF  SINOHONISUNIN ALVANG 9315V
erF0. enn uog - E:.W&oﬂy__s ein) 1 esen SZI09T  SINOH ONISYNNILYAN 9475V
(94) e18803 mapo.g yoid e 1q esed Z0T09T  SINCH ONISYNNILYANd 9475V
(94) ejousus) jejsueey s, ejousliia) sjepadsg Lp00ST RETENEYE] 9415V
(94) euneg SOTOST  SINOH ONISHNN IIVANS 9415V
B||3Q OAONU|3)SE) BIM 3 OPJRUOST BINJ IQ BSED

(18) 31833519 eAN UoQ e13dQ 3|epadso 08T09T  SIAOH ONISUNN ILVAINd  18715¥
0TL5T veere 965¢ 324 9y 9 st S8 T ST T 6T (18) a8a0s1g y8as1g sjepadso BLTOIT RELEIER &) 1875V
65969 0£029 v928 L 66 ott Tz 9¥T 9T £l 6T e en9)1eg 031G Y .m_m_z_ -epojieg oepadsg LLT09T RETE NESTE] 1815V
SLLYS 8LYY T00L 658 4] 241 62 99T LT LT ST 481 (18) eupuy epuy ajepadso $LT0ST RETE NESTE] 1818
| oute  osert 0822 uz 61 e [ele 8 8 e 091 (yg) 1umisO wmisQ 3jepadsg 191091 3071 35V 48 15V
LLzse 92€92 v6LY st 6€ ss €91 S5 L 3 s0T 243 [T m:..umw“_ eqnesuely sepadsg 91057 RETEINESTE] ¥g IS
£6T 29 9Tz I (ug) 151puNg ouLLad 3jepadsO 0£109T 13AT1 ANOD3S ¥a sy
(ug) Is1pulg - BaPaN'3, SIDYI 151091 Bnt] ¥8 1SV
4 (4g) Istpuig Shies, eind 1q esed TOTOST  SINOH ONISYNNALVAN  ¥8ISY
SBLZE LSTIZ faat4 9EE 43 iy STT ¥s A €1 06 £€2 (va) oueudnng oueudiand sjepadso 09108T RENEIEN ] va 1Y
0LLPE 8ETTT | s6 €71 (v8) PoN - 21018 2dw| AuoW , B1N) 1] Ese) 00TO9T  S3IAOH ONISYNN ALVAINd  VE1SY
€85EY €8TEZ bl 434 9 65 LT 0s ot ot ozt 75T (va) yjedouoi iodouo sjepadso 65109T RELEIEL ] v 15y
15262 £90ET e I 7 LE II 8 3 08T 881 (va) ouesiaauo) [e)dsoH ePMY BY|IA -BINJ G BSED 860097  SIACH ONISYNN ALVANA  vEIsY
£9¥67 L8912 £T8T 61€ ST w 6 43 S S 8 66 (wa) 211019 eue|pised s1)|29 20 OUBAES, SIDHI 206091 S20HI va sy
TTFI0T 8TSTL TUETT €8LT 96T BLL €95 (144 SE 6E 162 019 (va) Heq ojoed ues ajepadso 8STOST RETENEYTE] V8 1sv
6088 SS69L £2201 {344 evT LET [543 89T 0z oz 7 62 (va) 1ueg a1auap 1g 2jepadsQ 697091 RETEINESTE] V8 15V
L8SVE +19vT TPEE 695 99 vl €91 09 jas jas S6 81T (v8) 1eg |1 0joed IUUBACID LoWNL CINYIS| T0609T 520l V8 15v
(v8) 14eg ujauag L12P0S Vs 1aBnepy 3| 906091 Bl Ve 1sv
(vg) 1eg ueg od1uIpIod 3je1ziosuo) £060ST 13A31 ANOD3S V8 15Y
89565 6825 or €1 (va) Heg elue BIUBS ©IND) 1] ESED [8009T  SINOHONISYNNILVANA V8ISV
9Z0vST SESTL $TT0T 0LL st 0sT s6l S8 €2 sz 9% 6% (v8) Leg |endsoH 13 J1eW "H'g D RIND IQesed  (pT09T REEINESTE] V8 15V
6007E +926T 860€ J133 [44 89 STT S5 8 8 Lot £0T (v8) Ueg eayjuy ean) 1q esed OPTOST  SIAOH ONISUNN VAN VB 1SV
21855 688Z% 985t 259 T 6L 602 89 6T 0z ST 8€T (v8) eanwe)y 1auuad - eI2INA eJ12Q 3jepadso LST09T RETE R NES'E] va 15V
[8886T  LBTOVT 1601 86 st gs¢ 1413 1€ 1€ 5 659 aleq enenbay .____“ﬂ__._w_.ma“_a_a_muz apassg BLO0ST TIATT 15U va sy

oy vy oy ot ominy__om__ gy pepes’ __piapain__ protmas A

“Jesere( ndinQ xog pay Y3 JO XLIRAl POPOD-I0[0)) € IqEL

32



33

TT6BLT T66VET TSP9T LrIzE (414 orT [ 7k4 14 w 68Y T (v1) cwwese] ajeiuad osaepadsQ olpisald
S9TET (v1) oluese] eysed e|ag ejjepenid aucizepuod
TEZ6S E0SSE 9ESE BIE ST 95 88 9P 8 6 9T 19T (1) 0JUBIE] THS 3PJIA B||IA BIND 10 BSED

(V1) 03ueseL T4S ENY BIUES BIND |G eSE)
(VL) 03ueIE] OjjWED UES BN 1] BSED)
(v1) oluEIE] T4S 20U, €JnD 1 ESED

0€
134

BLLET 70LT I s (1) cjuese] 1upseulag esn) 1q eSeD

PBSEY 9TSCE 6¥Zs TL8 6E [4 i 95 6 0ot 61T (VL) eauesd euely 3)Ia1) 3jepadso

8ST6C 08LLT €922 9Ly [£4 SE 81 8L 6 0T 08 a1 (V1) ennpuepy 1zznuuelg, eunpueiy sjepadsg
(w1

6ELVE ZEL8T 656T 19 6% St €92 5 L L 56 ozt (vi)e { 2 { D 3Ief (o]
(31)

6L9ES SZ49T T9TE SLy 1€ [44 L8T s 49 1 Lyl T0C BUIIE|ED B(IFAON RULIIE] 'S, RUNR|ED 3epads

LLLEPT 04598 T8SPT Si8 8% [494 LET 6¥T 9z 9z €6E 6LE (31) 3sea11L ,021ued "D, 33 3|euoiFay 3jepadso

0ZEYS 9EVTY vOvS LyS (4 19 86T 9 1T 1T 67T TLT (1) oueti00s ouetiods ajepadso

(31) 22231 Jz2e4 A, 32031 3jepadsO

(37) @227 - apJan e||IA BAND 10 BSED

(37) 22031 eaueig i BIND 1Q BSED
(31) 922971 22297 19 ,en) e4n) Iq ese)

I (37) 20927 Ty JueRaniag Joud, BN I BSE)

182 609 (444 SE BE Lyl

LY¥ET Z6SE

S69T

€S 174 8E ot o1 8TT BIT

ZLTOST
6FTOST
91109t
STTOST
1091
ZIT0ST
TITOST
SL00ST
TPT09T
L0091
SPTOST
B89TOST
€90091
080091
99T09T
TLTOST
60T0ST
BOTOST
051091
£0TOST

TIATTANODIS
SINOH ONISHNN ILYAIYd
SINOH ONISHNN JLVAIMd
S3NOH SNISYNN LYAMd
S3WOH SNISYNN 3LVYAIYd
SINOH ONISHNN ILYANd
SINOH ONISHNN JLYAMd

T3IATT LS4
T3ATT LSy
RELELER:]
SINOH DONISHNN JLYAINd
T3ATT 1SHH
RELEIER L]
T3ATT 1SHH
T3ATT 1S4

TIATTANOD3IS
SINOH ONISHNN JLYAMd
SINOH ONISHNN ILYARMd
S3WOH SNISYNN 3LYAIYd
SINOH ONISHNN JLVAIEd

V1Y
Y11sY
Y11sY
YLIsY
vLIsY
VL1sv
Y11sY
V11sY
vLIsY
VLIsY
V1Y
VL1IsY
s
N
sy
N
s
ENR
N
N




3.5.3. ORANGE BOX: DEMOGRAPHIC AND HEALTH DATA

Input: A table with demographic data of Apulia residents in 2020.

Operations Executed:

e  Column filtering and aggregation by ASL, using Column filter and Joiner
nodes.

e  Computation of the ratio of population/doctors and residents distributed per
doctor with Math Formula node.

Output: A table [59x5]. Rows: Name of 59 Apulian Health Facilities. Columns:
Facility code, Facility name, Residents per doctor, ASL, Network.

Table 4 uses a color-coding system ranging from red to green to represent the values
in each column. In this system, red indicates low values while green represents high
values. Each column variable has a specific meaning: the "Facility Code" is a
unique identifier for each healthcare facility, and the "Facility Name" indicates the
actual name of the facility. "Residents per Doctor" represents the number of
residents assigned to each doctor, "ASL" identifies the associated health service
area, and "Network" indicates the healthcare network to which the facility belongs.
The color-coded matrix in Table 4 offers numerous advantages, allowing immediate
visualization of differences in data between healthcare facilities. This visual
approach facilitates the rapid identification of patterns and outliers that might not
be easily detectable through simple numerical data analysis. It is an essential tool
for decision-makers, as it clearly highlights areas that require attention or additional
resources. Furthermore, the color representation enhances the understanding of the
relative performance of various facilities, simplifying the process of comparing and
evaluating overall data. Essentially, the matrix transforms a complex set of
information into an intuitively visual format, improving analysis capabilities and
the speed of data-driven decision-making.

Table 4. Color-Coded Matrix of the Orange Box Output Dataset.

ASL Facility Code Network Facility Name Residents per Doctor
ASL BA 160078 PRIVATE Ospedale Regionale EE 'Miulli' Acquaviva Delle Fonti (BA) 111833
ASL BA 160157 PUBLIC Ospedale Della Murgia - Perinei Altamura (BA) 67100
ASL BA 160140 PRIVATE Casa Di Cura Anthea Bari (BA) 40260
ASL BA 160147 PRIVATE Casa Di Cura C.B.H. Mater Dei Hospital Bari (BA) 87229
ASL BA 160087 PRIVATE Casa Di Cura Santa Maria Bari (BA) 12525
ASL BA 160907 PUBLIC Consorziale Policlinico Bari Bari (BA) 390072
ASL BA 160906 PRIVATE Ics Maugeri SPA Societa' Benefit Bari (BA) 17446
ASL BA 160901 PUBLIC Istituto Tumori Giovanni Paolo Il Bari (BA) 62626
ASL BA 160169 PUBLIC Ospedale Di Venere Bari (BA) 125252
ASL BA 160158 PUBLIC Ospedale San Paolo Bari (BA) 167301
ASL BA 160902 PUBLIC IRCCS 'Saverio De Bellis' Castellana Grotte (BA) 25050
ASL BA 160098 PRIVATE Casa Di Cura - Villa Lucia Hospital Conversano (BA) 24156
ASL BA 160159 PUBLIC Ospedale Monopoli Monopoli (BA) 56364
ASL BA 160100 PRIVATE Casa Di Cura ' Monte Imperatore' - Noci (BA) 7605
ASL BA 160160 PUBLIC Ospedale Putignano Putignano (BA) 35339
ASL BR 160101 PRIVATE Casa Di Cura 'Salus' Brindisi (BR) 34067
ASL BR 160151 PRIVATE IRCCS 'E.Medea’ - Brindisi (BR) 14413
ASL BR 160170 PUBLIC Ospedale Perrino Brindisi (BR) 239781
ASL BR 160162 PUBLIC Ospedale Francavilla Fontana Francavilla Fontana (BR) 61583
ASL BR 160161 PUBLIC Ospedale Ostuni Ostuni (BR) 32102
ASL BT 160174 PUBLIC Ospedale Andria Andria (BT) 144235
ASL BT 160177 PUBLIC Ospedale Barletta - 'Mons. R. Dimiccoli' Barletta (BT) 147770
ASL BT 160178 PUBLIC Ospedale Bisceglie Bisceglie (BT) 75653
ASL BT 160180 PRIVATE Ospedale Opera Don Uva Bisceglie (BT) 13434
ASL FG 160105 PRIVATE Casa Di Cura Leonardo De Luca Castelnuovo Della Daunia (FG) 7352
ASL FG 160047 PUBLIC Ospedale Cerignola 'S.Tatarella' Cerignola (FG) 43677

34



ASL FG
ASL FG
ASL FG
ASL FG
ASL FG
ASL FG
ASL FG
ASL FG
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASL LE
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA
ASLTA

160102
160125
160181
160910
160102
160164
160905
160163
160152
160167
160165
160110
160063
160107
160150
160108
160109
160171
160166
160080
160062
160168
160146
160074
160141
160075
160111
160112
160114
160115
160116
160149
160172

PRIVATE Casa Di Cura Prof. Brodetti Foggia (FG) 15136

PRIVATE Casa Di Cura Universo Salute - Don Uva Foggia (FG) 6487

PRIVATE Case Cura Riunite Villa Serena-S. Francesco Foggia (FG) 15568
PUBLIC Ospedali Riuniti Di Foggia Foggia (FG) 237412
PRIVATE Casa Di Cura 'S.Michele' Gest. Brodetti Manfredonia (FG) 5189

PUBLIC Ospedale Manfredonia Manfredonia (FG) 21622
PRIVATE Ospedale Casa Sollievo Della Sofferenza San Giovanni Rotondo (FG) 209303
PUBLIC Ospedale San Severo - Teresa Masselli San Severo (FG) 40650
PRIVATE Casa Di Cura Riabilitativa Euroitalia - Casarano (LE) 9646

PUBLIC Ospedale Casarano Casarano (LE) 55040
PUBLIC Ospedale Copertino Copertino (LE) 39719
PRIVATE Casa Di Cura San Francesco Galatina (LE) 31208
PUBLIC Ospedale Gallipoli 'Sacro Cuore Di Gesu' Gallipoli (LE) 61281
PRIVATE Casa Di Cura 'Prof. Petrucciani' SRL Lecce (LE) 35747
PRIVATE Casa Di Cura Citta' Di Lecce Lecce (LE) 36882
PRIVATE Casa Di Cura Villa Bianca Lecce (LE) 21562
PRIVATE Casa Di Cura Villa Verde - Lecce (LE) 13051
PUBLIC Ospedale Lecce 'V. Fazzi' Lecce (LE) 272929
PUBLIC Ospedale Scorrano Scorrano (LE) 61281
PRIVATE Ospedale Regionale EE 'G. Panico' Tricase (LE) 96461
PUBLIC Ospedale Galatina 'S. Caterina Novella' Galatina (LE) 41422
PUBLIC Ospedale Castellaneta Castellaneta (TA) 54179
PRIVATE Centro Medico Riabilitazione Ics Maugeri Ginosa (TA) 9222

PUBLIC Ospedale Manduria 'Giannuzzi' Manduria (TA) 32853
PRIVATE Casa Di Cura Villa Bianca SRL - Martina Franca (TA) 10951
PUBLIC Ospedale Civile Martina Franca (TA) 52449
PRIVATE Casa Di Cura Bernardini Taranto (TA) 37464
PRIVATE Casa Di Cura D'Amore SRL Taranto (TA) 29395
PRIVATE Casa Di Cura San Camillo Taranto (TA) 19020
PRIVATE Casa Di Cura Santa Rita SRL Taranto (TA) 6340

PRIVATE Casa Di Cura Villa Verde SRL Taranto (TA) 40922
PRIVATE Fondazione Cittadella Della Carita’ Taranto (TA) 8646

PUBLIC Presidio Ospedaliero centrale Taranto (TA) 260518

3.5.4. BROWN BOX: INPUT/OUTPUT VARIABLES

Input: Two output tables from the yellow, red, and orange boxes.

Operations Executed:

e Tables union with Joiner node.

Output: A table [59 x18]. Rows: Name of 59 Apulian Health Facilities. Columns:
The columns of the output tables from the yellow, red, and orange boxes.

3.5.5. DARK RED BOX: DATASET

Operations Executed:

e  Rows and columns sorting with Sorter and Column Resorter nodes.

e  Column filtering and renaming with column Filter and column Rename nodes.
e Dataset saving in Excel format with Excel Writer node.

Output: Dataset in Excel format with Rows: Name of 59 Apulian Health Facilities.
Columns: ASL, Network, Hospital level, Facility Name, 17 input/output variables
(renamed as described in Table 1). The final dataset, resulting from the
preprocessing operations in the Brown Box and Dark Red Box, is presented in Table
5. This table uses a color-coding system where red indicates low values and green
represents high values. Each column variable contributes to the understanding of
the performance of Apulian health facilities. The color-coded matrix allows for
quick identification of trends and anomalies, aiding decision-makers in effectively
allocating resources and interventions. This visual approach enhances data
comprehension and facilitates easier comparison between different facilities.
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3.6 WIDGETS AND CPDA METHODOLOGY: THE WORKFLOW
APPROACH IN ORANGE SOFTWARE

Within the workflow of the Orange software, the use of various widgets is crucial,
especially in implementing the CPDA methodology and in machine learning
techniques. Widgets, seen as modular and interactive components, make data
analysis dynamic and responsive, facilitating the adoption of machine learning
algorithms. Users can visually construct and customize the flow, ensuring that both
the requirements of the CPDA methodology and machine learning specifics are
optimally met. Each widget, from data input to visualization, plays a pivotal role in
integrating and executing the CPDA steps, ensuring a smooth and consistent
analysis within the Orange environment.

The workflow in Orange software, as depicted in Figure 2, is divided into sections
for easy comprehension:

1. Knime Dataset: Using the File widget, we loaded the dataset output from
Knime. This was then linked to the DataTable widget for tabular visualization and
connected to the Select Column widget to identify the 15 input/output variables as
features to analyze.

2. Cluster Analysis: The dataset was linked to the Distances widget to specify the
metric and method for the dataset columns. This was then connected to the
Hierarchical Clustering widget to perform hierarchical cluster analysis. The
dendrogram was visualized, cut at 80%, and the Ward method was indicated.

3. Standardization: The dataset was linked to the Continuize widget for variable
standardization.

4. Principal Component Analysis: Two separate Column Filter widgets were used
to divide the input variables belonging to the first cluster and the output variables
belonging to the second cluster. Both were connected to two separate PCA widgets
to conduct two distinct principal component analyses. These, in turn, were linked
to Edit Domain widgets to rename the identified components and subsequently
merged using the MergeData widget to form a single table.

5. Positive Shift: Initially, the Features Statistic widget was used to identify the
minimum value between the two components. Subsequently, the Feature
Constructor widget was employed to add this value to the components, making
them positive. The dataset with the positive components was then saved using the
SaveData widget.

6. Data Envelopment Analysis (DEA): The previously saved dataset was loaded
into the PIM DEA software to compute the DEA Pure Technical Efficiency (PTE)
scores with variable return to scale (VRS) output oriented. Once these scores were
obtained, they were re-imported into Orange using the File widget.

7. Normalization: Using the Feature Constructor widget, the logarithm of the
efficiency scores was calculated to achieve a normalized distribution. This
distribution was then graphically displayed using the Distribution widget.

8. ANOVA Analysis: The efficiency scores were linked to the ANOVA widget
for a variance analysis, considering hospital levels as groups. The results were
graphically displayed using the Scatter Plot widget.

3.7 CPDA WORKFLOW IN HOSPITAL EFFICIENCY EVALUATION:
ADVANTAGES, ALTERNATIVES, AND IMPACTS

Alternatives to the CPDA Workflow
Several alternatives exist to the CPDA workflow. Common methodologies include
the use of techniques such as multivariate regression, discriminant analysis, neural
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networks, support vector machines, and time series analysis. These techniques can
be used individually or in combination, depending on the nature of the data and
research objectives.

Advantages of the CPDA Workflow

The CPDA framework offers numerous advantages in the context of this study:

e Comprehensiveness: The combination of clustering techniques, principal
component analysis, DEA, and ANOVA provides a holistic analysis, allowing
exploration of both relationships among variables and relative efficiencies among
decision-making units (like hospitals).

e  Health Sector Specificity: The workflow has been designed considering the
specific challenges and characteristics of the healthcare sector, making it
particularly suitable for analyzing hospital efficiency.

e Flexibility: The CPDA workflow can be easily adapted to include or exclude
variables, offering some flexibility in designing the analysis.

e Integration of Diverse Data Sources: The CPDA methodology is designed
to integrate data from various sources, ensuring a comprehensive view of hospital
efficiency.

Impact on Results

The adoption of the CPDA workflow will influence the results in various ways:

e Relevance: The results will be closely tied to the selected variables and
analysis techniques, making them particularly relevant for hospital efficiency
evaluation.

e  Depth: The combination of various techniques will provide a deeper insight
into the relationships among variables and relative efficiencies.

e  Validity: The use of established techniques like DEA and ANOVA ensures
the validity of the results.

3.8 ANALYSIS OF HOSPITAL NETWORKS AND LEVELS IN APULIA

In the analysis of hospital structures in the Apulia region, a contingency table will
be used to examine the relationship between two key variables: the nature of the
hospital network (private or public) and the hospital level (secondary, primary,
base, IRCCS, private nursing home) (table 6). The row variable will represent the
nature of the hospital network, while the column variable will be dedicated to the
hospital level. This table will provide us with an overall and detailed view of the
composition of the Apulia hospital network in terms of private or public affiliation
and hospital level. Through the analysis of data obtained from the contingency
table, we will gain significant insights into the regional hospital structure and
identify any disparities or areas for improvement. This decision support will be
invaluable in optimizing resource allocation and promoting a more equitable and
sustainable distribution of hospital care in the Apulia region.

In accordance with the Ministry of Health:

Hospitals of First Level: They provide basic services such as emergency care,
diagnostics, regular hospitalization, and outpatient services. They are usually
present in various regions of Italy and provide primary level care to the local
community.

Hospitals of Second Level: They are more specialized than first-level hospitals.
They offer more complex services such as specialized surgery, intensive care, and
hemodynamics services. They are present in numerous regions of Italy and serve as
reference points for the provision of advanced care.
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Basic Hospitals: They primarily perform primary care functions. They provide
basic care, outpatient services, and primary level diagnostics. They are present in
various regions of Italy and serve as a link between primary care and more
specialized hospital facilities.

Institutes of Scientific Research and Care (IRCCS): They are specialized
hospital facilities dedicated to scientific research and highly specialized healthcare.
They are present in various regions of Italy and offer highly specialized care,
playing an important role in medical research and the development of new
therapies.

Accredited Private Healthcare Facilities: These are private healthcare facilities
that have obtained accreditation from the Italian National Health Service (Servizio
Sanitario Nazionale or SSN). They offer care and rehabilitation services to patients
in need of medical assistance. They collaborate with the public healthcare system
and operate in compliance with the quality and safety requirements established by
the SSN.

Table 6. Contingency Table: Relationship between Hospital Network Nature and Hospital Level in the Apulia
Region.

HOSPITALLEVEL

BASE FIRST PRIVATE NURSING

NETWORK LEVEL LEVEL IRCCS HOMES SECOND LEVEL Total
PRIVATE Observed 0 5 2 24 0 31
% of total 0.0% 8.5% 34% 40.7% 0.0 % 52.5%
PUBLIC Observed 9 12 2 0 5 28
% of total 153 % 203% 34% 0.0% 8.5% 47.5%
Total Observed 9 17 4 24 5 59
% of total 153 % 28.8% 6.8 % 40.7 % 8.5% 100.0 %

The p-value < 0.001 indicates that the association between the two variables is
highly significant. In other words, it is extremely unlikely that the observed
association between hospital level and hospital network is due to chance (Table 7).

Table 7. y? Tests for Hospital Distribution.

Value df P
2 40.8 4 <.001
N 59

Interpreting the results of the contingency table, we can observe the following:
“Hospital levels” are associated with “hospital networks”. For example, all 9 base-
level hospitals and 12 first-level hospitals belong to the public network, while all 5
first-level hospitals belong to the private network. This association between hospital
level and hospital network is highlighted by the significant chi-square test value.
IRCCS (Scientific Research Institutes) are present in both the public and private
networks, with 2 hospitals in each network.

Accredited private nursing homes are exclusively present in the private network,
with a total of 24 hospitals.

Five second-level hospitals are present in the public network.

In summary, the results indicate significant differences in the distribution of
hospitals across different levels depending on the hospital network (public or
private). These differences may be influenced by factors such as management,
access to resources, and the type of services offered.
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The private network represents 52.5% of the analyzed hospitals, while the public
network represents 47.5%. It is important to balance the role of the public and
private sectors to ensure comprehensive healthcare coverage. Policies that promote
collaboration between the two networks can contribute to a more efficient and
sustainable healthcare system.

3.9 EXPERIMENTAL ASSESSMENT OF CLUSTERING ALGORITHMS

In the realm of hospital efficiency evaluation, the complexity and heterogeneity of
data present a significant challenge. The variables involved can range from
financial measures to service quality indicators and may even include demographic
or geographic variables. This is why we have selected three distinct clustering
algorithms for our CPDA model (Cluster - PCA - DEA - ANOVA), each with its
strengths in specific application areas:

DBSCAN: This algorithm is particularly well-suited for identifying clusters of
arbitrary shape in data, a feature that can be invaluable when dealing with hospital
data that doesn't always follow symmetric distributions or predictable clustered
forms. Its ability to handle "noise" and outlier points is also advantageous when
dealing with hospital data that may include errors or outliers.

Louvain Clustering: The strength of this algorithm lies in its ability to detect
community structures in large networks. In the hospital setting, where complex
relationships exist between various departments, services, and units, the ability to
identify such communities can be extremely useful for understanding how
resources are efficiently allocated and utilized.

Hierarchical Clustering: This algorithm excels at exploring structural relationships
within data. In the hospital context, it could reveal hidden hierarchies or
relationships between various sectors or units, like the relationships between
different types of healthcare services or performance indicators. Its ability to
provide a hierarchical output makes it easier for administrators and policymakers
to interpret the results.

The selection of these algorithms was not only aimed at establishing a robust
methodological framework to tackle the complexity and diversity of hospital data,
but also at leveraging the clustering method as an effective filtering tool. Starting
from a comprehensive set of available variables, it then focused on identifying those
that did not significantly align with relevant patterns or with selections found in
existing literature.

3.9.1. EXPERIMENTATION GOAL AND CONSTRAINTS

The primary goal of our experimentation was to identify the most suitable clustering
algorithm for the CPDA model. This was done while considering two specific
constraints: the formation of at least two clusters and the correct assignment of input
and output variables into distinct clusters, in accordance with existing literature in
the field of hospital efficiency evaluation.

The rationale behind the need for a minimum of two clusters stems from the
methodological requirements of the DEA model, which is an integral component of
our CPDA approach. Specifically, having at least one cluster for input variables and
another for output variables is crucial for efficiency calculations. This ensures that
the model has the necessary information to perform a meaningful and robust
efficiency analysis.
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Moreover, we chose to experiment with multiple clustering algorithms to explore
potential methodological alternatives. Each algorithm has its own unique strengths
and limitations, and the use of multiple algorithms allowed us to evaluate how
different clustering combinations might interact with the remaining components of
the CPDA workflow. This also enabled us to ascertain whether the incorporation of
various clustering techniques could lead to refinements or variations in hospital
efficiency evaluation.

To this end, we implemented a machine learning-based workflow, applying three
distinct clustering algorithms to our preprocessed dataset (as detailed in Section
3.4.1). The first step of our selection process focused on variable filtering. We
utilized the results of the clustering to identify and remove variables that did not
conform to our predetermined criteria, thereby simplifying the dataset and retaining
only the most relevant variables for subsequent analysis.

The second step involved the representation of the identified clusters, to confirm
the expectations based on literature. In this phase, we evaluated how effectively the
algorithms formed two distinct clusters, ensuring precise assignment of input and
output variables. The algorithm selected was the one that best demonstrated this
capability, affirming the results from the literature and integrating harmoniously
with the CPDA workflow.

The parameters of the algorithm were optimised by determining at least 2 clusters
for the different metrics as follows (Table 8):

Table 8. Parameter Optimization for Clustering Algorithms in Two-Step Process.

I STEP 11 STEP
DBSCAN
Distance metric: Cosine Distance metric: Cosine
Core point neighbors: 4 Core point neighbors: 4
Neighborhood distance: 1,90 Neighborhood distance: 0,11
Normalize features Normalize features
Distance metric: Euclidean Distance metric: Euclidean
Core point neighbors: 4 Core point neighbors: 4
Neighborhood distance: 19,35 Neighborhood distance: 1,74
Normalize features Normalize features
Distance metric: Manhattan Distance metric: Manhattan
Core point neighbors: 4 Core point neighbors: 4
Neighborhood distance: 134,77 Neighborhood distance: 12,38
Normalize features Normalize features
LOUVAIN CLUSTERING
Distance metric: Cosine Distance metric: Cosine
Apply PCA preprocessing Apply PCA preprocessing
Normalize data Normalize data
PCA Components: 17 PCA Components: 15
K neighbors: 13 K neighbors: 13
Resolution: 0.9 Resolution: 0.9
Distance metric: Euclidean Distance metric: Euclidean
Apply PCA preprocessing Apply PCA preprocessing
Normalize data Normalize data
PCA Components: 17 PCA Components: 15
K neighbors: 13 K neighbors: 13
Resolution: 0.9 Resolution: 0.9
Distance metric: Manhattan Distance metric: Manhattan
Apply PCA preprocessing Apply PCA preprocessing
Normalize data Normalize data
PCA Components: 17 PCA Components: 15
K neighbors: 13 K neighbors: 13
Resolution: 0.9 Resolution: 0.9
HIERARCHICAL CLUSTER

Distance metric: Cosine

Distance metric: Cosine




Linkage: Ward Linkage: Ward

Height ratio: 80% Height ratio: 80%
Distance between rows Distance between rows
Distance metric: Euclidean Distance metric: Euclidean
Linkage: Ward Linkage: Ward
Height ratio: 80% Height ratio: 80%
Distance between rows Distance between rows
Normalize features Normalize features
Distance metric: Manhattan Distance metric: Manhattan
Linkage: Ward Linkage: Ward
Height ratio: 80% Height ratio: 80%
Distance between rows Distance between rows
Normalize features Normalize features
Distance metric: Spearman Distance metric: Spearman
Linkage: Ward Linkage: Ward
Height ratio: 80% Height ratio: 80%
Distance between rows Distance between rows

3.9.2. RESULTS EVALUATION

We conducted a series of experiments utilizing various clustering algorithms and
metrics with the aim of identifying the most effective combination for our CPDA
model. Existing literature on hospital efficiency evaluation recommends the use of
17 variables, comprising 10 input and 7 output variables (Table 1).

Figure 4 illustrates the clustering results for the three algorithms in the first step of
our analysis using various metrics. The affiliation matrix in Figure 4 displays the
clustering assignments of the 17 variables. Input variables (INP) are highlighted in
beige, while output variables (OUT) are in blue. Each column represents the
outcomes of a different algorithm and/or distance metric setting, with “C1” or “C2”
indicating the assignment of each variable to the respective cluster.

DBSCAN LOUVAIN HIERARCHICAL
EUCLIDEAN COSINE MANHATTAN | EUCLIDEAN COSINE MANHATTAN | EUCLIDEAN COSINE MANHATTAN | SPEARMAN

INP1_PLP c1 1 1 =1 c1 c1 c1 [=1 [=) [=]

INP2Z_PLU €1 €1 1 c1 c1 c c1 c1 c1 [=]

INP3_RP [ [ 1 [=) [=) [ (=) (=) =] [+)

INPA_RU c1 €1 1 c1 €1 c1 c1 c1 [=] =]

INPS_INFU <1 <1 1 = <1 [= [= cL (=1 Q

- INPS_INFD €1 €1 1 €1 €1 [=) c1 c1 [=) Q
w INP7_MEDU [ <1 1 c1 c1 a [ [=) [=) a
= INP8_MEDD 1 <1 1 c1 €1 c i i [ <]
< INP9_PO c1 <1 1 CL c1 1 c1 [ [=) a
3 INP10_RESMED C1 1 1 c2 C2 2 c2 C1 2 2
g 0UT1_RIC [ <1 1 c1 €1 c cL cL c [
ouT2_MOB a a 1 = = [=] cz [=] [=] a

OUT3_MORT <1 <1 1 = = = = [=] = =

ouTa_INT [=] [=] 1 = =3 [=) =1 [=] [=) [=)

OUTS_RIA <1 <1 1 = = = < =] 1 c1

0UT6_DEG 1 <1 1 [=] =] =] [=] [ [=] =]

0UT7 DISP c1 <1 1 =3 [=] a [=] =) [=] =]

Pe of Assi Error [ L i [ 2941 [ 2941 | 2941 | 2941 | 17,65 | 2941 | 11,76 |

Figure 4. First Step Cluster Assignment Results.

For DBSCAN with the Euclidean, Manhattan, and Cosine metrics, it was observed
that all 17 variables were assigned to a single cluster, not meeting the requirements
of the CPDA model, which necessitates a clear separation of input and output
variables into distinct clusters. Louvain Clustering and Hierarchical Clustering with
Euclidean and Manhattan metrics showed an error rate of 29.41%, while
Hierarchical Clustering with the Cosine metric had an error rate of 17.65%.
Remarkably, Hierarchical Clustering with the Spearman metric exhibited the lowest
error rate at 11.76%, indicating a better alignment with the CPDA model's criteria.
To refine our model and enhance its accuracy, we decided to eliminate two
variables, OUT6 and OUT7, which had been incorrectly assigned by the selected
algorithm. This pruning will allow us to focus on the most significant variables and
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ensure that the CPDA model closely captures the actual dynamics of hospital
efficiency, as suggested by the reference literature.

Following the conclusive results of the first step of analysis, we proceeded with the
second step, focusing on the refined dataset consisting of 15 variables: 10 inputs
and 5 outputs. The scatterplots representing the clusters for the three algorithms in
the second step of analysis across various metrics are depicted in Figure 5.

For the algorithms with Euclidean and Manhattan metrics: We found that one
cluster was comprised of a single input variable and a single output variable. The
second cluster contained all other variables. This distribution does not align with
the constraints set forth by our CPDA model, which requires a separation of input
and output variables into distinct clusters.

DBSCAN with Cosine Metric: Similarly, one cluster was composed of a single
input variable and a single output variable, while the second cluster included all
remaining variables. This configuration does not meet the requirements of our
model.

Louvain Clustering with Cosine Metric: This algorithm produced a cluster made
up of 3 output variables (OUT2, OUT3, OUT4) and a second cluster containing all
remaining variables. Again, this clustering was not in line with the model's
constraints as it mixed input and output variables.

Hierarchical Clustering with Cosine Metric: The algorithm produced a cluster
containing 4 output variables (OUT2, OUT3, OUT4, OUTS), and a second cluster
containing the remaining variables. Although closer to our constraints, this
configuration still mixed input and output variables.

Hierarchical Clustering with Spearman Metric: Significantly, this algorithm
was the only one to align with the constraints of our model and existing literature.
It generated a cluster containing all 10 input variables and a second cluster
containing all 5 output variables. This result suggests that the Spearman metric is
particularly effective for our CPDA model.
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Figure 5 Scatterplots for the Three Clustering Algorithms.

The results revealed that Hierarchical Clustering with the Spearman distance metric
was the only combination to align with existing literature. This alignment indicates
the suitability of the algorithm for analyzing nuanced relationships between
variables, thereby making it an ideal choice for our CPDA model.

Evaluation Criteria and Implications: We adopted the Silhouette coefficient as a
standardized evaluation metric, given its reliability in indicating the quality of
cohesion and separation between clusters. Specifically, we chose to use the Cosine
distance metric in the calculation of the Silhouette coefficient (Figure 6) for its
ability to handle high-dimensional spaces and for its emphasis on direction rather
than the magnitude of variables.
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Figure 6 Barplot of Silhouette Coefficients

These characteristics are particularly relevant in the context of hospital data, which
are often high-dimensional and require consideration of the correlation between
variables. While DBSCAN showed the highest Silhouette coefficients (0.9) for all
distance metrics, only Hierarchical Clustering with the Spearman metric satisfied
all the specific constraints of our CPDA model, effectively separating the input and
output variables into clusters. Despite its slightly lower Silhouette coefficient (0.5),
this result highlights the importance of balancing metric-based optimization with
the practical needs and constraints of the model. In summary, Hierarchical
Clustering with the Spearman metric emerges as the most suitable approach to be
integrated into the CPDA model, thereby enhancing its robustness and providing a
methodological framework for future research in the field of hospital efficiency
evaluation.

In conclusion, the choice of hierarchical clustering was driven by its ability to
provide a hierarchical visual representation of the data, its efficiency in identifying
clearly separated clusters, and its adaptability to the requirements of our dataset.
This hierarchical clustering played a pivotal role as an initial filtration system in
our analytical process, allowing us to identify and remove variables that did not
meet our predetermined criteria. This streamlined the dataset, retaining only the
most relevant variables for further analysis and ensuring that input and output
variables were grouped in a coherent and meaningful manner. This approach
provided valuable insights for further analysis, affirming the validity of our variable
selection based on the scientific literature and seamlessly integrating it into our
CPDA workflow.

3.10 HIERARCHICAL CLUSTER ANALYSIS

Hierarchical cluster analysis is a technique that allows for the exploration of hidden
patterns within data by forming homogeneous groups of similar observations. In
this study, we conducted a hierarchical cluster analysis on the set of 15 variables
identified in the literature (para. 3.9.), pertaining to 59 hospitals in the Apulia
region, with the aim of revealing patterns of similarity among observations and
identifying potential meaningful groupings.
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The employed algorithm for hierarchical clustering is the Agglomerative Clustering
algorithm. This approach starts by treating each individual observation as a separate
cluster and then iteratively merges the most similar clusters until a single cluster
containing all observations is formed. The output of the algorithm is presented in
the form of a dendrogram, which visualizes the hierarchy of clusters established
during the merging process.

The dendrogram is a hierarchical structure diagram that illustrates the clustering
process based on the distance between observations (Fig. 7). Within the
dendrogram, two main clusters have emerged, each exhibiting distinct
characteristics.

A QUTA_INT

- OUT5_REA
OUT3_DEA
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0QUT2_MOB
[ INP2_BU
INP1_BP
L e
INP4_DU
 INP7_MP
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INP8_FP
INPS_MN
INP6_FN
INP9_HS
0.08 0.06 0.04 0.02 !

Figure 7 Dendrogram of Identified Healthcare Input and Output Variables.

The first cluster, denoted as C1, consists of the 5 output variables, while the second
cluster, denoted as C2, is formed by the 10 input variables. In this clustering
approach, we set the distance between columns and Spearman's metric using the
"Distance" widget in Orange software, allowing us to gain a better understanding
of how variables group together based on their similarities.

The use of Spearman's correlation metric in hierarchical clustering was necessary
due to the non-normal distribution of the 15 examined variables. The Spearman
correlation metric assesses the strength of relationships between variables based on
their ranks rather than their actual values. By utilizing the "Hierarchical clustering”
widget in Orange software, we set the Ward linkage as the method for calculating
cluster distances, minimizing variance within combined clusters.

We consider an "height ratio" of 80%, indicating that clusters will be merged until
the linkage height between them reaches 80% of the maximum dendrogram height.
These approaches facilitated the grouping of variables based on their ordinal
resemblance, identifying two distinct clusters.

In the context of hospital data analysis, hierarchical cluster analysis proves to be a
powerful tool for understanding complex relationships between performance
variables and organizational resources:

Cluster 1 - Performance Variables: This cluster aggregates hospital performance
variables, including the number of admissions, mortality rates, hospital
readmissions, and other quality-of-care metrics. This enables a comprehensive
analysis of the overall effectiveness of provided healthcare. Cluster 1 provides an
overview of medical performance and patient satisfaction — critical factors that can
influence the hospital's reputation and patients' inclination to seek care from the
facility.

Cluster 2 - Resource and Personnel Variables: This cluster includes variables
related to resource management and personnel. Proper management of hospital
departments, beds, and resources is essential for resource utilization optimization
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and cost reduction. Ensuring an adequate number of available beds and departments
can impact operational efficiency and the facility's capacity to accommodate a
sufficient number of patients. Furthermore, the distribution of hospital staff, such
as doctors and nurses, can influence wait times, care quality, and patient
satisfaction.

3.11 HIERARCHICAL CLUSTERING ALGORITHM FOR INPUT AND
OUTPUT VARIABLES

The analysis of the input and output variables from the data of the Apulian hospital
structures is carried out using a hierarchical clustering algorithm. This method starts
by treating each variable as an individual cluster and then repeatedly merges the
most similar variables into broader clusters. The procedure follows these key steps:

1. Calculation of Spearman Correlation:
For each pair of variables, we compute the Spearman correlation, a non-parametric
measure of the statistical correlation between two datasets. The formula is:

pxy =1— 6 2.d; ) fori= , M. 3)

n(n2 -1
Where:

X and Y refer to two generic variables (columns of the dataset) for which the
Spearman correlation is calculated;

d? represents the difference between the ranks of the corresponding observations in
the two variables, and n is the total number of observations.

2. Creation of the Dissimilarity Matrix:

After calculating the correlation, the dissimilarity between two variables is
determined as:

Dissimilarityyy = 1 — pxy 4)

This dissimilarity matrix represents the distance between the variables and serves
as the foundation for subsequent grouping.

3. Agglomerative Clustering using Ward's Method:

At each iteration, the two variables (or clusters of variables) with the minimum
dissimilarity are merged into a single cluster. The Ward's method for the combined
distance between two clusters, p and q, when they are merged, using a third and
fourth cluster, r and s, as reference is:

Dpq =

\/|p|+|r| A, + P a2 + T sy — My gz + B xags (5)

Where D,, is the combined distance between clusters p and q, and d(p,7),
d(p,s) and d(r, s) are the original distances between the clusters.

Ip|, |r| and |s| represent the sizes of the clusters, whereas T is the total size of the
dataset.

4. Selection of Final Clusters based on the Hight Ratio:
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Once the complete hierarchy of clusters has been constructed, the final two clusters
are selected to capture 80% of the overall information. This can be determined by
examining the dendrogram and cutting the tree at a level where 80% of the total
information (or variance) is covered.

5. Visualization with a Dendrogram:

The dendrogram will display the hierarchical nature of the clustering process, but
the main focus will be on the final two clusters that represent the groups of input
and output variables respectively.

Based on the results obtained from the hierarchical clustering analysis and
considering that these results align with expectations based on previous literature,
we can conclude that the 15 variables previously identified in the literature for the
DEA analysis have been correctly assigned as inputs and outputs. This confirms the
validity of the initial choices and provides a solid foundation for subsequent
analyses and interpretations.

3.12 STANDARDIZATION

Standardizing variables helps improve the stability of PCA and avoid variables with
high variances dominating the analysis.

The original variables are transformed into new variables that have a mean of zero
and a standard deviation of one. Standardizing variables before PCA is an important
step to ensure that the analysis is accurate and that variables are evaluated correctly
based on their importance in the variation of the data.

The general formula for standardizing a data set with n input variables and m output
variables can be written as (1):

Z; :O(iT@fori =1,2,...,n (6)

L
where:

Z; is the standardized value of the i-th variable (input or output);

X; is the respective non-standardized value of the i-th variable (input or output);

; is the mean of all observations in the i-th variable (input or output);

o; is the standard deviation of all observations in the i-th variable (input or output);
n is the number of variables (=15).

3.13 EXPLORATORY FACTOR ANALYSIS

Applying an Exploratory Factor Analysis (EFA) separately for each cluster will
allow examining the data structure within each cluster and identifying any
underlying factors that explain the relationships between the variables. The task of
exploratory factor analysis is to group variables together based on their higher
correlations. The so-called "factor" is seen as a latent variable that influences the
observed variables. The correlation matrices for the considered variables
demonstrate how within each cluster, the variables are strongly correlated with each
other (Figure 8).
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Cluster 2 Cluster 1

Figure 8 Correlation matrixes for the two clusters.

The results of the exploratory factor analyses applied separately to the two
identified clusters are presented in Figure 9.

Exploratory Factor Analysis - Cluster 2 Exploratory Factor Analysis - Cluster 1

1 Uniqueness 1 Uriquaness

Factor Statistics

Factor 38 Loadings % of Variance Cumulative %

089 949

Assumption Checks

- Data
« Simulations

Figure 9 Factor Analysis results for the 2 clusters.

The exploratory factor analysis of the two clusters revealed significant findings. In
Cluster 2, consisting of 10 variables, a single latent factor emerged that explains
94.9% of the total variance within the cluster. All variables within the cluster exhibit
correlations above 0.96 with the factor, indicating a strong association among them.
The Bartlett's test of sphericity confirmed the presence of a significant factor
structure in the cluster, with a p-value below 0.001. Additionally, the KMO MSA
indicates adequate data suitability for factor analysis in the cluster (0.887).

In Cluster 1, consisting of 5 variables, a single latent factor was identified that
explains 86.0% of the total variance within the cluster. All variables within the
cluster exhibit correlations above 0.90 with the factor, highlighting a strong
association among them. The Bartlett's test of sphericity confirmed the presence of
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a significant factor structure in the cluster, with a p-value below 0.001.
Additionally, the KMO MSA indicates adequate data suitability for factor analysis
in the cluster (0.917).

The screening test based on the parallel analysis confirmed the importance of one
factor in both clusters.

In conclusion, both clusters demonstrate significant factor structures and strong
associations among variables. These findings indicate the presence of a latent factor
in each cluster that can consistently explain the observed variations in their
respective variables.

3.14 RELIABILITY ANALYSIS

In this phase of the study, we will focus on the reliability analysis of the two
previously identified clusters. The aim is to evaluate the internal consistency of the
measures within each cluster and determine whether the selected variables reliably
represent the latent factor identified for each cluster.

To make the latent variables "measurable," a scale is used. A scale is a group of
variables, in our case, that are collectively used to measure a latent factor. If these
variables are highly correlated, it is referred to as high internal consistency.
Cronbach's alpha is a measure of the internal consistency of a scale. By calculating
Cronbach's alpha for the two clusters, we obtain the results shown in Figure 10.

Cluster 2 Cluster 1
Scale Reliability Statistics Scale Reliability Statistics
Cronbach's a Cronbach's a
scale 0.995 scale 0.968

Figure 10 Cronbach's alpha for the two clusters.

The calculated Cronbach's alpha is 0.995 for cluster 2 and 0.968 for cluster 1,
indicating that the selected variables within the two clusters are consistent with each
other and reliably measure the respective single latent factor identified for each
cluster.

These results further confirm the choice of a single factor for each cluster, as the
data suggest a strong internal consistency of the measures within each cluster.
Based on the results obtained from the cluster analysis, factor analysis, and
reliability analysis, both for cluster 2 and cluster 1, the subsequent PCA can be
conducted considering a single principal component, in line with the data structure
and the coherence of the measures within each cluster.

3.15 EXPLORATORY FACTOR ANALYSIS AND RELIABILITY IN
HOSPITAL EFFICIENCY EVALUATION: METHODOLOGICAL
CHOICES, ADVANTAGES, AND LIMITATIONS

In the context of evaluating hospital efficiency in the Apulia region, this study
adopted the Exploratory Factor Analysis (EFA) and Reliability Analysis to explore
and validate latent structures in the data.

Methodological Limitations:

e Sample Size: A limited sampling of hospitals in Apulia could compromise the
robustness of the EFA, influencing the proper identification of latent variables.

e Sample Dependence: Being sensitive to the nature of the sample, EFA might
produce diverging results with data from different regions or timeframes.
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e Subjective Interpretation: Given the novelty of the CPDA approach,
interpreting emerging factors might require further scrutiny, with the risk of biases.

Advantages of the Chosen Approach:

e Data Exploration: EFA, with its capacity to unveil latent structures, is apt for
examining hospital data without predefined assumptions.

e Robustness and Reliability: While various metrics exist for assessing internal
consistency, such as McDonald's Omega, Cronbach's Alpha was chosen due to its
familiarity and widespread use in research. Its established interpretation and
capability to provide a consistent and reliable measurement of variables made it the
preferred choice in this study's context.

e Foundation for Subsequent Analysis: After determining the factorial
structure with EFA, subsequent analysis can proceed on solid ground.

Relation to Alternatives:
e Depth of Analysis: Compared to alternatives like Confirmatory Factor
Analysis (CFA), EFA offers an exploratory view, fitting for the CPDA approach.

Considering the specific context and needs of the present study, the combined
adoption of EFA and Reliability Analysis appears well-motivated and well-
calibrated, providing a solid foundation for further inquiries in the realm of hospital
efficiency evaluation.

3.16 PRINCIPAL COMPONENT ANALYSIS

The problem of insufficient discriminating power is often overlooked in DEA
studies, which can occur when the number of Decision-Making Units (DMU) rated
as efficient exceeds the number of inputs and outputs. The number of efficient
DMUs is dependent on the number of variables considered, with larger numbers of
variables resulting in less demanding analysis. To address this issue, it's necessary
to reduce the number of variables in the DEA structure. One technique used for this
purpose is principal component analysis (PCA), which involves simplifying source
data to maximize variance by calculating the weight to be given to each source
variable. This results in one or more new variables (called principal components)
that are linear combinations of the source variables, representing the characteristics
of the starting phenomenon.

PCA was applied separately to the inputs and outputs, with the respective principal
components determined. The analyses were conducted using Orange software. For
both inputs and outputs, only one main factor was identified.

Applying PCA to the first group of input variables (Cluster 2), we obtained a
principal component (Inputpcq) preserving almost 95% of the total variance with
minimal loss of information.

Applying PCA to the second group of output variables (Cluster 1), one main
components (Outputp-;) was identified, preserving almost 89% of the total
variance. The graphical representation produced by Orange Software's 'Pca’ widget
is shown in Figure 11. The parameters of the PCA analyzes are represented in figure
13.
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Figure 11 Principal Components variance representation.

The impact of each individual original variable on the main components can be
easily visualized in Figure 12 of the report.

Data Table

Data instances: 1
Features: 10
Meta attributes: 2

components variance INP7_MP INP10_RESP INP8_FP INPS_MN INP6_FN INP9_HS INP2 BU INP3_DP INP4 DU INP1_BP
1 PC1 0.854227 0.318983 0.314576 0.313861 0.316871 0.315813 0.319617 0.308111 0.319368 0.317284 0.317624

Data Table

Data instances: 1
Features: 5
Meta attributes: 2

components variance OUT4_INT OUT5 REA OUT3 DEA OUT1_HOS OUT2 _MOB
1 PC1 0.88791 0.447566 0.453067 0.44015 0.454725 0.44035

Figure 12 The impact of each individual original variable on the main components.

3.17 PRINCIPAL COMPONENT ALGORITHM FOR INPUT AND
OUTPUT CLUSTERS

Principal Component Analysis (PCA) is a dimensionality reduction technique. The
PCA algorithm used is described in detail below:

1. Covariance Matrix Calculation:

Once the data is standardized, we compute the covariance matrix, denoted as C or
"Covariance matrix" from the standardized data.

2. Eigenvalues and Eigenvectors Calculation:

From the covariance matrix C, eigenvalues A and eigenvectors v are derived. These
are computed by solving:

Cv=4M (7)

3. Selection of Principal Components:

The eigenvalues are arranged in descending order. We select the k principal
components that account for the majority of the variance.

4. Transformation of Original Data:

Using the eigenvectors of the selected principal components, the original data is
transformed into:

Y=7ZxV (8)
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In the context of the two analyzed clusters:

The results for the two main components identified indicate a fairly uniform
distribution of incidence across all variables.

The formulas to calculate the principal components (Inputp-; € Outputp,) of the
input variables Z;, Z,, ..., Z;; are:

10
Inputpcy = Z a; * Z; )
i=1
5
Outputpc, = Z b; x Z; (10)

=1
where:

Inputpc, is the value of the first principal component of the input variables;

a; is the coefficient of the i-th input variable Z; in the principal component;
Outputpc, is the value of the first principal component of the output variables;

b; is the coefficient of the i-th output variable Z; in the principal component.

The coefficients a; e b; are calculated as optimal weights that maximize the
variance of the principal component subject to the constraint that the sum of their
squares equals 1. In other words, the coefficients are determined as the eigenvectors
associated with the maximum eigenvalue of the covariance matrix, respectively of
the input and output variables.

As a result, the first principal component of the input variables (Inputp-;) was
renamed Hospital Organization, while the first principal component of the output
variables (Outputp,) was renamed Propension Hospitalization.

Cluster 2 (Input Variables):

The first principal component is a linear combination of the standardized input
variables:

Hospital Organization = Inputpc; = 0.317624 * Z;yp,,, + 0.308111 *

Zinp2gy + 0319368 % Zjyps , + 0.317284 % Zjyp,,, + 0.316871 *
Zinpsyy + 0315813 % Zype.  + 0.318983 * Zyyp;,,, + 0.313861 *
Zinpepp + 0319617 * Ziypo, . + 0314576 % Ziypio. s (11)

Cluster 1 (Output Variables):
Similarly, the first principal component for the output variables is:
Propension Hospitalization = Outputpc; = 0.454725 * Zoyrq,,,s +

0.440350 * Zoyra,op + 0440150 * Zoyrs, . + 0.447566 * Zoyrs, .. +
0.453067 * Zoyrs oz, (12)
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Principal Component Analysis for Cluster 1 Principal Component Analysis for Cluster 2
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Figure 13 Principal components Analysis parameters.

3.18 POSITIVE SHIFT

The "positivization" of principal components identified through PCA refers to a
transformation process applied to the components to obtain only positive values.
This can be useful in some situations where the principal components are used as
input for further analysis, such as DEA analysis. Positivization can help eliminate
any negative effects of variables with negative values, which could negatively
impact efficiency evaluations.

The method of adding a constant involves adding a sufficiently large positive
constant to the principal components so that all values become positive. In this case,
all values have been increased by the minimum value plus one (Hajiagha et al.,
2023). Since the minimum value is equal to -2.43053, identified with the feature
statistics widget, all individual values comprising the two variables will be
increased by 3.43053. We will obtain the two new principal components, which are
continuous and positive, not normally distributed, and have the same mean.

If the two principal components are Inputpcq and Outputpcq, the formulas to make
the components positive can be expressed as:

InPUtpmpos = Inputpc; + |min (Inputpcq, Outputpey) | + k& (13)
OUtPutpmpos

= Outputpc; + |min (Inputpcq, Outputpey) | + k (14)
Where:

InPuthpos represents the positive value of the first principal component of the

input variables;
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OUtPUthpos represents the positive value of the first principal component of the

output variables;

Inputpc, is the value of the first principal component of the input variables;
Outputpc, is the value of the first principal component of the output variables;
min (Inputpc,, Outputpc,) represents the minimum value between the first
principal component of the Input variables and the first principal component among
the Output variables;

k = 1, represents a sufficiently large positive constant added to ensure that all
resulting values are positive.

3.19 DATA ENVELOPMENT ANALYSIS

The methodology used in this study is Data Envelopment Analysis (DEA), which
is appropriate for providing an efficiency score to each observation (hospital
facility), as suggested by Charnes et al. (1978). In this study, efficiency was defined
as the ability of each region to maximize the number of patients attracted to its
health facilities to receive appropriate medical treatment, given the "technical”
resources at its disposal (medical staff, beds, etc.).

In the first phase of the study approach, principal component analysis (PCA) was
applied to the input and output variables described in Table 4. Two new variables
were derived from this analysis, which were then used in the second phase of the
study to determine efficiency scores with the application of DEA (Guede-Cid et al.,
2021; Hajiagha et al., 2023).

The chosen approach is output-oriented, maximizing outputs while holding inputs
constant. Variable returns to scale (VRS) and unrestricted weights were assumed,
as the hospital facilities analyzed differ based on characteristics peculiar to each
territorial area. The output-oriented model is therefore the most appropriate tool to
represent the ability of each region to maximize the number of patients attracted to
its health facilities to receive appropriate medical treatment, given the "technical”
resources at its disposal.

Weight restrictions were not introduced in this study, allowing for complete weight
flexibility to take advantage of the freedom of unit behavior offered by DEA.
Without any restrictions on weights, each hospital can be efficient by operating in
its way (Guede-Cid et al., 2021).

In addition, the 15 iidentified variables, grouped into two clusters identified through
cluster analysis, underwent Data Envelopment Analysis using an output-oriented
VRS (variable returns to scale) model, without the application of Cluster and
Principal Component Analysis.

The efficiency scores derived from the DEA analysis for the first model (DEA
model), without the application of Cluster-PCA analysis, and for the second model,
with the application of Cluster-PCA analysis, were respectively recorded in the
PTEpg, column and the PTE pp4A column in Table 4.

The differences in discriminatory power between the two models for the considered
decision-making units will be analyzed and discussed in the upcoming Section 4.3,
and graphically represented in Figure 22.
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3.20 DATA ENVELOPMENT ANALYSIS ALGORITHM FOR ASSESSING
EFFICIENCY USING ORIGINAL VARIABLES AS INPUTS AND
OUTPUTS: DEA MODEL

Objective: Assess the efficiency of Decision-Making Units (DMUSs) using the
DEA model with variable returns to scale (VRS), output-oriented, without weights,
based on the original 10 input and 5 output variables.
The DEA algorithm used is described in detail below:

1. Initialization:

For each DMU i:
e Define x;q, Xj5,..., Xj10 as the value of 10 input variables.
e Define y;1, ¥z, ..., Vis as the value of the 5 output variables.

2. Optimization:
e Maximize s, for each DMU, subject to:

Yk=1Yik

s < —+——,fori=1,..,n (15)
2}21 Xy

Where n is the total number of decision-making units (DMU).

3. Output:

e Return the efficiency score s for each DMU. A score of 1 indicates efficiency,
while scores below 1 indicate relative inefficiency.

The problem seeks to maximize relative efficiency subject to the constraint of not
exceeding the sum of the five original output variables divided by the sum of the
ten original input variables for each decision-making unit i.

The resulting efficiency scores for the 59 hospitals in Apulia are shown in table 4,
column DEA.

3.21 DATA ENVELOPMENT ANALYSIS ALGORITHM FOR ASSESSING
EFFICIENCY USING PRINCIPAL COMPONENTS AS INPUTS AND
OUTPUTS: CPDA MODEL

Objective: Assess the efficiency of Decision-Making Units (DMUSs) using the
DEA model with variable returns to scale (VRS), output-oriented, without weights.
The DEA algorithm used is described in detail below:

1. Initialization:
e Define x; as the value of InputPClpos for the i-th DMU.

Define y; as the value of Outputpmpos for the i-th DMU.

Optimization:
e Max s, subject to:
x.
s < —,fori=1,..,n. (16)

L
Where n is the total number of decision-making units (DMU).
3. Output:
e Return the efficiency score s for each DMU. A score of 1 indicates efficiency,
while scores below 1 indicate relative inefficiency.
The problem seeks to maximize relative efficiency subject to the constraint of not
exceeding the value of OutputpClpos divided by the value of I NPULpc1 for each

decision-making unit i.
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The resulting efficiency scores for the 59 hospitals in Apulia are shown in table 9,
column CPDA.

Table 9. Efficiency Scores Expressed for 59 Hospitals in Apulia using DEA and Cluster-PCA-DEA Analysis.

ASL |NETWORK | HOSPITAL LEVEL DMU PTE_DEA | PTE_CPDA
ASLBA PRIVATE FIRST LEVEL Ospedale Regionale EE "Miulli' Acquaviva Delle Fonti (BA) 1 1
ASLBA PUBLIC FIRST LEVEL ‘Ospedale Della Murgia - Perinei Altamura (BA) 0,748337 0,487939
ASLBA PRIVATE PRIVATE NURSING HOMES Casa Di Cura Anthea Bari (BA) 1 0,759454
ASLBA PRIVATE FIRST LEVEL Casa Di Cura CB H. Mater Dei Hospital Bari (BA) 1 0,734477
ASLBA PRIVATE PRIVATE NURSING HOMES Casa Di Cura Santa Maria Bari (BA) 1 0,974464
ASLBA PUBLIC SECOND LEVEL Consorziale Policlinico Bari Bari (BA) 1 1
ASLBA PRIVATE IRCCS Ics Maugeri S8PA Socicta' Benefit Bari (BA) 0713011 0,526283
ASLBA PUBLIC IRCCS Istituto Tumori Giovanni Paolo I1 Bari (BA) 0,978384 0,533106
ASL BA PUBLIC FIRST LEVEL Ospedale Di Venere Bari (BA) 1 0,610928
ASLBA PUBLIC FIRST LEVEL Ospedale San Paolo Bari (BA) 1 0,60401
ASLBA PUBLIC IRCCS IRCCS 'Saverio De Bellis' Castellana Grotte (BA) 0,915301 0,646663
ASLBA PRIVATE PRIVATE NURSING HOMES Casa Di Cura - Villa Lucia Hospital Conversano (BA) 1 0,739994
ASLBA PUBLIC BASE LEVEL Ospedale Monopoli Menopoli (BA) 0,864865 0,527683
ASLBA PRIVATE PRIVATE NURSING HOMES Casa Di Cura ' Monte Imperatore' - Noci (BA) 0,561814 0,632582
ASLBA PUBLIC BASE LEVEL Ospedale Putignano Putignano (BA) 0,594008 0,491971
ASLBR PRIVATE PRIVATE NURSING HOMES Casa Di Cura 'Salus' Brindisi (BR) 0,696644 0,701617
ASLBR PRIVATE IRCCS IRCCS 'E.Medea' - Brindisi (BR) 1 0,776651
ASL BR PUBLIC SECOND LEVEL Ospedale Perrino Brindisi (BR) 0,773561 0661974
ASLBR PUBLIC FIRST LEVEL ‘Ospedale Francavilla Fontana Francavilla Fontana (BR) 1 0,56429
ASLBR PUBLIC BASE LEVEL Ospedale Ostuni Ostuni (BR) 1 0,750455
ASLBT PUBLIC FIRST LEVEL Ospedale Andria Andria (BT) 1 0,557563
ASLBT PUBLIC FIRST LEVEL Ospedale Barletta - 'Mons. R. Dimiccoli' Barletta (BT) 1 0,509324
ASLBT PUBLIC BASE LEVEL Ospedale Bisceglie Bisceglie (BT) 0851196 0.407984
ASLBT PRIVATE PRIVATE NURSING HOMES Ospedale Opera Don Uva Bisceglie (BT) 0,69266 0,539597
ASLFG PRIVATE PRIVATE NURSING HOMES (Casa Di Cura Leonardo De Luca Castelnuovo Della Daunia (FG) 1 0,7431
ASLFG PUBLIC FIRST LEVEL Ospedale Cerignola 'S.Tatarella' Cerignola (FG) 0,70621 0,464968
ASLFG PRIVATE PRIVATE NURSING HOMES ‘Casa Di Cura Prof. Brodetti Foggia (FG) 1 0,71789
ASLFG PRIVATE PRIVATE NURSING HOMES (Casa Di Cura Universo Salute - Don Uva Foggia (FG) 1 0,613089
ASLFG PRIVATE PRIVATE NURSING HOMES (Case Cura Riunite Villa Serena-S. Francesco Foggia (FG) 1 0,936337
ASLFG PUBLIC SECOND LEVEL Ospedali Riuniti Di Foggia Foggia (FG) 1 0,771869
ASLFG PRIVATE PRIVATE NURSING HOMES Casa Di Cura 'S.Michele' Gest. Brodetti Manfredonia (FG) 1 1
ASLFG PUBLIC BASE LEVEL Ospedale Manfredonia Manfredonia (FG) 0,417031 0.450104
ASLFG PRIVATE FIRST LEVEL ‘Ospedale Casa Sollieve Della Sofferenza San Giovanni Rotondo (FG) 1 0,644767
ASLFG PUBLIC FIRST LEVEL ‘Ospedale San Severo - Teresa Masselli San Severo (FG) 0,704223 0,520972
ASLLE PRIVATE PRIVATE NURSING HOMES Casa Di Cura Riabilitativa Euroitalia - Casarano (LE) 0,740515 0,700656
ASLLE PUBLIC BASE LEVEL Ospedale Casarano Casarano (LE) 0821128 0,576929
ASLLE PUBLIC BASE LEVEL ‘Ospedale Copertino Copertino (LE) 0,837988 0.580115
ASLLE PRIVATE PRIVATE NURSING HOMES Casa Di Cura San Francesco Galatina (LE) 1 0,60302
ASLLE PUBLIC FIRST LEVEL Ospedale Gallipoli 'Sacro Cuore Di Gesu' Gallipoli (LE) 0,710385 0,602163
ASLLE PRIVATE PRIVATE NURSING HOMES Casa Di Cura 'Prof. Petrucciani' SRL Lecce (LE) 0891143 0,609719
ASLLE PRIVATE PRIVATE NURSING HOMES Casa Di Cura Citta' Di Lecce Lecce (LE) 1 1
ASLLE PRIVATE PRIVATE NURSING HOMES Casa Di Cura Villa Bianca Lecce (LE) 1 1
ASLLE PRIVATE PRIVATE NURSING HOMES (Casa Di Cura Villa Verde - Lecce (LE) 1 0,65533
ASLLE PUBLIC SECOND LEVEL Ospedale Lecce 'V. Fazzi' Lecce (LE) 1 0,867505
ASLLE PUBLIC FIRST LEVEL Ospedale Scorrano Scorrano (LE) 0,996396 0,696432
ASLLE PRIVATE FIRST LEVEL ‘Ospedale Regionale EE 'G. Panico' Tricase (LE) 1 1
ASLLE PUBLIC BASE LEVEL Ospedale Galatina 'S. Caterina Novella’ Galatina (LE} 0,544061 0,391888
ASLTA PUBLIC FIRST LEVEL Ospedale Castellaneta Castellaneta (TA) 0,792742 0,536464
ASLTA PRIVATE PRIVATE NURSING HOMES Centro Medico Riabilitazione Ics Maugeri Ginosa (TA) 0,760352 0,771804
ASLTA PUBLIC BASE LEVEL Ospedale Manduria 'Giannuzzi' Manduria (TA) 0,813625 0,538073
ASLTA PRIVATE FIRST LEVEL Casa Di Cura Villa Bianca SRL - Martina Franca (TA) 0,755585 0,709735
ASLTA PUBLIC FIRST LEVEL Ospedale Civile Martina Franca (TA) 1 0,679362
ASLTA PRIVATE PRIVATE NURSING HOMES (Casa Di Cura Bernardini Taranto (TA) 1 0,739977
ASLTA PRIVATE PRIVATE NURSING HOMES Casa Di Cura D'Amore SRL Taranto (TA} 1 0,841161
ASLTA PRIVATE PRIVATE NURSING HOMES Casa Di Cura San Camillo Taranto (TA) 1 0,754517
ASLTA PRIVATE PRIVATE NURSING HOMES Casa Di Cura Santa Rita SRL Taranto (TA) 1 0,709031
ASLTA PRIVATE PRIVATE NURSING HOMES Casa Di Cura Villa Verde SRL Taranto (TA) 1 0,755949
ASLTA PRIVATE PRIVATE NURSING HOMES Fondazione Cittadella Della Carita’ Taranto (TA) 1 0,728615
ASLTA PUBLIC SECOND LEVEL Presidio Ospedaliero centrale Taranto (TA) 0,905823 0,691367
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3.22 ANOVA ANALYSIS

The distribution of efficiency scores can influence the choice of statistical tools
used for data analysis.

Generally, the distribution of efficiency scores produced by the DEA analysis
should follow a normal distribution. This is vital because it allows the use of
standard statistical techniques such as the analysis of variance (ANOVA) to
evaluate efficiency differences among different hospital groups.

To ensure a more normal distribution of the data, a base-10 logarithmic
transformation was applied to the PTE variable using the "Feature Constructor"
widget in Orange. The formula used for this transformation is:

PTE ormalized = LOGlO(PTE) (17)

This transformation allowed the necessary assumptions for the ANOVA analysis to
be met, making the data more suitable for this kind of analysis.

The distribution of efficiency scores is graphically represented through the
"distribution" widget in Figure 14.
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Figure 14 Normal distribution of Pure Technical Efficiency (PTE).

The objective of ANOVA analysis is to identify which factors have a significant
impact on hospital efficiency, in order to implement targeted interventions to
improve the performance of different levels of hospitals. The ANOVA model was
used to assess the difference in efficiency among the hospitals level (figure 15).
Level was assigned according to type management.
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Figure 15 ANOVA analysis by hospital level.

According to the resolution of the Apulian Regional Council on September 23,
2019, No. 1726, the hospital network is divided as follows: 5 second-level hospitals,
17 first-level hospitals, and 9 basic hospitals. The hospital network is further
complemented by 4 Scientific Research and Treatment Institutes and 24 accredited
private healthcare facilities.

The results show that there is a significant difference in efficiency between
hospitals levels (ANOVA=7.859, p=0.000, N=59).

In particular, the group of second-level hospitals has the highest efficiency score (-
0.102727 +/- 0.0655), followed by private nursing homes (-0.125742 +/- 0.0732
and first level (-0.202639 +/- 0.0929). The IRCCS has an intermediate efficiency
score (-0.212766 +/- 0.0692), while the base level has the lowest score (-0.288641
+/- 0.0820).

These results suggest that second-level hospitals and private nursing homes are the
most efficient, while base level hospitals are the least efficient. Additionally,
IRCCS have an intermediate efficiency score. The graphical representation of the
PTE scores by hospital level is provided by the scatter plot widget of Orange and
shown in figure 16. The hospital units depicted in the scatter plot have a size
proportional to the PTE efficiency score; units represented by larger spheres will
have a higher PTE efficiency score, while those with smaller spheres will have a
lower score.

Figure 16 Efficiency scores scatter plot for hospital level.
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In general, these analyses have been useful in providing an objective evaluation of
hospital efficiency in the Apulia region and in identifying the causes of any
differences in efficiency between different hospitals levels. This information can be
useful for making informed decisions about the management and allocation of
resources within hospital networks and for improving the quality of hospital care in
the region.

3.23 ANOVA ANALYSIS ALGORITHM: CPDA MODEL

Objective: Assess the differences in efficiency scores among different hospital
levels using the ANOVA technique.

1. Initialization:

e Identify the dependent variable, which in this case is PTE,,rmatized:

e  Identify the grouping variable, which is the hospital level.

2. Assumption Checks:

2.1. Homogeneity of Variances:

e  Perform Levene’s Test: If p > 0.005, variances are assumed to be equal across
groups.

e  Perform Bartlett’s Test: If p > 0.005, variances are assumed to be equal across
groups.

2.2. Normality:

For each group, assess the distribution of the dependent variable using:
e  Shapiro-Wilk Test

e  Kolmogorov-Smirnov Test

e  Anderson-Darling Test

If p > 0.005 for these tests, the distribution is assumed to be normal.

3. ANOVA:
e Perform one-way ANOVA using the formula:

_ Between — group variability

18
Within — group variability (18)

If p < 0.005, there is a statistically significant difference in the mean efficiency
scores among the hospital levels.

4. Post-hoc Test:
e If there are significant differences from the ANOVA, perform post-hoc tests
(like Tukey's HSD) to pinpoint which groups differ from each other.

The various steps of this algorithm are illustrated in Figure 17 and were performed
using the statistical software Jamovi.

The ANOVA analysis was conducted to investigate the differences in normalized
PTE efficiency scores across different hospital levels. The assumptions of
homogeneity of variances and normality were met, as indicated by the Levene's test
(p = 0.869), Bartlett's test (p = 0.869), and the Shapiro-Wilk (p = 0.080),
Kolmogorov-Smirnov (p = 0.652), and Anderson-Darling (p = 0.113) tests,
respectively. By examining the Q-Q Plot as part of the assumption’s verification
process, a more robust and visual validation of the residuals' normality is ensured.
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If the points on the QQ-Plot follow a straight diagonal line, it indicates that the
residuals are normally distributed.

The overall ANOVA was significant, indicating differences in efficiency scores
among hospital levels. Post-hoc comparisons using Tukey's HSD test indicated that
the base level differed significantly from private nursing homes (pryxey < 0.01)
and second level (p = 0.02). Additionally, the first level was significantly different
from private nursing homes (pryxry = 0.041).

ANOVA
ANOVA - PTE_normalized
Sum of Squares df Mean Square F [}
HOSPITAL LEVEL 0.219 4 0.05477 7.86 <.001
Residuals 0.376 54 0.00697

Assumption Checks

Homogeneity of Variances Tests

Statistic df df2 p

Levene's 0.311 4 54 0.869
Bartlett's 1.25 4 0.869

Note. Additional results provided by moretests

Normality tests

statistic P
Shapiro-Wilk 0.964  0.080
Kolmogorov-Smirnov 0.0957  0.852
Anderson-Darling 0.601 0.113

Note. Additional results provided by moretests

Q-Q Plot
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Post Hoc Comparisons - HOSPITAL LEVEL

Comparison

HOSPITAL LEVEL HOSPITAL LEVEL Mean Difference SE df t Ptukey
BASE LEVEL - FIRST LEVEL -0.0860 0.0344 540 -2499 0.108
- IRCCS -0.0759 0.0502 540 -1.512 0.559

- PRIVATE NURSING HOMES -0.1629 0.0326 540 -4.892 <.001

- SECOND LEVEL -0.1859 0.0486 54.0 -3.992 0.002

FIRST LEVEL - IRCCS 0.0101 0.0484 54.0 0.218 0.999
- PRIVATE NURSING HOMES -0.0769 0.0265 54.0 -2.906 0.041

- SECOND LEVEL -0.0999 0.0425 540 -2352 0.145

IRCCS - PRIVATE NURSING HOMES -0.0870 0.0451 540 -1.930 0.314
- SECOND LEVEL -0.1100 0.0560 54.0 -1.965 0.297

PRIVATE NURSING HOMES - SECOND LEVEL -0.0230 0.0410 540 -0.561 0.980

Note. Comparisons are based on estimated marginal means

Figure 17 Evaluation of efficiency differences for different hospital levels.
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4. DISCUSSION AND RESULTS

The discussion of the results obtained from the CPDA methodology applied to the
59 hospitals in Apulia is divided into three sections corresponding to the proposed
research questions and one section containing the limitations.

4.1 RESEARCH QUESTION ONE

The CLUSTER-PCA-DEA analysis utilized one input and one output, and the
graphical representation can be found in Figure 18. The efficiency frontier encloses
the inefficient units and displays the relative efficiency of each hospital with a red
square. The yellow squares on the frontier indicate better performance than the
DMUs located below it. DMUSs that are on the frontier are deemed 100% efficient,
whereas those below it are relatively less efficient, as evident from the efficiency
score expressed in Table 2.
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Figure 18 Efficiency frontier of the PCA-DEA model, output oriented with variable returns to scale (VRS).

The graph in Figure 18 was created using the PIM-DEA software (Emrouznejad &
Thanassoulis, 2013). The model optimizes the output and therefore the propensity
for patient hospitalization, who will pursue the best care based on perceived quality.
The results of the efficiency scores assigned to the 59 hospital facilities in Apulia,
using the output-oriented DEA model with variable returns to scale, indicate that
six hospitals are efficient in terms of perceived quality by residents of Apulia. The
scale of values assigned to all hospitals is presented in Table 4, column C-PCA-
DEA (CPD).

The efficient facilities are as follows:

e 3 private nursing home: Casa Di Cura Citta' di Lecce (LE), Villa Bianca
Nursing Home in Lecce (LE), and Casa Di Cura 'S.Michele' Gest. Brodetti
Manfredonia (FG);

e 2 first level hospital: Regional EE Hospital 'Miulli' in Acquaviva delle Fonti
(BA), EE Regional Hospital 'G. Panico' of Tricase (LE);
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e 1 second level hospital: Bari Polyclinic Consortium Hospital (BA).

The use of cluster analysis followed by PCA and the utilization of principal
components as inputs and outputs in the DEA model contribute to the overall
robustness of the efficiency results. The obtained efficiency scores can be
considered robust and reliable. This approach provides a solid assessment of
hospital efficiency in relation to organizational structure and admission propensity.
After evaluating and quantifying the efficiency of Apulian hospitals, we wanted to
investigate the causes of inefficiencies. To do so, we used Cooper et al.'s formula
(2007), recently applied by Hajiagha et al. (2023), to measure the performance of
public hospitals in Iran. Specifically, we decomposed technical efficiency into pure
technical efficiency and scale efficiency to understand the inefficiency resulting
from the environment.

The formula used:

TE = PTE x SE (19)

represents a decomposition of a firm's total efficiency (TE) into two components:
productive efficiency (PTE) and allocative efficiency (SE).

Productive efficiency (PTE) measures the firm's ability to use its inputs efficiently
to produce the desired outputs, i.e., how close the firm is to the efficient frontier.
The PTE values are the efficiency scores assigned to the 59 Apulian hospital
facilities using output-oriented DEA analysis with variable returns to scale,
expressed as percentages in Table 4.

Allocative efficiency (SE), on the other hand, measures the firm's ability to allocate
its inputs efficiently among different productive activities, i.e., how close the firm
is to the optimal input combination for producing the desired outputs. Scale
Efficiency measures the degree of optimality in the size of decision-making units
in relation to production. In the context of DEA, it can be calculated as the ratio of
Output-Oriented CRS (Constant Returns to Scale) Efficiency to Output-Oriented
VRS (Variable Returns to Scale) Efficiency.

The trend graph and the related comparison of efficiency components are shown in
Figure 19.

Figure 19 Technical efficiency decomposition.
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The Citta di Lecce (LE) Clinic has been identified as a highly efficient Data
Envelopment Analysis (DEA) unit, in terms of technical efficiency (TE).

The hospitals, the Regional EE 'Miulli' of Acquaviva delle Fonti (BA), the
Policlinico Consortium of Bari (BA), the 'S.Michele' Gest. Brodetti Manfredonia
(FG) Clinic, the 'G. Panico' Hospital of Tricase (LE), and the Villa Bianca Clinic of
Lecce (LE) have been identified as efficient in terms of productive output and thus
pure technical efficiency (PTE), but they exhibit technical inefficiencies related to
the surrounding environment (SE).

4.1.1 PERCEIVED QUALITY INFLUENCED BY HOSPITAL
EFFICIENCY

The relationship between the perceived quality of patients, as measured by their
propensity to be admitted, and the efficiency of a hospital is a crucial factor to
consider when assessing the effectiveness of a hospital's organizational structure
and inpatient practices.

This correlation can provide insights into the efficiency with which a hospital is
able to meet patients’ needs and expectations, as well as potential disparities
between the perceived quality of care and the actual efficiency in providing it.
Understanding this relationship can help identify potential areas for improvement
in hospital management and resource allocation, ultimately leading to better
outcomes and patient satisfaction. Furthermore, understanding the link between
hospital efficiency and perceived quality of care can also have significant policy
implications.

This study aimed to investigate the influence of the identified Apulian hospital
efficiency on the propensity to hospitalization of resident patients.

The linear regression algorithm in a machine learning environment was used to
analyze this influence.

The propensity to hospitalize was identified as the target variable of the regression
model and the hospital efficiency of scale (SE) and pure hospital technical
efficiency (PTE) as features.

Before applying the linear regression, the variables were normalized in the interval
[0,1], using the “continuize” widget of the orange software. By normalizing, or
scaling, the variables to a similar range, to eliminate potential biases that can arise
from differences in measurement units or scales. This process enhances the model's
ability to accurately capture relationships between variables, as the regression
algorithm can more effectively compare and weigh their impacts. Subsequently,
outliers were removed. We assessed the Spearman correlation coefficient between
the target variable and the two features, which are not normally distributed, both
for the entire Apulian hospital network, for private and public hospital networks
and for private nursing home, using the “correlation” widget of the orange software.
The results are presented in the table 10.

Table 10. Spearman correlation coefficient between the target variable and the two features.

NETWORK TARGET VARIABLE PTE SE
APULIAN PUBLIC HOSPITAL NETWORK PROPENSION HOSPITALIZATION  +0.709 - 0.851
APULIAN PRIVATE HOSPITAL NETWORK PROPENSION HOSPITALIZATION  +0.369 +0.180
PRIVATE NURSING HOME PROPENSION HOSPITALIZATION  +0.507 +0.743

Linear regression is a statistical model that attempts to establish a linear relationship
between a dependent variable (target) and one or more independent variables
(features).

65



The linear regression model produces a linear function that attempts to predict the
value of the dependent variable based on the values of the independent variables.
The model in multiple linear regression consists of more than one predictor
variable:

Y = Bo+ p1X1 + B2Xo+ - + BpXp + € (20)

where Y is the response variable, X;; X,; ... Xp is the predictor variables with p as
the number of variables, Sy; f1; B2 - Bp are the regression coefficients, and € is an
error to account for the discrepancy between predicted data and the observed data.
The Linear regression widget is used to provide the prediction algorithm with the
dataset containing the variables to be analyzed, and the performance of the model
is evaluated using the Test and scores widget with a cross-validation of 10 folds
(Santamato et al. 2023). The results of the evaluation are described in table 11.

Table 11. Performances of Linear regression models.

NETWORK MSE RMSE MAE R2

APULIAN PUBLIC HOSPITAL NETWORK 0.096 0.310 0.209 0.941
APULIAN PRIVATE HOSPITAL NETWORK 3.406 1.845 1.026 -2.064
PRIVATE NURSING HOME 0.045 0.212 0.175 0.930

FOR APULIAN PUBLIC HOSPITAL NETWORK:

The regression coefficients indicate how both the scale efficiency (SE) and the pure
technical efficiency (PTE) influence the likelihood of hospitalization. Specifically,
a negative coefficient for scale efficiency (-5.77018) suggests that an increase in
scale efficiency is associated with a decrease in the likelihood of hospitalization,
while a positive coefficient for pure technical efficiency (2.46398) indicates that an
improvement in technical efficiency is correlated with an increase in the likelihood
of hospitalization.

The model's performance metrics, calculated using 10-fold cross-validation,
provide information about the goodness of fit of the model to the data:

The intercept term of 7.34619 represents the expected value of the target variable
when all predictor variables (SE and PTE) are zero.

In Figure 20, the relationships between hospitalization propensity and efficiency
measures, PTE and SE, for the public hospital network are depicted. The regression
line highlights the overall trend between these two variables. The size of each point
represents the hospitalization propensity of the corresponding hospital, with larger
points indicating a higher propensity.

The chart shows that as the hospitalization propensity in the public network
increases, there is an increase in pure technical efficiency (PTE) and a decrease in
scale allocative efficiency (SE).
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Figure 20 Relationship between Hospitalization Propensity and Efficiency Measures (PTE and SE) for the
Public Hospital Network.

Mean Squared Error (MSE): 0.209 - This value represents the average of the
squared differences between the values predicted by the model and the actual values
of the hospitalization likelihood. A lower MSE indicates that the model has good
predictive accuracy.

Root Mean Squared Error (RMSE): 0.310 - The RMSE is the square root of the
MSE and provides an estimate of the average error between the model's predictions
and the actual values. A smaller RMSE indicates greater model accuracy.

Mean Absolute Error (MAE): 0.096 - This value represents the average of the
absolute differences between the model's predictions and the actual values. The
MAE measures the average deviation between predictions and actual data.
R-squared (R2): 0.941 - The R2 represents the proportion of the variance in the
target data that the model can explain. In this case, a value very close to 1 (0.94)
indicates that the model effectively explains the variation in hospitalization
likelihood using the predictive variables.

In general, the utilization of 10-fold cross-validation along with the very low error
metrics (MSE, RMSE, and MAE) and the high R2 suggests that the model fits the
data well and accurately explains the variation in hospitalization likelihood.

FOR APULIAN PRIVATE HOSPITAL NETWORK:

The model associated with the Apulian Private Hospital Network demonstrates
poorer performance. The higher values of MSE, RMSE, and MAE (3.406, 1.845,
and 1.026 respectively) indicate larger prediction errors compared to the other
networks. Additionally, the negative R2 value of -2.064 suggests that this model
does not fit the data well and might not effectively capture the underlying
relationships.

FOR PRIVATE NURSING HOME:

The fourth linear regression model, focusing on Private Nursing Homes within the
Private Hospital Network, stands out for its excellent performance. The notably low
values of Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
Mean Absolute Error (MAE) — recorded respectively as 0.045, 0.212, and 0.175
— highlight the model's high predictive accuracy regarding hospitalization
propensity. Furthermore, a remarkable R-squared (R2) value of 0.930 suggests that
the model effectively explains 93% of the variation in hospitalization propensity
using the predictor variables.

The model's coefficients provide further insights: the intercept is -19.8463,
representing the baseline hospitalization propensity when all other variable values
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are zero. Scale Efficiency (SE) has a coefficient of 21.5713, suggesting its influence
on hospitalization propensity, while the coefficient for Pure Technical Efficiency
(PTE) is 2.85371. These coefficients suggest that both types of efficiency
significantly impact the hospitalization propensity within Private Nursing Homes.
In Figure 21, the relationships between hospitalization propensity and efficiency
measures, PTE and SE, for private nursing home are depicted. The size of each
point represents the hospitalization propensity of the corresponding hospital, with
larger points indicating a higher propensity.

The chart shows that as the hospitalization propensity in the public network
increases, there is an increase in pure technical efficiency (PTE) and in scale
allocative efficiency (SE).
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Figure 21 Relationship between Hospitalization Propensity and Efficiency Measures (PTE and SE) for the
Private Nursing Homes.

Drawing upon the data provided in the contingency table (Tab. 2), we observe that
the Apulian public hospital network, combined with the private nursing homes,
constitutes 88.2% of the total health system in the region. This percentage is
substantial and accentuates the paramount role of efficiency in determining
hospitalization propensity within the Apulian healthcare sector.

The correlation witnessed between efficiency metrics and hospitalization
propensity indicates a direct interplay between the operational performances of the
institutions and patient choice. In an increasingly resource-optimized and quality-
driven healthcare landscape, efficiency stands out as a pivotal factor. Its capability
to influence hospitalization propensity suggests that policies and practices aimed at
bolstering efficiency could translate into tangible benefits, not only in terms of
hospital management but also in the perceptions and decisions of patients.

4.2 RESEARCH QUESTION TWO

The results of the analysis, obtained using the Data Envelopment Analysis (DEA)
methodology with variable returns to scale, assessed the efficiency of hospitals
considering organizational structure and workforce as inputs, and patient admission
rate and perceived quality as outputs. The results reveal a significant difference in
efficiency among different hospital levels, indicating that the level of specialization
and types of services provided by hospitals impact overall efficiency.

Hospitals at the second level, offering more complex services such as specialized
surgery and intensive care, achieved the highest efficiency scores. This suggests
that these hospitals effectively utilize available resources to provide high-quality
care to patients. Accredited private healthcare facilities, operating in the private
sector and accredited by the National Health Service, also demonstrated high
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efficiency scores. This implies that they efficiently deliver care and rehabilitation
services while maintaining high quality standards.

Institutes of Scientific Research and Healthcare (IRCCS), specialized in scientific
research and highly specialized healthcare, obtained intermediate efficiency scores.
This highlights their significant role in medical research and the development of
new therapies, effectively combining research and patient care.

First-level hospitals achieved intermediate efficiency scores, while basic-level
hospitals showed the lowest efficiency scores. This indicates that first-level
hospitals provide basic care relatively efficiently, while basic-level hospitals,
primarily performing primary care functions, could benefit from improving their
efficiency to enhance service quality.

The decomposition of technical efficiency (TE) into pure technical efficiency (PTE)
and allocative efficiency (SE) allows identifying the sources of inefficiency within
a firm. For example, if total efficiency is low but productive efficiency is high, it
means that the firm is producing desired outputs efficiently but not utilizing inputs
optimally. In this case, the firm should focus on allocative efficiency to improve its
overall efficiency. Conversely, if productive efficiency is low but allocative
efficiency is high, it means that the firm is using inputs efficiently but not producing
desired outputs efficiently. In this case, the firm should focus on productive
efficiency to improve its overall efficiency.

The results of pure technical efficiency (PTE) reveal significant differences among
hospital groups. Second-level hospitals are the most efficient, followed by private
RSAs and IRCCS, while basic-level hospitals show the lowest score. These results
indicate that the specialization of services influences the overall efficiency of
hospitals. Accredited private healthcare facilities demonstrate high efficiency in
providing care and rehabilitation services, while IRCCS obtain intermediate scores,
highlighting their role in medical research. Improving hospital efficiency requires
strategies such as service specialization, resource optimization, and efficient
allocation.

These considerations underscore the importance of adopting strategies to enhance
hospital efficiency and ensure better quality of care for patients.

The ANOVA analysis revealed that second-level hospitals have a relatively lower
level of scale efficiency (SE) compared to other categories. These findings indicate
the need to focus more on resource optimization and implement specific
interventions to improve the performance of these hospitals. It may be beneficial to
carefully examine operational practices, human resource management, and the
adoption of advanced technologies to identify the underlying causes of this
inefficiency. Through accurate assessment and continuous monitoring,
opportunities for improvement can be identified, and targeted strategies can be
developed to increase the scale efficiency of second-level hospitals. This will
optimize the use of resources and ensure the delivery of effective and efficient care
at the hospital level. Regarding allocative efficiency (SE), the ANOVA analysis
reveals significant differences among different hospital levels (Figure 22).
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Figure 22 ANOVA analysis by hospital level (SE efficiency).

The results indicate that basic-level hospitals, IRCCS, and private nursing homes
have higher scale efficiency (SE) scores, while second-level hospitals show
relatively lower scores. This suggests that basic-level hospitals, IRCCS, and private
nursing homes are achieving cost and productivity advantages through appropriate
resource size, while second-level hospitals may have opportunities for
improvement to optimize resource utilization and increase scale efficiency. The
implications of this may include reviewing resource allocation strategies and
implementing targeted interventions to improve the scale efficiency of second-level
hospitals.

Considering the results of pure technical efficiency (PTE) and scale efficiency (SE),
some deductions and implications for hospital management can be drawn:
Second-level hospitals may be characterized by relatively low scale efficiency but
have shown good efficient productivity of output. This suggests that despite
suboptimal resource size, they are able to provide a high perceived quality of care.
Consequently, it is possible that second-level hospitals have implemented
management processes and targeted care strategies to ensure superior quality in
healthcare delivery.

Basic-level hospitals, IRCCS, and private nursing homes have demonstrated both
higher scale efficiency and efficient productivity of output. This implies that these
facilities have an optimal resource size and are able to provide a high perceived
quality of care. These results suggest that further investment in resources for these
facilities could lead to additional improvements in efficiency and the quality of
healthcare services provided.

Based on these deductions, some implications for hospital management could be:
Consider specific interventions to improve the scale efficiency of second-level
hospitals in order to optimize resource utilization and improve overall efficiency.
Allocate additional resources to basic-level hospitals, IRCCS, and private nursing
homes to support their already high scale efficiency and promote further
improvements in the quality of healthcare services. Identify best practices adopted
by second-level hospitals to ensure high perceived quality and consider
implementing such strategies in other hospital categories.

In summary, the combined analysis of PTE and SE provides valuable insights for
hospital management, enabling the optimization of resource utilization,
improvement in efficiency, and the delivery of high perceived quality of care to
patients.
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4.3 RESEARCH QUESTION THREE

In the ongoing evolution of the field of hospital efficiency analysis, the capability
to discern accurately and differentiate performances among various healthcare
institutions is paramount. This section aims to methodically assess the
discriminatory capacity of the CPDA approach in comparison to traditional DEA
models in determining hospital efficiency. Moving forward, we will examine how
each individual component of the CPDA framework interacts and contributes to
this discriminatory capability, juxtaposing it with the performance of the DEA
model. The goal is to delve deeply into understanding how the integration of
techniques such as clustering, principal component analysis, and variance analysis
might influence and potentially enhance the precision and differentiation capacity
in evaluating efficiency. Through a detailed analysis, we intend to outline the
nuances and specifics that make CPDA a promising contender for offering a more
nuanced and detailed view of hospital efficiency, compared to traditional DEA
approaches.

4.3.1 CLUSTER COMPONENT

In the realm of data analysis, clustering techniques serve as powerful tools for
grouping data points based on inherent similarities and distinctions. When applied
to hospital efficiency analysis, the cluster component can play a pivotal role in
enhancing the discriminatory power of the model. It allows for a more nuanced
grouping of hospitals, potentially revealing underlying patterns and structures that
might be obscured in a holistic analysis. In the context of the CPDA framework,
the integration of clustering presents both opportunities and challenges. In this
subsection, we delve into a comparative evaluation of the cluster component's
strengths and weaknesses in enhancing the discriminatory capacity of both the
CPDA and traditional DEA models. The following table outlines the key points of
comparison, offering insights into the implications of incorporating clustering in
efficiency analysis models (Table 12).

Table 12. Comparison of Cluster Analysis: Implications in the CPDA Model versus Traditional DEA.

ASPECT DEA CPDA
STRENGTHS

The grouping of correlated variables might lead to a more
distinct separation of DMUs based on latent factors or
underlying concepts, thereby potentially enhancing the

discriminative power.

Uses all variables as given,
potentially leading to a wider
spread of efficiency scores.

Enhanced
Discrimination

Any noise or small variations in By grouping correlated variables, minor variations or noise in
Reduction of Noise  individual variables directly individual variables might be smoothed out, leading to clearer
affect the efficiency scores. efficiency scores.

. . Efficiency scores are based on clusters of variables, emphasizing
Efficiency scores are influenced

by all variables, even those that
might have minor contributions.

Focus on Major
Contributors

ones, leading to sharper distinctions between efficient and
inefficient DMUs.

WEAKNESSES

With many variables, there's a
Over-discrimination risk of over-segmenting DMUs
based on minor differences.

Clustering reduces this risk by focusing on major variable
groups.

By using clusters, the model might mitigate the impact of
individual variable inefficiencies, focusing on broader
inefficiencies across grouped variables. However, there's a risk
of missing nuances related to specific variables.

Inefficiencies in one or a few
Misidentification  variables can heavily influence
the overall efficiency score.

Interpreting results based on clusters of variables might
introduce complexity, as one needs to understand what each
cluster represents. However, this can also be seen as a strength as
it brings forth the underlying patterns in the data.

Direct interpretation based on

Interpretation individual variables can be

Complexity simpler.
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While traditional DEA could offer greater granularity using all variables, the use of
cluster analysis in CPDA could provide a more targeted and meaningful
discrimination based on the main contributing factors.

4.3.2 PCA-DEA COMPONENT

The DEA analysis was conducted on ten input variables and five output variables
(table 2), and the numeric results (table 4, column DEA) were represented by a blue
line in the graph. Subsequently, DEA analysis was applied to the two principal
components identified in the PCA analysis, and the numeric results (table 4, column
C-PCA-DEA) were represented by a red line in the graph (figure 23). From the
results obtained, it emerged that the CPDA model proposed in this study
significantly improved the discriminant ability between the analyzed DMUs
(Decision Making Units) (Guede-Cid et al., 2021; Hajiagha et al., 2023). In
particular, in DEA analysis, more hospitals were considered efficient with a score
of 1, while in the CPDA analysis, only six hospitals out of a total of 59 were deemed
efficient.

Figure 23 Graphic comparison of DEA and CPDA analysis.

By drawing trend lines for the two curves, represented by blue dashed lines for the
DEA analysis on the 15 original variables and red lines for the C-PCA-DEA, we
have identified the equations of the lines and their corresponding definite integrals.
By calculating the areas under the two lines for values [1;59], we have identified a
variation of about 29% in surface units, and therefore in discriminating power in
terms of quantitative interpretation (Table 13).

Table 13. Efficiency Score Area Analysis: DEA and CPDA Comparison.

TRENDLINE PERCENTAGE
MODEL EQUATION DEFINITE INTEGRAL [11,59] v d0) =F($9)-F(1)  procmnen CE (%)
DEA y=0,0002x + 0,8904 F(x) = 0,0001x>+0,8904x+C 51,9912
23,77%
CPDA  y=0,0007x+0,6623  F(x)=0,00035x*+ 0,6623x + C 39,6314

These results demonstrate that applying CLUSTER-PCA to DEA analysis can
improve the discriminant capacity among DMUs and more accurately identify
efficient structures. Furthermore, this approach can be useful in identifying the most
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relevant variables in hospital efficiency analysis and providing useful information
for improving efficiency and quality of healthcare services.

We can state that the CPDA methodology has a discriminant power compared to
the classical DEA methodology, which is more accurate by about 24%.

4.3.3 ANOVA COMPONENT

In the intricate realm of hospital efficiency analysis, understanding the nuances that
differentiate various performance metrics is imperative. Analysis of Variance
(ANOVA) stands as a potent statistical tool, specifically designed to analyze
differences between group means within a sample. For the scope of our study,
ANOVA will be employed to scrutinize efficiency scores against different hospital
levels, aiming to unveil specific trends or anomalies.

In addition to ANOVA, a non-parametric analysis was conducted using the
Kruskal-Wallis test to compare the PTE scores of the traditional DEA model with
the CPDA model. This test was chosen due to its ability to compare means from
samples that aren’t normally distributed.

It's essential to emphasize that to compare the discriminative power between the
two models, the non-parametric ANOVA approach, Kruskal-Wallis, was employed
due to the non-normal distribution of PTE for the traditional DEA model.
Specifically, the challenge in normalizing a variable that presents values within the
interval [0;1], with many values equal to 1, led to this methodological choice.
Conversely, the PTE of the CPDA model was previously normalized using a
logarithmic transformation. Applying Kruskal-Wallis to the two non-normalized
PTEs, we found, in the subsequent post hoc for the PTE of the CPDA model, results
consistent with the post hoc of the ANOVA.

The results from the Kruskal-Wallis test (figure 24) are as follows: for PTE of the
DEA model, chi-square=9.84, df=4, p=0.043, effect size=0.170. For the PTE of the
CPDA model, chi-square=21.66, df=4, p<0.001, effect size=0.374. Further
pairwise group comparisons Dwass-Steel-Critchlow-Flinger (DSCF) revealed
significant differences between hospital levels for both models. These analyses and
subsequent visualizations were meticulously executed using the jamovi statistical
software.

One-Way ANOVA (Non-parametric)

Kruskal-Wallis

X2 df p g2

PTE for DEA MODEL 984 4 0.043 0.170
PTE for CPDAMODEL 2166 4 <.001 0374

Figure 24 Kruskal — Wallis analysis.

In Figure 25, the results of the ANOVA analyses for both the CPDA and traditional
DEA models are presented. Accompanying scatterplots vividly delineate the
efficiency score differences across various hospital levels for each model. These
visual representations offer a clear depiction of these discrepancies, underscoring
the enhanced discriminatory prowess of the CPDA model in comparison to the
traditional DEA. Additionally, within the same figure, post-hoc analyses for both
models following the Kruskal-Wallis tests are displayed, further emphasizing the
distinctions in hospital efficiencies as gauged by the two models.

73



!
——
- |
- e W
:

FIRST LEVEL 2783 0282
IRCCS 1746 0731
PAIVATE NURSING HOMES 5261 0,002

BA:
FIRST LEVEL
FIRST LEVEL
FIRST LEVEL
IACCS

IACCS

PRIVATE NURSING HOMES ~ SEGOND LEVEL

o.

s 232 04
2425 0.
o

0840 09

Figure 25 Comparison of PTE scores between the traditional DEA model and CPDA model using the
Kruskal-Wallis test.

These findings, combined with those from the ANOVA, offer a clear view of
efficiency differences across different hospital levels and between the two models.
The variation in efficiency scores, as determined by the CPDA model and validated
by the Kruskal-Wallis test, provides a more nuanced understanding of relative
efficiencies across different hospital levels compared to the traditional DEA model,
underscoring the superior discriminative capacity of the CPDA model.

The integration of ANOVA and Kruskal-Wallis analyses within the CPDA model
reveals enhanced discriminatory capabilities. The combined analysis offers a more
realistic perspective on hospital efficiency and can guide interventions and
improvement strategies, further emphasizing the superiority of the CPDA model
over the traditional DEA in capturing and reflecting nuances in hospital efficiency.

4.3.4 BENCHMARKING ANALYSIS: NEURAL NETWORK PERFORMANCE
COMPARISON

In the realm of hospital efficiency analysis, the rise of machine learning techniques
has offered new avenues for data interpretation and modeling. Neural networks, in
particular, have become an indispensable tool given their prowess in capturing
intricate and non-linear relationships within data. We have already seen how the
CPDA model exhibits superior discriminatory capability compared to the
traditional DEA model when considering all its components.

However, to gain a comprehensive understanding of the CPDA model's potential,
it's essential to juxtapose it with advanced predictive techniques, especially neural
networks.

Neural networks, inspired by the neural processes of the human brain, stand as one
of the cutting-edge frontiers in machine learning. These models can capture and
model intricate relationships in data, offering unique insights into the data's nature
and underlying structure. Within the scope of our analysis, we employed a neural
network to compare the efficiency scores derived from DEA and CPDA models.
The target variable chosen for this analysis was the classification of hospitals as
"Private" or "Public", while the input variables, or features, were the pure technical
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efficiency (PTE) scores and scale efficiency (SE), as derived from the CPDA and
DEA models.

To embark on the analysis, we utilized the Orange software. Feature values were
first normalized in the [0;1] range using the "Continuize" widget. This
normalization ensures that all variables have the same weight and contribution in
the neural network model. Instead of omitting outliers, we chose to incorporate
them into the analysis, embedding them in the dataset. This approach was adopted
to guarantee that the model mirrored the entire range of variations in the data and
permitted a fair comparison between models based on the same number of
structures.

With the data duly preprocessed, we configured the "Neural Network" widget to set
up our neural network:

1. Structure with 100 neurons in the hidden layer: This indicates that the
neural network has a "hidden layer" composed of 100 neurons (or nodes). A neural
network can have multiple layers, and each layer can have a varying number of
neurons. These neurons are responsible for capturing and modeling features in the
data.

2. Activation function ReLu: The ReLu (Rectified Linear Unit) activation
function is a function used to determine the output of each neuron. The ReLu
function returns the input value if it's positive; otherwise, it returns zero. It's popular
in neural networks because it helps prevent some common issues during training,
such as the vanishing gradient problem.

3.  Optimizer "Adam'": Adam is an optimization algorithm used to update the
neural network weights during training. It's a variant of the stochastic gradient
descent algorithm that calculates adaptive estimates of the first and second-order
moments. Adam is known for its efficiency and its ability to converge quickly.

4. Maximum of 200 iterations for training: This indicates that the neural
network will be trained for a maximum of 200 cycles (or "epochs"). In each cycle,
the entire dataset is presented to the network, the weights are updated, and the error
is computed. Training may terminate before the 200 epochs if a certain convergence
threshold is reached or if other early stopping techniques are employed.

Finally, we connected the neural network model to the "Test and Scores" widget
configured for stratified ten-fold cross-validation. This approach allowed for an
accurate and robust evaluation of the model's performance.

Table 14. Performance Benchmarking Comparison between CPDA and Traditional DEA Models using Neural
Networks.

METRIC DEA CPDA
AUC 0.547 0.894
CA 0.610 0.847

F1 Score 0.608 0.848
Precision 0.609 0.848
Recall 0.610 0.847

The results presented in the comparison table (Table 14) clearly highlight the
superior performance of the CPDA model compared to the traditional DEA model:

1. AUC (Area Under the ROC Curve): The AUC is an important indicator to
assess the overall performance of a classification model. An AUC value close to 1
indicates an excellent ability of the model to distinguish between classes. The
CPDA model has an AUC of 0.901, very close to optimal, whereas the traditional
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DEA model has an AUC of only 0.598, which is mediocre. This suggests that the
CPDA model has a significantly better ability to correctly classify hospital facilities
compared to traditional DEA. A graphical representation of the AUC for the two
models is shown in figure 26.

DEA CPDA

Target: Private

Target: Public

Figure 26 AUC representation for DEA and CPDA.

2. CA (Accuracy): The CA represents the proportion of correct predictions
relative to the total. The CPDA model has an accuracy of 84.7%, which means it
correctly predicted the efficiency of about 85% of the hospital facilities. In contrast,
the traditional DEA has an accuracy of 61%, which is significantly lower.

3. F1 Score: The F1 score is a measure that combines both precision and recall.
A higher F1 score indicates a better balance between precision and recall. The
CPDA model has an F1 score of 84.8%, while the traditional DEA stands at 60.8%.
This indicates that the CPDA model is much more balanced in its predictions.

4. Precision: Precision indicates the proportion of positive identifications that
were actually correct. The CPDA model has a precision of 84.8%, compared to
60.9% of the traditional DEA model. This suggests that the CPDA model has a
much higher ability to avoid false positives.

5. Reecall: Recall indicates the proportion of actual positives that were correctly
identified. Both the CPDA model and the traditional DEA have similar values for
this metric, 84.7% and 61% respectively, but again CPDA prevails.

Confusion matrices were generated for both models, CPDA and DEA (Fig.27):

Confusion Matrix

Confusion matrix for Neural Network (showing number of instances)

Predicted Predicted

PRIVATE PUBLIC PRIVATE PUBLIC §
Actual PRIVATE 21 10 31 Actual  PRIVATE 2 5 3
PUBLIC 13 15 28 PUBLIC 4 24 28
b1 34 25 59 3 30 20 59
DEA CPDA

Figure 27 Confusion Matrixes for DEA and CPDA models.
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1. True Positives (private facilities classified as private): 29 for DEA and 26 for
CPDA;
2. False Positives (private facilities classified as public): 18 for DEA and 4 for
CPDA;
3. False Negatives (public facilities classified as private): 2 for DEA and 5 for
CPDA;
4. True Negatives (public facilities classified as public): 10 for DEA and 24 for
CPDA.

Overall, the CPDA model makes fewer mistakes compared to the traditional DEA
model as highlighted by the confusion matrices.

In summary, when comparing the discriminatory capacity between the CPDA
model and the traditional DEA model through the use of neural networks, the CPDA
model clearly stands out as the more effective one. While the traditional DEA model
offers limited discriminatory capability, as evidenced by the lower benchmark
metrics, the CPDA model, which integrates advanced techniques such as cluster
analysis, ANOVA, and PCA, exhibits a considerably superior discernment
capability. This distinction is particularly evident in the CPDA model's ability to
accurately identify the network affiliation of hospital facilities (both private and
public). In conclusion, the integrated approach adopted by the CPDA model makes
it a much more powerful tool for assessing hospital efficiency compared to the
traditional DEA model.

4.3.5. CHOICE OF TARGET VARIABLE AND FEATURES FOR THE
NEURAL NETWORK MODEL

The decision to select the "network" as the target variable and "PTE" (Pure
Technical Efficiency) and "SE" (Scale Efficiency) as features for the neural
network model is rooted in both the intrinsic nature of hospital operations and the
objectives of the study.

1. Relevance to Hospital Operations:

e Network (Private/Public): The classification of hospitals into private or public
networks is fundamental in healthcare research. This distinction often brings with
it inherent differences in operational strategies, funding mechanisms, patient
demographics, and service delivery models. By analyzing the efficiency measures
in the context of this distinction, one can gain insights into the relative performance
of the two sectors.

e PTE and SE: These efficiency metrics are fundamental to DEA analysis,
providing a holistic view of a hospital's operational performance. PTE measures
how well a hospital converts its inputs into outputs, reflecting operational prowess.
SE, on the other hand, gauges how optimally a hospital utilizes its size and resources
in its operations.

2. Objective Alignment: The study aimed to evaluate and compare the
efficiency of hospitals in Apulia. The efficiency of a hospital can influence patient
choices, policy decisions, and management strategies. By analyzing how PTE and
SE influence the classification of hospitals into public or private networks, the study
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can provide nuanced insights into the operational strengths and challenges inherent
to each sector.

3. Influence on Neural Network Results:

e Feature Interplay: Neural networks excel at capturing intricate relationships
and interactions between features. By feeding the model with PTE and SE, the
network can discern patterns that might be less apparent in traditional statistical
models.

e Predictive Power: The combination of PTE and SE as features offers a
comprehensive view of a hospital's efficiency. This comprehensive perspective
bolsters the model's predictive capabilities, allowing it to more accurately classify
hospitals into their respective networks based on efficiency measures.

e  Model Interpretability: While neural networks are often considered "black-
box" models, the choice of meaningful features like PTE and SE can aid in drawing
qualitative insights from the model's results. For instance, if the model consistently
misclassifies certain types of hospitals, it might indicate unique operational
strategies or external factors influencing those hospitals' efficiency metrics.

The choice of the "network" as the target variable and "PTE" and "SE" as features
is both strategic and purposeful. It ensures alignment with the study's objectives
while maximizing the neural network's potential to provide meaningful and
actionable insights. By leveraging the power of neural networks and the
significance of chosen variables, the study can offer robust recommendations for
enhancing hospital efficiency in Apulia.

4.3.6. STRATEGIC PARAMETER SELECTION IN ADVANCED HOSPITAL
EFFICIENCY ANALYSIS

While the CPDA model remains a solid methodology for hospital efficiency
analysis, it could benefit from integrating recent innovations in the field of soft
computing. Emerging literature offers a series of advanced techniques that could
further strengthen the discriminatory capability and precision of CPDA.

Devi et al. (2022) introduced IRKO (Improved Runge-Kutta Optimization) as a
cutting-edge solution for global optimization. Although CPDA mainly focuses on
efficiency analysis, integrating optimization techniques like IRKO could improve
variable selection and weight determination, ensuring a more accurate and robust
efficiency estimation.

On another front, the approach proposed by Gupta et al. (2021) combines the firefly
algorithm with genetic techniques, offering an optimized solution for nonlinear
optimization problems. This fusion could be used within the CPDA model to further
refine the clustering phase, ensuring that hospital structures with similar
characteristics are optimally grouped.

Finally, Ghasemi et al. (2022) highlighted the potential of the Circulatory System
Based Optimization (CSBO), a biologically-inspired algorithm. Algorithms like
this could provide new avenues to model complex interactions between variables
within the CPDA framework, offering a more holistic and nuanced view of hospital
efficiency.

In the context of advanced analysis of hospital efficiency through the CPDA model,
we have conducted a phase of parameter optimization used in various components
of the process. This phase was implemented with the aim of improving the accuracy
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and reliability of the analysis, while also providing a comprehensive and exhaustive
evaluation of hospital efficiency.

The parameter selection began with the Cluster Analysis phase, where we
considered different clustering algorithms like DBSCAN, Louvain Clustering, and
Hierarchical Clustering. The choice of clustering method and the number of clusters
were carefully evaluated in relation to the characteristics of the hospital dataset. The
goal was to correctly segment the data to identify patterns of similarity among
hospital structures (paragraph 3.6).

In the PCA (Principal Component Analysis) phase, we tackled the question of
selecting the optimal number of principal components to retain. This step is crucial
for balancing the goal of capturing maximum variance in the data with the need to
reduce dimensionality. The objective was to maintain an optimal number of
principal components that preserve the essence of the data without introducing
noise or redundancy.

In the DEA (Data Envelopment Analysis) phase, a conscious decision was made
not to assign weights to the variables. We adopted an output-oriented approach and
the VRS (Variable Returns to Scale) model to calculate the efficiency of hospital
structures. This choice allowed for the evaluation of efficiency without introducing
subjective weights to the variables.

In the ANOVA (Analysis of Variance) phase, we selected the significance level p
value to use for evaluating differences between the groups identified in previous
phases. The choice of p value was critical in determining whether the observed
differences between the groups were statistically significant and thus representative
of true disparities among hospital structures.

We will focus on the phase following the Cluster Analysis. In this phase, the focus
shifts towards optimizing the weights of the variables identified through the Cluster
Analysis. We start from the initial weight assignment, where all variables have an
equal weight of 1. This step marks the beginning of the optimization process, where
we seek to find the optimal combination of weights that maximizes the efficiency
of the CPDA model.

The goal is to maximize the difference between the efficiency values calculated via
the CPDA model and those calculated via the traditional DEA model. This not only
increases the discriminatory power of the model but also contributes to optimizing
the CPDA model as a whole.

We begin with standardizing the variables, an essential step to ensure that all
variables are on the same scale and are comparable. This process allows us initially
to assign a uniform weight to each variable, as all are now standardized and
comparable among themselves. However, assigning uniform weights may not
optimally reflect their actual impact on hospital efficiency. Therefore, the goal is to
adjust these weights so that they accurately reflect the importance of each variable
in the scope of efficiency analysis.

To achieve this goal, we turn to optimization algorithms. We have chosen the
Particle Swarm Optimization (PSO) algorithm suitable for optimizing our objective
function. The workflow for this optimization phase is illustrated in Figure 28.
During the execution of the Particle Swarm Optimization (PSO) optimization
algorithm, several key parameters were recorded that provide insights into the
optimization process. Analyzing these parameters can help in better understanding
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the course of optimization and the effectiveness of the algorithm in achieving the
set objective.

The iterations field of the output object indicates that 21 iterations were performed
during the optimization. This value represents the number of times the algorithm
updated the particle positions in an attempt to improve the objective function value.
The fun count field provides the total number of objective function evaluations
carried out during the optimization. In this case, the algorithm evaluated the
objective function 2200 times, exploring different weight combinations to
determine which combination minimizes the difference between DEA and CPDA.

The message field contains a termination message for the optimization. In the
current execution, the message indicates that the optimization ended because the
relative change in the objective value over the last iterations is below a specified
threshold. This suggests that the algorithm has reached a stable solution or a
stagnation situation.

Finally, the hybrid flag field is empty in this execution, indicating that no form of
hybrid optimization was used in addition to PSO.

Overall, the analysis of these parameters provides an overview of the progress of
the PSO optimization and its ability to converge to an optimal solution for the given
problem.
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The parameters used in our model are as follows:

HIERARCHICAL CLUSTERING:
Parameters:

Distance metric: Spearman
Linkage: Ward

Height ratio: 80%
Distance between rows

Constraints:

2 Clusters
In accordance with existing literature

VARIABLES STANDARDIZATION
C2: Cluster 2 with 10 Input variables
C1: Cluster 1 with 5 Output variables
Parameters:

Standardize tou = 0 e 0% = 1
Variable weights = 1.

PRINCIPAL COMPONENTS ANALYSIS
Parameters:
For C2:

1 Principal Component

Explained variance 95%

The variance of the components is homogeneous
Component Loading: varimax rotation was used
Bartlett’s Test of Sphericity: p<0.001

KMO Measure of Sampling Adequacy: MSA 0.887

For C1:

1 Principal Component

Explained variance 88%

The variance of the components is homogeneous
Component Loading: varimax rotation was used
Bartlett’s Test of Sphericity: p<0.001

KMO Measure of Sampling Adequacy: MSA 0.917

Constraints:

PCA was applied separately to the 2 clusters.

DATA ENVELOPMENT ANALYSIS
Parameters:

Variable Scale Return (VRS)

Output Oriented

No weight for variables

For CPDA: 1PCA_Input and IPCA_Output

For traditional DEA: 10 Input and 5 Output variables
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ANOVA ANALYSIS

e F=786

e P<0.001

e Levene’s p=0.869

e  Bartlett’s p=0.869
Shapiro-Wilk p=0.080
Kolmogorov-Smimov p=0.652
e  Anderson-Darling p=0.113

PARTICLE SWARM OPTIMIZATION (PSO)

e FO = max |PTE for CPDA — PTE for traditional DEA|
e output=

struct with fields:

rngstate: [1x1 struct]

iterations: 21

funccount: 2200

message: 'Optimization ended: relative change in the objective value ¢over the last
OPTIONS.MaxStalllterations iterations is less than OPTIONS.FunctionTolerance.'
hybridflag: []

PRINCIPAL COMPONENTS ANALYSIS OPTIMIZED
e  Same parameters and results of PCA

DATA ENVELOPMENT ANALYSIS OPTIMIZED
e  Same parameters of DEA analysis

e For traditional DEA optimized: different PTE in comparison to traditional
DEA

Objective and Algorithmic Approach

To maximize the difference in efficiency scores between our CPDA model and the
traditional DEA model, we explored algorithmic options, specifically the Particle
Swarm Optimization (PSO) algorithm. PSO simulates the behavior of a particle
swarm, where each particle represents a potential solution. The algorithm is well-
suited for complex problems and can converge rapidly to promising solutions.

Mathematical Formulation
The optimization objective can be mathematically expressed as:

OF = max|PTE for CPDA — PTE for traditional DEA]| (21)

Where:

PTE for CPDA = Efficiency as expressed by the CPDA model (CPDA value in
Table 4).

PTE for traditional DEA = Efficiency as expressed by the traditional DEA model
(DEA value in Table 4).

This optimization process aims to identify weight combinations that maximize
discrimination between the two methodologies, thereby identifying key variables
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for hospital efficiency. The weights assigned to the 10 input and 5 output variables
by the optimization algorithms are depicted in Figure 29.

Particle Swarm Optimization

0,89024

0,76831

046953 0,45799

0,43078
0,38559
0,36426
0,33883
0,2397 0,25766
0,15347 0,16176
0,12124
0,08198
iy l .
—

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 Weight 7 Weight 8 Weight9  Weight 10 Weight 11 Weight12 Weight13 Weight14 Weight 15

Figure 29 Optimized weights generated by Particle Swarm Optimization algorithm.

Variable Selection and Weighting

We then identified 15 optimized variables by multiplying the standardized variables
post-clustering phase by their respective optimized weights. These optimized
weights were then applied to the input (1-10) and output variables (11-15).

Data Analysis

PCA was applied to the 10 optimized input variables and the 5 optimized output
variables, yielding one principal component for each. Subsequently, we used
output-oriented VRS DEA to compute optimized efficiency scores. We also applied
traditional DEA analysis on these optimized variables to obtain efficiency scores
via the conventional DEA method.

Results and Insights

The average efficiency score difference between the CPDA and traditional DEA
models was 0.21, while the average difference using optimized variables with the
PSO algorithm was 0.28. This demonstrates that variable optimization leads to more
discriminative or sensitive efficiency estimations. The percentage difference
between the efficiency scores from the optimized CPDA and traditional DEA
models was 29.17%, surpassing the 23.77% identified without algorithmic
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optimization. From the results obtained, we calculated the CPDA-DEA difference;
the results of the average differences are illustrated in Figure 30.

CPDA-DEA CPDA-DEA (ParticleSwarmOptimization)
m AVERAGE VALUE 021 0,28

Figure 30 Average differences between CPDA and optimized DEA.

Results and Insights

The average efficiency score difference between the CPDA and traditional DEA
models was 0.21, while the average difference using optimized variables with the
PSO algorithm was 0.28. This demonstrates that variable optimization leads to more
discriminative or sensitive efficiency estimations. The percentage difference
between the efficiency scores from the optimized CPDA and traditional DEA
models was 29.17%, surpassing the 23.77% identified without algorithmic
optimization. The graphical results are illustrated in figure 31 and the numerical
results in table 15.

VYT TV AT

Figure 31 Graphic comparison of DEA and CPDA analysis optimized.
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Table 15. Efficiency Score optimized Area Analysis: DEA and CPDA Comparison.

TRENDLINE PERCENTAGE
NTEGRAL 1,59] (y dx) = F(59) - F(1
MODEL EQUATION DEFINITE I 159 ¢ a)=FE9)-FO) | peroeNCE (%)
DEA y = 9E-05x + 0,962 F(x) = 4,5E-05x2 + 0,962x + C 55,9526
29,17%
CPDA  y=00007x+0,6623  F(x)=0,00035x2 +0,6623x + C 39,6314
Statistical Tests

Non-parametric Kruskal-Wallis tests were conducted both for the optimized
traditional DEA and CPDA models. The results, consistent with those from non-
optimized models, further confirm the superior discriminatory power of the CPDA
model.

The use of Particle Swarm Optimization (PSO) is not limited to simply enhancing
the discriminative power of the CPDA model. In addition to optimizing this specific
metric, PSO is also used to confirm and validate the efficiency scores generated by
the CPDA model itself. Furthermore, the PSO algorithm contributes to optimizing
the efficiency scores in the traditional DEA model.

In sum, while the CPDA model already represents a significant advancement in
hospital efficiency analysis, integrating soft computing innovations like PSO could
offer even more substantial improvements. This positions the CPDA model at the
cutting edge of advancements in the field.

4.4 RESPONSES TO I SESSION RESEARCH QUESTIONS

The answers to the research questions proposed in I Session are as follows:

A;: Using the proposed CPDA methodology in this study, we successfully assessed
the efficiency of hospitals in the Apulian region. Standardized efficiency scores
ranging from 0 to 1 were identified. Within the public hospital network of Apulia,
both pure technical efficiency (PTE) and scale efficiency (SE) proved pivotal in
determining hospitalization propensity.

A, : The CPDA methodology facilitated the evaluation of hospital efficiency in the
Apulian region based on their affiliation and level. The results highlighted superior
efficiency in higher-level hospitals.

As: The findings underscored that the CPDA methodology, anchored in machine
learning techniques, boasts superior discriminant power compared to traditional
DEA models in evaluating hospital efficiency. This implies that the proposed
methodology can arm healthcare organizations with invaluable insights to enhance
the efficiency and quality of healthcare services.

4.5 LIMITATIONS

Despite the value and innovation brought forth by this study in the realm of hospital
efficiency through the adoption of the CPDA methodology, it's imperative to
underscore certain intrinsic limitations that might influence the interpretation and
generalization of the findings:

e Sample Size: The research focused on a specific sample of hospitals in 2020.
This temporal and geographic circumscription might not fully reflect the variability
and complexity of the entire hospital ecosystem, potentially limiting the
generalizability of the outcomes to a broader context.
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e Intraregional Mobility: The active intraregional mobility variable was
gauged using an interpolated path between the patient's city of origin and the
hospital city of destination. While pragmatic, this methodology might introduce
inaccuracies and fail to capture all patient movement dynamics.

e  Geographical Scope: Even though the analysis zeroes in on the Apulian
region, it's crucial to acknowledge that each region, or country, has its unique
peculiarities and challenges. Hence, directly applying these findings to other
settings might necessitate methodological adjustments.

e CPDA Methodology: While the CPDA model demonstrated promising
discriminative capabilities, its intricate nature and the melding of various methods
could present challenges in interpretation and practical deployment, especially in
settings with constrained resources or expertise.

e Variables and Data: As with any study, the quality and completeness of the
collected data can influence the outcomes. Even though measures were taken to
ensure data accuracy, the absence of certain relevant variables or potential
inaccuracies in the data might impact the precision of the analysis.

These limitations provide invaluable directions for future research. It's paramount
that subsequent studies consider these challenges, expanding and deepening the
CPDA methodology, and exploring its applicability across diverse contexts to
ensure a more robust and generalizable analysis of hospital efficiency.

This study presents several pivotal limitations:

e Scope and Complexity of Investigation: The primary aim was to introduce
and validate the CPDA methodology within the Apulian context. An expansive
investigation, incorporating every recommendation, would have broadened the
study's scope excessively, potentially diluting the core objective and making the
analysis overly intricate.

e Data Availability: Access to specific data, or granularity levels required for
some of the recommended investigations, might not have been available or easily
accessible during the research timeframe.

e Preliminary Nature of Investigation: This study serves as an exploratory
inquiry introducing the CPDA method. In research, it's strategic to establish a
foundational footing before branching into more detailed or nuanced investigations.
e  Depth of Analysis: To ensure a rigorous understanding and validation of the
CPDA methodology, it was crucial to delve deeply into its application in the given
context. Expanding the focus to multiple investigations could have sacrificed the
depth and rigor of the analysis.

Though these limitations outline the scope and boundaries of our study, they also
underscore the potential for further research.

5.  CONCLUSION OF I SESSION

This study introduces an innovative methodology, CPDA, which combines Cluster
Analysis, Principal Component Analysis (PCA), Data Envelopment Analysis
(DEA), and Analysis of Variance (ANOVA) to evaluate hospital efficiency. The
machine learning environment is integrated through the use of linear regression and
neural network algorithms, while optimization using Particle Swarm Optimization
(PSO) further enhances the CPDA model.
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Through the application of CPDA to hospital efficiency in the Apulia region, Italy,
original findings emerge. Relationships between hospital efficiency and
hospitalization propensity are identified, underscoring the importance of efficient
resource allocation to enhance care quality. Significant variations in hospital
efficiency based on hospital network affiliation and level are highlighted.

The utilization of machine learning algorithms, particularly neural networks,
demonstrates CPDA's superior discriminatory power compared to traditional Data
Envelopment Analysis (DEA). Neural networks also provide a benchmark for
evaluating the CPDA model against DEA, confirming its effectiveness.
Optimization through Particle Swarm Optimization (PSO) enhances the CPDA
model in terms of discriminatory power and confirmation of efficiency values.
Further Analyses:

In addition to the conducted analyses, the integration of PSO, optimizing the CPDA
model, is noteworthy for its enhanced discriminatory capability and validation of
identified efficiency results. Moreover, the incorporation of various clustering
algorithms within CPDA and the selection of the best-performing among them
represent further methodological improvements.

Future Perspectives:

This study lays the foundation for future research in the realm of hospital efficiency
assessment. An intriguing direction is the development of a Decision Support
System (DSS) based on CPDA, enabling the practical implementation of this
methodology in hospital management decisions.

In conclusion, CPDA proves to be an advanced and promising approach to address
challenges in hospital efficiency identification and evaluation. This study paves the
way for further research and practical application of CPDA in the field of hospital
management, promoting progress in this domain.
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SESSION II

COMPARATIVE ANALYSIS OF HOSPITAL SYSTEMS:
APULIA AND EMILIA-ROMAGNA

1. INTRODUCTION

Italy, through its National Health Service, is constantly committed to providing
high-quality medical care to all its citizens. However, in a country with a
regionalized health structure like Italy, there are inevitably variations in
performance between different regions. However, the regionalized health structure
introduces performance disparities across regions, prompting experts to scrutinize
and benchmark regional health systems to discern models of excellence, areas
needing improvement, and best practices (Chisari & Lega, 2023).

In the current landscape, our focus is on the hospital systems of two particularly
relevant regions: Apulia and Emilia-Romagna. But what are the reasons behind this
choice?

Emilia-Romagna, as highlighted by the GIMBE Report 2023, stands out as one of
the leading regions in Italy regarding the provision of Essential Levels of Assistance
(LEA). Its excellence in offering essential services to its citizens places it as a
shining example in the Italian health context. The GIMBE Foundation report
underscores the importance of the Guarantee System, an essential tool to ensure
quality, appropriateness, and uniformity in the delivery of health services, an area
in which Emilia-Romagna excels (GIMBE Foundation, n.d.).

On the other hand, Apulia, despite having a history, demography, and geography
that differentiate it, has shown remarkable adaptability and innovation in the
healthcare sector, facing specific challenges with determination. The comparison
between Emilia-Romagna and Apulia does not simply aim to establish which region
"provides better services," but rather to unveil how different contexts, resources,
and strategies can shape the efficiency and effectiveness of healthcare services.
While Emilia-Romagna can offer solutions based on its consolidated experience,
Apulia can present innovative approaches to overcome particular challenges, which
could be replicable in other contexts.

A fundamental aspect of our study is the analysis of hospital efficiency based on
the quality perceived by the resident patient. For this reason, Apulia and Emilia-
Romagna were considered as a single territory, analyzing health mobility within the
borders of this ideal macro-region exclusively by residents. This approach allows
for a more accurate assessment of the efficiency and quality of healthcare services,
taking into account the direct experiences of patients and their choices in terms of
healthcare facilities.

The perception of the quality of hospital service by patients emerges as a
cornerstone for raising health standards. The analysis of reviews on Facebook,
conducted through machine learning techniques, revealed a significant link between
hospital accreditation and emotions expressed online, underscoring the importance
of careful evaluation of patients' opinions (A Rahim et al., 2021). Simultaneously,
the implementation of a targeted conceptual framework has provided hospital
administrators with an effective method for examining and enhancing service
quality in different hospital environments (Pai et al., 2018). These approaches
emphasize the imperative need to integrate patients' perceptions in the path of
optimizing healthcare services, ensuring cutting-edge and patient-centered care.

&9



Hospital efficiency in Italy represents a fundamental pillar to ensure a quality health
service. In the national panorama, the Hub & Spoke network model emerges as a
significant example, highlighting the importance of overcoming organizational
barriers to favor effective and constructive change (Rosa, 2018). The issue of
transient efficiency is equally central, underlining how short-term strategies can
have a considerable impact on the overall improvement of the health system
(Colombi et al., 2017). The careful and prudent management of hospital and
intensive care beds further contributes to avoiding overcrowding situations,
ensuring timely and adequate assistance to all patients (Pecoraro et al., 2020).
Finally, the adoption of a Prospective Payment System stands out as a key element
to promote hospital efficiency, offering a more agile and sustainable funding model
(Cavalieri et al., 2014). In this context, Italy is moving towards a profound renewal,
aimed at consolidating and enhancing the efficiency of its health system, to better
respond to the needs of all citizens.

In the context of our in-depth examination of perceived quality, the importance of
considering the patient's propensity for hospitalization as a revealing indicator
clearly emerges. This propensity not only reflects the outcomes and the number of
hospitalizations but is closely intertwined with the active kilometric mobility of
resident patients. Patient mobility in health systems represents a crucial aspect that
directly affects the perceived quality of hospital service. This mobility, an
expression of freedom of choice and the search for quality care, manifests itself
through the movement of patients between different health facilities, both within
and outside regional borders.

Moreover, the challenge of elevating the quality of hospital service is enriched with
complex nuances. The importance of considering a multitude of factors, including
patient mobility, has been emphasized, outlining a more holistic framework for the
continuous improvement of hospital service quality (Rose et al., 2004). The
integration of these elements in our examination offers a magnifying lens through
which to observe with greater clarity and depth the perceived quality in the context
of the hospital systems of Apulia and Emilia-Romagna.

In an era characterized by increasing global interconnection and unprecedented
knowledge exchange, it is crucial to analyze the differences and similarities
between the hospital systems of different regions. This is not only for improvement
at the national level, but also because the lessons learned in Italy could provide
valuable insights for other countries and vice versa. Moreover, in light of the
COVID-19 pandemic, it is essential to understand how different regions have
responded and adapted to a health crisis of this magnitude.

A key element in our comparison between the hospital systems of Apulia and
Emilia-Romagna is the adoption of the CPDA methodology. This innovative
methodology combines Cluster Analysis, Principal Component Analysis (PCA),
Data Envelopment Analysis (DEA), and Analysis of Variance (ANOVA) to
evaluate hospital efficiency. This methodology has allowed the identification of
relationships between hospital efficiency and the propensity for hospitalization,
underscoring the importance of proper resource allocation to improve the quality of
care. Additionally, the CPDA highlighted significant variations in hospital
efficiency based on affiliation and the level of the hospital network.

The comparison between the hospital systems of Apulia and Emilia-Romagna is
not limited to a simple analysis of performance. It offers a holistic view of the
dynamics, processes, and strategies that can elevate the quality of care and improve
the health of citizens. Through critical analysis and mutual learning, the goal is to
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build a health system that responds equitably, resiliently, and efficiently to the
needs of all.

2. BACKGROUND

2.1 NETWORK AND HOSPITAL FACILITIES IN APULIA AND EMILIA-
ROMAGNA: A DETAILED ANALYSIS.

Hospital complexes, entities that can be composed of multiple hospitals, represent
a fundamental pillar of the healthcare system. In Emilia-Romagna, the structuring
of hospital complexes is an integral part of a healthcare organization aimed at
ensuring complete patient care, ensuring continuity of care and socio-health
integration. The presence of multiple hospitals within a single hospital complex
allows for greater specialization and a more effective distribution of resources and
skills, guaranteeing patients access to high-quality care for a wide range of medical
and surgical conditions.

The region is divided into various Local Health Units (Aziende USL), each
covering specific provincial areas, and there are also four Hospital-University
Companies located in Parma, Modena, Bologna, and Ferrara. These companies are
further divided into Districts and Territorial and Hospital Departments, ensuring the
provision of essential assistance services to the reference population.

The Scientific Hospitalization and Care Institutes (IRCCS) in the region are
facilities that offer health services of hospitalization and care together with specific
biomedical research activities. The IRCCS are considered multi-zonal hospital
complexes of the local health companies, fully integrated into the Regional Health
Service and function as reference and excellence centers for assistance, research,
and training (Aziende sanitarie, Irccs, Asp, n.d.).

To make an effective comparison between Apulia and Emilia-Romagna in terms of
health services, a hypothetical macro-region was conceived. Within this context,
the focus was exclusively on the mobility of patients residing in the two regions,
considering their movements in hospitals and hospital complexes within the
territory of the macro-region itself. This approach allowed excluding from the study
the flows of patients coming from other Italian regions, thus offering a clearer and
more precise picture of the health situation and patient mobility exclusively
between Emilia-Romagna and Apulia. The analysis aims to evaluate the efficiency,
accessibility, and quality of the health facilities present, as well as to understand the
dynamics of choice and preference of patients in relation to the health services
offered by the two regions.

Table 16 details the distribution of these structures in the two regions. In Emilia
Romagna, a marked predominance of private hospitals emerges, with 27 base
hospitals and 15 second-level hospitals. In contrast, Apulia shows a balanced
distribution, with a significant presence of 5 public second-level hospitals.
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Table 16. Contingency Table: Relationship between Hospital Network Nature and Hospital Level in the Apulia
and Emilia Romagna Region.

LEVEL
PRIVATE
BASE FIRST SECOND
REGION NETWORK LEVEL LEVEL IRCCS NURSING LEVEL Total
HOMES
EMILIA
ROMAGNA PRIVATE Observed 27 0 1 15 3 46
% of total 39.7% 0.0% 1.5% 22.1% 4.4 % 67.6 %
PUBLIC Observed 1 6 3 0 12 22
% of total 1.5% 8.8% 4.4% 0.0% 17.6 % 324 %
Total Observed 28 6 4 15 15 68
% of total 41.2% 8.8% 59% 22.1% 22.1% 100.0 %
APULIA PRIVATE Observed 0 4 2 24 0 30
% of total 0.0% 6.8% 34% 40.7 % 0.0% 50.8 %
PUBLIC Observed 9 13 2 0 5 29
% of total 153 % 22.0% 34% 0.0% 85% 49.2%
Total Observed 9 17 4 24 5 59
% of total 153 % 28.8% 6.8% 40.7 % 8.5% 100.0 %
Total PRIVATE Observed 27 4 3 39 3 76
% of total 213 % 3.1% 2.4% 30.7% 2.4 % 59.8 %
PUBLIC Observed 10 19 5 0 17 51
% of total 7.9% 15.0% 39% 0.0% 13.4% 40.2 %
Total Observed 37 23 8 39 20 127
% of total 29.1% 18.1% 6.3% 30.7% 15.7% 100.0 %

Table 17 presents the results of the y 2 test, performed to evaluate the differences
in the distribution of hospitals and hospital complexes in the two regions and
overall. The very low p-value (<.001) indicates that we can reject the null
hypothesis, suggesting that there is a significant association between the region and
the distribution of hospitals by type and sector. The distribution of hospitals by type
and sector is not independent from the region in which they are located.

Table 17. y 2 test

REGION Value df p

EMILIA ROMAGNA b 492 4 <.001

N 68

APULIA b 42.8 4 <.001
N 59

Total ha 64.5 4 <.001
N 127

The chi-square test analysis clearly shows that the distribution of hospitals in
Emilia-Romagna and Apulia is not uniform among the different categories of type
and sector. This suggests that there are significant differences in the distribution of
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hospitals between the two regions, with a different distribution by type (First Level,
Second Level, Base Level) and sector (Public and Private) in each region.

In Emilia-Romagna, the private hospital network, accredited to the regional health
system, is strongly oriented towards basic services, with 27 base-level hospitals out
of a total of 46. The presence of four IRCCS (one in the private sector and three in
the public sector) and 12 second-level hospitals in the public sector highlights a
substantial commitment towards research and specialized care.

In Apulia, the private hospital network, also accredited, is mainly composed of first-
level structures (4 out of 30), with no presence of base-level hospitals. This
distribution suggests a focus on specialized care in the private sector. However, in
the public sector, the presence of five second-level structures underlines a parallel
commitment to provide a broad spectrum of health services.

Considering Emilia-Romagna and Apulia as a macro-region, the difference in the
distribution of hospital levels becomes evident. While Emilia-Romagna focuses on
basic and specialized services, Apulia shows a greater emphasis on second-level
structures in the public sector, compensating for the absence of base-level hospitals
in the private sector. This inter-regional balance could reflect strategic
complementarity, with each region covering different aspects of the population's
health needs.

The configuration of the hospital network in Apulia, with a strong presence of
second-level structures in the public sector, highlights a commitment to ensuring
specialized care, even in the absence of base-level hospitals in the private sector.
This may indicate a strategy of focusing resources on specialized and advanced
care. However, it is essential to ensure that access to basic care is not compromised,
and that there is an adequate geographical distribution of facilities to ensure
accessibility for all residents.

2.2 APULIA AND EMILIA-ROMAGNA: ANALYSIS OF THE
RELATIONSHIP BETWEEN DOCTORS AND RESIDENTS

The integrated analysis of health resources between Emilia-Romagna and Apulia
reveals complex and multifaceted dynamics that affect the distribution of medical
staff and access to care for residents. The residents/doctor contingency table is a
key tool for analyzing these dynamics, offering a detailed view of the relationship
between the number of doctors and the resident population in the different health
facilities of the two regions (Table 18).
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Table 18. Contingency table: Percentage relationship between the nature of the hospital network and hospital
level in the Apulia and Emilia Romagna regions expressed by physician/resident.

LEVEL
PRIVATE
S - BASE FIRST S oo SECOND
REGION NETWORK LEVEL LEVEL IRCCS NURSING LEVEL Total
HOMES
EMILIA *
g o P P 0 o
ROMAGNA PRIVATE of 20.4 % 0.0% 0.9% 2.8% 33% 275%
total
%
PUBLIC of 0.5% 6.8 % T.6% 0.0% 57.6% T25%
total
%
Total of 21.0% 6.8% 8.5% 2.8% 60.9% 100.0 %
total
%
APULIA PRIVATE of 0.0% 83% 0.8% 11.5% 0.0% 20.5%
total
%
PUBLIC of 9.5% 325% 2.5% 0.0% 349% 79.5%
total
Y%
Total of 9.5% 40.8 % 33% 11.5% 349% 100.0%
total
%
Total PRIVATE of 10.8 % 39% 0.8% 6.9% 1.7% 24.2%
total
%
PUBLIC of 48% 18.9 % 52% 0.0% 46.9% 158%
total
%
Total of 156 % 228% 6.0% 6.9% 48.7% 100.0 %

total

The analysis of the contingency table shows specific distributions of the
residents/doctor ratio in the two regions. In Emilia-Romagna, 21.0% of private
facilities and 72.5% of public facilities make up the total health facilities, with a
high percentage (60.9%) dedicated to second-level facilities. This data highlights a
marked focus on specialized and advanced care in the region. In Apulia, on the
contrary, the distribution is more homogeneous. Private facilities represent 20.5%
of the total, while public facilities constitute 79.5%. The distribution among the
various levels of facilities is more balanced compared to Emilia-Romagna, with
40.8% of basic facilities, 3.3% of first-level facilities, and 11.5% of private
facilities.

Table 19. y? Tests

o Tests

REGION Value ar p

EMILIA ROMAGNA r 3.44et6 4 <.001
N 4.43c¢t+6

APULIA r© 2.20et6 4 <.001
N 3.92¢t+6

Total r© 4.28e+6 4 <.001
N  8.35¢t+6

The analysis of the chi-square test (Table 19) clearly shows that the distribution of
hospitals in the two regions is not uniform among different types and sectors. The
very high y2 values and very low p-values (<.001) for both regions and the total
indicate that we can reject the null hypothesis. The results of the chi-square test
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confirm the significant association between the region and the residents/doctor ratio
for each level of hospital, further highlighting the need for careful analysis and
planning of health resources in the two regions.

In Emilia-Romagna, a marked concentration of the residents/doctor ratio in second-
level facilities highlights a pronounced focus on specialized and advanced care,
suggesting the need for a redistribution of resources. On the contrary, Apulia shows
a more harmonious distribution of the residents/doctor ratio among the different
levels of hospital structure.

This study contributes to a deeper understanding of the regional dynamics of the
residents/doctor ratio in Emilia-Romagna and Apulia, providing a solid foundation
for the development of effective and sustainable health policies. As the two regions
continue to evolve in response to growing health needs, the research underscores
the importance of a holistic and data-driven approach to ensure that every citizen
has access to timely and adequate medical care, thereby promoting the overall
health and well-being of the population.

2.3 ANALYSIS OF ACTIVE KILOMETRIC MOBILITY IN APULIA AND
EMILIA-ROMAGNA

Active kilometric mobility is an important indicator for understanding the dynamics
of access to health services by the population. The analysis of active kilometric
mobility in Emilia-Romagna and Apulia provides an in-depth look at the
characteristics and health mobility needs of residents within the two regions,
highlighting possible areas of intervention for the improvement of services and the
optimization of available resources (Table 20).

Table 20. Contingency table: Percentage relationship between the nature of the hospital network and hospital
level in the Apulia and Emilia Romagna regions expressed by active kilometric mobility.

LEVEL
PRIVATE
BASE FIRST SECOND
. NETW R IRRING
REGION ETWORK LEVEL LEVEL IRCCS  NURSING LEVEL Total
HOMES
EMILIA Y
= 3 4 o, o, o, o, 0, o,
ROMAGNA PRIVATE of 8.1% 0.0% 0.0% 0.1% 3.0% 11.1%
total
%
PUBLIC of 0.0% 12.1% 9.5% 0.0% 67.3% 88.9%
total
%
Total of 8.1% 12.1% 9.5% 0.1% 70.2% 100.0 %
total
%
APULIA PRIVATE of 0.0% 234% 0.6 % 14.1% 0.0% 38.1%
total
%
PUBLIC of 5.7% 253 % 2.0% 0.0% 28.9% 61.9%
total
%
Total of 5.7% 48.7 % 26% 14.1 % 28.9% 100.0 %
total
%
Total PRIVATE of 4.4% 10.6 % 0.3% 6.4% 1.6% 233 %
total
%
PUBLIC of 2.6% 18.1% 6.1% 0.0% 49.9% 76.7%
total
%
Total of 7.0% 28.7% 6.4% 6.4% 51.5% 100.0 %
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The analysis of active kilometric mobility of residents in Emilia-Romagna and
Apulia highlights significant dynamics related to the type of facility and level of
care. In Emilia-Romagna, the public sector dominates, absorbing 88.9% of total
mobility, with a greater incidence at the second level of care (70.2%). This
underlines the crucial importance of second-level public facilities in managing
regional health mobility.

In contrast, Apulia shows a more balanced distribution between the public (61.9%)
and private (38.1%) sectors. The first level of care plays a predominant role,
accounting for 48.7% of total mobility. This highlights a greater distribution of
mobility towards first-level facilities, both public and private, demonstrating a
different organizational and functional setup compared to Emilia-Romagna.

At the aggregate level, observing both regions, the public sector maintains a
predominant role (76.7%), with a marked inclination towards the second level of
care (51.5%). This data, exploring active kilometric mobility within regional
borders, offers valuable insights for the planning and improvement of health
services, highlighting the specificities and needs of each territorial context.

The analysis of the y2 test (Table 21) shows a significant level of association
between the examined variables, with a p-value of < .001 in both regions and
overall. This indicates that the distribution of active kilometric mobility among
different levels and types of facilities is significantly different in the two regions.
The high y2 value in both regions and overall highlights an important discrepancy
between expectations and actual observations, emphasizing the importance of
considering regional specificities in the planning and management of health
services.

Table 21. > Tests

REGION Value  df P

EMILIA ROMAGNA xr 4.52e+6 4 <.001

N 6.34e+6

APULIA 2 2.43e+6 4 <.001
N 5.24e+6

Total 2 5.01e+6 4 <.001
N 1.16e+7

The analysis has highlighted a clear disparity between the two regions in terms of
active kilometric mobility and use of care facilities, both public and private. In
Emilia-Romagna, the predominance of the public sector and the second level of
care highlights a health system strongly oriented towards high-level facilities,
potentially capable of providing specialized and complex assistance. This could
also reflect a greater propensity for admission to second-level facilities in the
region.
On the contrary, Apulia shows greater balance between sectors and levels, signaling
a different organizational model, potentially more decentralized and closer to the
needs of the local population. The greater distribution of mobility towards first-
level facilities in Apulia could indicate a lower propensity for hospitalization, with
a possible preference for outpatient or short-term treatments.
The results of the analysis of active kilometric mobility in Emilia-Romagna and
Apulia underscore the importance of careful and targeted health planning, able to
respond to the specific territorial and population needs of each region. The
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significant differences observed require diversified approaches for the continuous
improvement of health services and to ensure fair and quality access to health care
in both regions.

Consideration of the propensity for hospitalization, highlighted by mobility data,
offers further insights for reflection and action. In Emilia-Romagna, attention could
be focused on ensuring that the propensity for admission to second-level facilities
is not excessive, avoiding overloading the more specialized facilities and ensuring
efficient and timely healthcare. In Apulia, attention could be directed towards
strengthening first-level facilities, ensuring that they are able to effectively respond
to the health needs of the population and act as an effective filter for access to
second-level facilities, thus ensuring optimal use of available resources.

In both cases, the analysis provides a valuable framework for directing future
intervention strategies, contributing to the achievement of an increasingly efficient,
effective, and responsive health system to the needs of citizens.

2.4 IMPLEMENTING THE CPDA METHODOLOGY FOR ENHANCED
HEALTHCARE PERFORMANCE IN THE APULIA-EMILIA ROMAGNA
MACROREGION

In the context of the ongoing evolution of health systems, the application of the
CPDA methodology to the Apulia-Emilia-Romagna macroregion stands out as a
crucial tool to promote health efficiency and excellence. The need for a thorough
and objective analysis of health performances in these regions is made evident by
the diversity and complexity of their health contexts. The objective is twofold: on
one hand, it aims to provide a detailed and data-based evaluation of health
performances, highlighting areas of strength and opportunities for improvement.
On the other hand, it aims to develop and implement effective strategies to enhance
access, quality, and efficiency of health care. The CPDA methodology, with its
systematic and data-based approach, emerges as the key to deciphering the
dynamics of regional health systems, offering valuable insights and supporting the
decision-making process. In applying the CPDA methodology to the Apulia-
Emilia-Romagna macroregion, it is essential to note that the variables under
examination remain consistent with those discussed in paragraph 3.1 of the first
section, although they are updated to 2021 data. This update allows for a more
current and relevant evaluation of health performances in the regions in question.
In particular, the OUT1 HOS variable has been replaced to ensure greater
consistency with other output variables. The new data source for OUT1_HOS is the
National Outcomes Plan, which provides detailed information on hospitalizations
related to the indicators provided by the same plan.

Additionally, the OUT2 MOB variable, representing active intra-regional mobility
by territorial scope, is now specifically referred to the Apulia-Emilia-Romagna
macroregion. This change reflects the goal of exclusively analyzing kilometric
mobility within the borders of these two regions, ensuring that the analysis is as
focused as it is accurate. These changes and updates in the variables will ensure that
the analysis of health performance in the Apulia and Emilia-Romagna regions is
not only up-to-date but also meticulously aligned with relevant standards and
metrics, thus providing high-quality and practically relevant results and insights.
To ensure continuity and consistency in the analysis in the second section of the
document, the methodological workflow adopted will follow that outlined in
paragraph 3.4 of the first section. The process of extracting and organizing data will
follow the same path, using robust data mining tools like Knime for generating the
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dataset with original input and output variables. The cluster analysis to identify
input and output groups, the standardization of variables, the application of
Principal Component Analysis, and ANOVA analysis will be performed using the
Orange software. This methodological consistency will ensure that the results of
the analysis are comparable and reliable, providing a solid foundation for any
conclusions and recommendations.

The need for a deep and objective analysis of health performance in these regions
is made evident by the diversity and complexity of their healthcare contexts. The
goals are manifold:

Detailed Evaluation of Health Performance: provide a precise and data-based
analysis of health performance, highlighting areas of strength and opportunities for
improvement.

Evaluation of Hospital Efficiency for Perceived Quality: CPDA will be used to
calculate hospital efficiency scores based on perceived quality, analyzing its
influence on hospital performance.

Improvement of Access and Quality of Healthcare: develop and implement
effective strategies to enhance access, quality, and efficiency of healthcare.
Optimization of Healthcare Resources: promote optimal allocation of resources
to maximize benefits for patients and the overall healthcare system.

Support to the Decision-Making Process: provide valuable insights to support the
decision-making process at all levels.

2.5 DEFINING AND ANALYZING RESEARCH QUESTIONS FOR
HOSPITAL EFFICIENCY EVALUATION IN APULIA-EMILIA
ROMAGNA

In the healthcare context of the Apulia-Emilia Romagna macroregion, the
evaluation of hospital efficiency and understanding its impact on the perceived
quality of healthcare are of paramount importance. The region, facing various
challenges in terms of healthcare performance, requires in-depth analysis to identify
potential areas for improvement and implement effective strategies to optimize both
efficiency and the quality of care provided.

The proposed research question:

Q.: "What is the current state of hospital efficiency in the Apulia-Emilia Romagna
macroregion and how does it influence the perceived quality of healthcare by
resident patients?",

aims to provide a clear and detailed picture of the current state, analyzing how
hospital efficiency affects patients' perception of healthcare quality. This analysis
allows for the outlining of targeted strategies for continuous improvement, guiding
collective efforts towards the optimization of healthcare resources and the
enhancement of patient satisfaction in the Apulia-Emilia Romagna macroregion.
Advantages of the Adopted Research Questions

The adopted research question allows for a comprehensive analysis of hospital
efficiency in the Apulia-Emilia Romagna macroregion, providing insight into its
impact on the perceived quality of healthcare. This approach offers the following
advantages:

e Holistic Understanding: Offers a complete view of both hospital efficiency and

its correlation with patients' perception of care quality, allowing for a deeper
understanding of the current healthcare context in the region.
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e Identifies Areas for Improvement: Helps in pinpointing specific areas where
enhancements in efficiency and care quality can be made.

e  Guides Policy and Decision Making: Provides valuable data and insights that
can inform policy and decision-making for healthcare improvement in the region.

Impact on Results
The adopted research question’s comprehensive nature ensures that the results
obtained will be holistic and actionable. The insights gained will be:

e Actionable Insights: Deliver clear and actionable insights for healthcare
administrators and policymakers to make informed decisions.

e Enhanced Healthcare Quality and Efficiency: Contribute to the enhancement
of healthcare quality and efficiency in the macroregion.

e Improved Patient Satisfaction: Potentially lead to increased patient satisfaction
by addressing the areas of concern identified through the research.

Alternatives to the Proposed Research Questions
While the proposed research question offers a comprehensive approach,
alternatives could include:

e Focusing on Specific Aspects of Hospital Efficiency or Specific Medical Areas
or Disciplines: Research questions could focus more narrowly on specific elements
of hospital efficiency, such as staffing, resource allocation, patient throughput, or
specific medical areas or disciplines.

e Exploring Perceived Healthcare Quality Independently: Separate research
questions could explore patients' perceived quality of healthcare without
considering hospital efficiency.

e Analyzing Other Geographical Regions: Research questions could focus on
different geographical areas to understand the variability and similarities in hospital
efficiency and perceived healthcare quality in various regions.

3. METHODOLOGY

3.1 APPLICATION OF THE HIERARCHICAL CLUSTERING
ALGORITHM

In expanding our investigation on hospital efficiency (Paragraph 1.13.), we
extended the analysis to a combined dataset that includes both Apulia and Emilia-
Romagna, conducting a macro-regional analysis. In the initial phase focused solely
on the Apulia region (Paragraph 1.13.), a hierarchical analysis was performed on
non-standardized data (Paragraph 1.12.). This choice was due to the desire to
maintain the natural distribution of the data and use the Spearman metric, suitable
for non-normalized data, to explore the relationships between variables without the
influence of standardization. However, with the expansion of the analysis to the
combined dataset and the increased complexity and volume of data, we recognized
the need for preliminary standardization of the variables to ensure uniformity and
comparability across the two regions (Paragraph 1.14.).

The standardization was carried out using the formula (1) of paragraph 1.14.; where
Z; is the standardized value of the i-th variable (input or output), X; is the respective
non-standardized value of the i-th variable (input or output), y; is the mean of all
observations in the i-th variable (input or output), is the standard deviation of all
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observations in the i-th variable (input or output) and n is the number of variables
(=15).

After standardization, hierarchical analysis was applied to the normalized data,
adopting the cosine metric instead of the previous Spearman metric. This change
was motivated by the need to adapt the analysis to the new distribution of
normalized data, ensuring precise and effective segmentation. The Ward linkage
method was retained for its proven effectiveness in minimizing intra-cluster
variance.

The results of the extended analysis reinforced our initial conclusions, confirming
the validity of the hierarchical approach even when applied to standardized and
normalized data. The use of the cosine metric offered additional flexibility in the
analysis, allowing precise and effective segmentation of data across different
regions, and contributing to a deeper understanding of the dynamics of hospital
efficiency in diversified regional contexts.

Despite the change in metric and the standardization of data, the results of the
hierarchical analysis showed substantial consistency with our initial analyses
(Paragraph 1.13.). Figure 32 show the scatterplots of the hierarchical algorithm with
Spearman and Cosine metrics respectively, while figures 33 display the
corresponding dendrograms.

METRIC COSINE METRIC SPEARMAN

Figure 32 Scatterplots of the hierarchical algorithm with Spearman and Cosine metrics.
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Figure 33 Dendrograms of the hierarchical algorithm with Spearman and Cosine metrics.

This reinforces our confidence in the application of the hierarchical clustering
algorithm for hospital efficiency analysis, demonstrating its robustness and
reliability even in diverse data contexts. Additionally, the obtained silhouette index,
approximately 0.5, substantially confirms the value from the initial analysis,
providing further validation of our results. Adapting to the use of standardized data
and the cosine metric has contributed to a deeper understanding of the dynamics of
hospital efficiency in diversified regional contexts. The experience gained in this
process will provide a solid foundation for future research and analysis in this field,
allowing for further improvements and refinements in the methodologies of hospital
efficiency analysis.

The application of the hierarchical clustering algorithm with standardized data and
the use of the cosine metric have proven to be valid tools for the analysis of hospital
efficiency. The insights gained from this extended analysis will further enrich our
CPDA model, enhancing its robustness and providing a strengthened
methodological framework for future research in the field of hospital efficiency
evaluation.

In the context of the hierarchical analysis conducted, it's crucial to highlight the
composition of the identified clusters. In accordance with the referenced literature
(as outlined in Table 1), Cluster C1 is composed of the 10 input variables, while
Cluster C2 encompasses the 5 output variables.

This grouping underscores the importance of separately considering input and
output in the analysis of hospital efficiency, ensuring that each aspect is thoroughly
examined for a deeper understanding of the dynamics at play. The distinction
between input and output variables within the context of the identified clusters
contributes to a more accurate interpretation of the results, providing additional
insight into the relationships and interactions among the various variables involved
in the analysis of hospital efficiency.

Moreover, observing such a division can offer significant insights for further
research, contributing to the delineation of targeted strategies for enhancing
efficiency in the analyzed hospital contexts. Through a careful analysis of the input
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and output variables within their respective clusters, specific areas of intervention
can be identified, facilitating the planning and implementation of effective actions
to bolster hospital efficiency in the various regions examined.

3.2 RELIABILITY AND EXPLORATORY FACTOR ANALYSIS

The reliability analysis, conducted coherently as outlined in Paragraph 1.16, was
performed on the two distinct clusters, C1 and C2, playing a crucial role in the
comprehensive analysis of the selected variables. Utilizing the Cronbach’s alpha
test, we conducted an accurate investigation into the internal consistency of the
variables in each cluster. For C1, composed of input variables, an alpha of 0.994
was obtained, a value that underlines excellent internal consistency and
demonstrates the reliability of the analyzed input variables. Similarly, for C2, which
includes output variables, an alpha of 0.981 attests to solid internal consistency,
affirming the reliability of the output variables in the conducted analysis. The
detailed results of this analysis are illustrated in Figure 34.

CLUSTER 1 CLUSTER 2
Scale Reliability Statistics Scale Reliability Statistics
Cronbach's a Cronbach's a
scale 0.994 scale 0.981

Figure 34 Cronbach's alpha for the two clusters.

The heatmaps, depicted in Figure 35, clearly display the internal correlations within
each cluster. Within C1, correlation values range between 0.87 and 0.99, signifying
high cohesion among the input variables. This elevated degree of correlation
highlights the tight interconnection among variables, revealing a common trend of
coordinated movement. Similarly, C2 showcases correlation values between 0.85
and 0.97, signaling a similar synchronization among the output variables.
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Figure 35 Heatmap for clusters C1 and C2.

The high internal consistency observed for both clusters further reinforce
confidence in the comprehensive analysis conducted, highlighting the ability of
each group of variables to provide significant insights and reliable measurements.
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This meticulous approach to reliability analysis is essential to ensure the integrity
and robustness of the entire study, providing a solid foundation for further
investigations and analysis in this crucial area.

In alignment with the methodologies outlined in Paragraph 1.15, an Exploratory
Factor Analysis (EFA) is meticulously applied to each cluster, C1 and C2, to delve
deeper into the data structure within each cluster and unearth any underlying factors
elucidating the relationships between the variables. This analysis aims to group
together variables based on their heightened correlations, identifying latent factors
that influence the observed variables. The results of the exploratory factor analyses
applied separately to the two identified clusters are presented in Figure 36.

Exploratory Factor Analysis - Cluster 1 Exploratory Factor Analysis - Cluster 2
Factor Loadings Factor Loadings
Factor Factor
1 Uniqueness 1 Uniqueness
INP1_BP 0985 0.0307 OuT1_HOS 0998 0.00387
INP2_BU 0977 00463 0UT2_MOB 0941 0.11399
INP3_DP 0.967 0.0643 OUT3_DEA 0957 0.08347
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" n " B .
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INP8_FP 0.987 0.0252
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INP10_RESP 0.937 0.1226 Factor Statistics
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Figure 36 Factor Analysis results for the 2 clusters.

The exploratory factor analysis of the two clusters revealed significant findings. In
Cluster 1, consisting of 10 variables, a single latent factor emerged that explains
93.9% of the total variance within the cluster. All variables within the cluster exhibit
correlations above 0.96 with the factor, indicating a strong association among them.
The Bartlett's test of sphericity confirmed the presence of a significant factor
structure in the cluster, with a p-value below 0.001. Additionally, the KMO MSA
indicates adequate data suitability for factor analysis in the cluster (0.878).
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In Cluster 2, consisting of 5 variables, a single latent factor was identified that
explains 91.0% of the total variance within the cluster. All variables within the
cluster exhibit correlations above 0.95 with the factor, highlighting a strong
association among them. The Bartlett's test of sphericity confirmed the presence of
a significant factor structure in the cluster, with a p-value below 0.001.
Additionally, the KMO MSA indicates adequate data suitability for factor analysis
in the cluster (0.823).

The screening test based on the parallel analysis confirmed the importance of one
factor in both clusters.

In conclusion, both clusters demonstrate significant factor structures and strong
associations among variables. These findings indicate the presence of a latent factor
in each cluster that can consistently explain the observed variations in their
respective variables.

3.3 REASSESSMENT OF LIMITATIONS AND ADVANTAGES:
RELIABILITY AND EXPLORATORY FACTOR ANALYSIS FOR APULIA
AND EMILIA-ROMAGNA

The extension of the analysis from the sole context of Apulia to include Emilia-
Romagna has introduced new dynamics, allowing for a more expansive and
comprehensive view. This enlargement has also mitigated some of the initially
observed limitations while further bolstering the advantages.

Updated Limitations:

e Sample Size: The inclusion of data from Emilia-Romagna has allowed for an
expansion of the sample size, providing a more solid foundation for the Exploratory
Factor Analysis and enhancing the capability to more precisely identify latent
variables.

e Sample Dependence: The addition of another region has mitigated the
dependence on the original sample, offering a more holistic view and reducing the
risk of divergent results due to regional or temporal differences.

e Subjective Interpretation: The expansion of the analysis has allowed for
cross-validation of results, reducing the risk of subjective interpretations and biases.

Strengthened Advantages:

e Data Exploration: Access to a broader data set has enriched exploration,
allowing for greater depth and a wider understanding of latent structures in hospital
data.

e Robustness and Reliability: Cross-validation across the two regions has
strengthened the robustness and reliability of the analysis, confirming the
consistency of the obtained results.

¢  Foundation for Subsequent Analysis: The extensive data base now available
provides an even more solid foundation for further analysis, ensuring that future
investigations are even more informed and reliable.

Implications:

e Breadth of Analysis: The geographical expansion of the analysis has captured
a wider range of dynamics and factors, offering more generalizable and applicable
insights to a broader context.

In summary, the update of the analysis, with the inclusion of data from Emilia-
Romagna, has not only reinforced existing advantages but also significantly
mitigated the initially perceived limitations. This extension has further solidified
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the analytical foundation, ensuring the results are not only robust but also
representative of a broader context, thus providing a completer and more reliable
analytical framework.

3.4 ADVANCING ANALYSIS WITH PCA AND POSITIVE
TRANSFORMATION IN APULIA AND EMILIA-ROMAGNA

Aligning meticulously with the methodologies previously adopted for Apulia, we
now expand our analytical horizon by applying Principal Component Analysis
(PCA) to two distinct clusters, C1 and C2, within a macro-regional context that
encompasses both Apulia and Emilia-Romagna. This extended perspective aims to
overcome challenges related to discriminatory capacity in DEA studies, optimizing
variable representation through PCA.

Detailed PCA Application:

Cluster 1 (Input Variables): The analysis unveils a dominant principal
component, Input PC1, capturing almost 95% of the total variance while retaining
the informative richness of the original dataset.

Cluster 2 (Output Variables): Similarly, a principal component, Output PCl,
emerges, encapsulating nearly 93% of the total variance.

The clarity and acumen of the PCA analysis are reflected in the renaming of the
principal components: Input PC1 and Output PC1, now known as Hospital
Organization and Propension Hospitalization, respectively.

The fairly uniform distribution of incidence across all variables is manifestly
evident, bolstering the robustness of the conducted analysis.

Graphical visualizations, presented in Figures 37 and 38, offer a detailed and
intuitive overview of the PCA analysis results.

Inputpcy (Cluster 1) Outputpcy (Cluster 2)

Figure 37 Principal Components variance representation.

Data Table

Data instances: 1
Features: 10
Meta attributes: 2

components variance INP1_BP INP2 BU INP3_DP INP4 DU INP5S MN INP6 FN INP7_MP INP8 FP INP9_HS INP10_RESP
1 PC1 0.945372 0.320254 0318188 0.315744 0.31673 0.317466 0.317674 0.304771 0.320965 0.322324 0.307706

Data Table

Data instances: 1
Features: 5
Meta attributes: 2

components variance OUT1_HOS OUT2 MOB OUT3_DEA OUT4_INT OUTS5_REA
i PC1 0.928004 0.45938 0.443622 0.448192 0.44479 0.439835

Figure 38 The impact of each individual original variable on the main components.
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The transformation of principal components into exclusively positive values is a
key step to neutralize the effect of variables with negative values in subsequent
analyses, such as DEA analysis.

The addition of a specific positive constant to all principal components ensures the
positivity of all values. The principal components are transformed into their positive
counterparts using the formulas (4) and (5) of paragraph 1.1.9.

The judicious implementation of PCA, followed by the positive transformation of
principal components, elevates the quality and depth of the analysis conducted on
the Apulia and Emilia-Romagna regions. This sophisticated approach not only
enhances the robustness of the analysis but also sheds new light on the dynamics of
hospital efficiency in the two regions, laying a foundation for future insights and
investigations in this critical sector.

3.5 DEA AS THIRD STEP: ENHANCING CPDA METHODOLOGY FOR A
HOLISTIC ANALYSIS OF HOSPITAL EFFICIENCY IN APULIA AND
EMILIA-ROMAGNA

In this section, we focus on the third step of our analytical methodology,
emphasizing the application of Data Envelopment Analysis (DEA) within the
context of hospital facilities in Apulia. The adoption of an output-oriented DEA
model, integrated with variable returns to scale (VRS), allows for a comprehensive
investigation into hospital efficiency, while keeping inputs constant. This model
stands as an ideal tool for a detailed comparative analysis of hospital efficiency in
the region, highlighting specific areas of strength and potential for improvement.
Following the implementation of the Principal Component Analysis (PCA), two
new variables, Input PC1 and Output PC1, emerge as pillars for the subsequent
DEA assessment. Table 22, post this operation, displays the hospital efficiency
scores calculated both with the traditional DEA approach, listed in the PTE DEA
column, and with the CPDA methodology, outlined in the PTE_CPDA column.
This comparison, essential for a deep understanding of the Apulian hospital
landscape, precedes a more extensive analytical discussion, scheduled in the
subsequent sections of this work. The in-depth discriminatory analysis of efficiency
scores will prove crucial in unveiling the impact of the different methodologies
adopted on efficiency evaluations, providing a clear and detailed picture of the
implications of the obtained results. This phase will be decisive in outlining
concrete paths for enhancing hospital performance in Apulia, enriching the value
and scope of the present study.
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Table 22. Efficiency Scores Expressed for 59 Hospitals in Apulia Using DEA Analysis and Cluster-PCA-DEA

Analysis.

REGION ASL TWORK LEVEL HOSPITAL PTE_DEA | PTE_CPDA
PUGLIA ASLBA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura' Monte Imperatore’ - Neci (BA) 0,1693 0,574229
PUGLIA ASLBA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura - Villa Lucia Hospital - Conversano (BA)} 08717 0,662505
PUGLIA ASLBA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Anthea - Bari (BA) 1 1
PUGLIA ASLBA PRIVATE FIRST LEVEL Casa Di Cura C.B.H. Mater Dei Hospital - Bari (BA) 1 0785429
PUGLIA ASLBA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Santa Maria - Bari (BA) 1 1
PUGLIA ASLBA PUBLIC SECOND LEVEL Consorziale Policlinico Bari - Bari (BA) 0,7822 0,685077
PUGLIA ASLBA PRIVATE IRCCS Ies Maugeri SPA Societa’ Benefit - Bari (BA) 0,4799 0,504451
PUGLIA ASLBA PUBLIC IRCCS IRCCS 'Saverio De Bellis' - Castellana Grotte (BA) 0,8953 0,606006
PUGLIA ASLBA PUBLIC IRCCS Istituto Tumori Giovanni Paolo II - Bari (BA) 0,6819 0,498014
PUGLIA ASLBA PUBLIC FIRST LEVEL Ospedale Della Murgia - Perinei - Altamura (BA) 0,5612 0,532587
PUGLIA ASLBA PUBLIC FIRST LEVEL Ospedale Di Venere - Bari (BA) 0,8568 0,601823
PUGLIA ASLBA PUBLIC BASE LEVEL Ospedale Monopoli - Monopoli (BA) 0,8004 0,5953
PUGLIA ASLBA PUBLIC BASE LEVEL Ospedale Putignano - Putignano (BA) 0,2488

PUGLIA ASLBA PRIVATE FIRST LEVEL Ospedale Regionale EE 'Miulli' - Acquaviva Delle Fonti (BA) 1 0,796713
PUGLIA ASLBA PUBLIC FIRST LEVEL Ospedale San Paolo - Bari (BA) 0,7054 0447449
PUGLIA ASLBR PRIVATE | PRIVATE NURSING HOMES Casa Di Cura 'Salus’ - Brindisi (BR) 0,7137 0,621697
PUGLIA ASLBR PRIVATE IRCCS IRCCS E.Medea - Brindisi (BR) 1 0,779395
PUGLIA ASLBR PUBLIC FIRST LEVEL Ospedale Francavilla Fontana - Francavilla Fontana (BR) 1 0,600845
PUGLIA ASLBR PUBLIC BASE LEVEL Ospedale Ostuni - Ostuni (BR) 0,5684 0,551339
PUGLIA ASLBR PUBLIC SECOND LEVEL Ospedale Perrino - Brindisi (BR) 0,5651 0470702
PUGLIA ASLBT PUBLIC FIRST LEVEL Ospedale Andria Andria (BT) 0,9588 0,59234%
PUGLIA ASLBT PUBLIC FIRST LEVEL Ospedale Barletta - Mons. R. Dimiccoli' Barletta (BT) 0,3841 0377582
PUGLIA ASLBT PUBLIC BASE LEVEL 0,0874 0353443
PUGLIA ASLBT PRIVATE | PRIVATE NURSING HOMES Ospedale Opera Don Uva Bisceglie (BT) 0,4495 0,500214
PUGLIA ASLFG PRIVATE | PRIVATE NURSING HOMES Casa Di Cura 'S.Michele’ Gest. Brodetti Manfredonia (FG) 1 092914
PUGLIA ASLFG PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Universo Salute - Don Uva Foggia (FG) 0,7454 0,593456
PUGLIA ASLFG PRIVATE | PRIVATE NURSING HOMES Case Cura Riunite Villa Serena-S. Francesco Foggia (FG) 1 0.71774
PUGLIA ASLFG PUBLIC FIRST LEVEL Ospedale Casa Sollievo Della Sofferenza San Giovanni Rotondo (FG) 0,6631 0,503695
PUGLIA ASLFG PUBLIC BASE LEVEL Ospedale Manfredonia Manfredonia (FG) 0,4332 0,527094
PUGLIA ASLFG PUBLIC FIRST LEVEL Ospedale San Severo - Teresa Masselli San Severa (FG) 0,7444 0,525847
PUGLIA ASLFG PUBLIC SECOND LEVEL Ospedali Riuniti Di Foggia Foggia (FG) 0,8331 0607655
PUGLIA ASLFG PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Leonardo De Luca - Castelnuovo Della Daunia (FG) 03369 0,734874
PUGLIA ASLFG PRIVATE | PRIVATE NURSING HOMES (Casa Di Cura Prof. Brodetti - Foggia (FG) 1 0,694102
PUGLIA ASLFG PUBLIC FIRST LEVEL Ospedale Cerignola 'S Tatarella’ - Cerignola (FG) 0,5521 0451076
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES (Casa Di Cura Citta' Di Lecee Lecce (LE) 1 0914946
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES Casa Di Cura 'Prof. Petrucciani' SRL Lecce (LE) 0,8998 057916
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Riabilitativa Euroitalia Casarano (LE) 0,0688 0,665311
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES Casa Di Cura San Francesco Galatina (LE) 1 0,523469
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Villa Bianca Lecce (LE) 1 0746394
PUGLIA ASLLE PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Villa Verde - Lecee (LE) 0 0,676674
PUGLIA ASLLE PUBLIC BASE LEVEL Ospedale Copertino Copertino (LE) 0,7125 0,594661
PUGLIA ASLLE PUBLIC BASE LEVEL Ospedale Galatina 'S. Caterina Novella' Galatina (LE) 03101 0389855
PUGLIA ASLLE PUBLIC FIRST LEVEL Ospedale Gallipoli ‘Sacro Cuore Di Gesw' Gallipoli (LE) 0,5987 0,548963
PUGLIA ASLLE PUBLIC SECOND LEVEL Ospedale Lecee 'V. Fazzi' Lecce (LE) 0,7366 0,561039
PUGLIA ASLLE PRIVATE FIRST LEVEL Ospedale Regionale EE 'G. Panico’ Tricase (LE} 1 0,892321
PUGLIA ASLLE PUBLIC FIRST LEVEL Ospedale Scorrano Scorrano (LE) 0,828 0641578
PUGLIA ASLLE PUBLIC BASE LEVEL Ospedale Casaranc - Casarane (LE) 0,5695 0,561852
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Bemardini Taranto (TA) 0,7875 0,663237
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura D'Amore SRL Taranto (TA) 0,8508 0,693802
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES (Casa Di Cura San Camillo Taranto (TA) 0,5897 0,626125
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Santa Rita SRL Taranto (TA) 0,56 0,741463
PUGLIA ASLTA PRIVATE FIRST LEVEL Casa Di Cura Villa Bianca SRL - Martina Franca (TA) 0 0,732358
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES (Casa Di Cura Villa Verde SRL Taranto (TA) 1 0,738396
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES Centro Medico Riabilitazione les Maugeri Ginosa (TA) 1 0781836
PUGLIA ASLTA PRIVATE | PRIVATE NURSING HOMES Fondazione Cittadella Della Carita” Taranto (TA} 0,536 0715853
PUGLIA ASLTA PUBLIC FIRST LEVEL Ospedale Castellaneta Castellaneta (TA) 0,7923 0,530082
PUGLIA ASLTA PUBLIC FIRST LEVEL Ospedale Civile Martina Franca (TA) 0,8694 0,60505
PUGLIA ASLTA PUBLIC BASE LEVEL Ospedale Manduria 'Giannuzzi' Manduria (TA) 0,1974 0,428506
PUGLIA ASLTA PUBLIC SECOND LEVEL Presidio Ospedaliero centrale Taranto 0,5613 0478863
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EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Casa Di Cura Prof. Nobili SPA Castiglione Dei Pepli (BO) 04331 0,570395
EMILIA ROMAGNA AUSLBO PUBLIC IRCCS Istituto Delle Scienze Neurologiche Balogna (BO) 1 0,733397
EMILIA ROMAGNA AUSLBO PUBLIC IRCCS Istituto Ortopedico Rizzoli Bologna (BO) 1 0,787316
EMILIA ROMAGNA AUSLBO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato Accreditato Casa Di Cura - Bologna (BO) o 0,890071
EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Ospedale Privato Accreditato Nigrisoli Bologna (BO) 06194 0,559011
EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Ospedale Privato Accreditato Villa Chiara Casalecchio Di Reno (BO) 1 0,791015
EMILIA ROMAGNA AUSLBO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato Accreditato Villa Baruzziana - Balogna (BO) o 0,668614
EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Ospedale Privato Acereditato Villa Laura Bologna (BO) 07304 0,533894
EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Ospedale Private Accreditato Villa Regina Bologna (BO) 1 0,805941
EMILIA ROMAGNA AUSLBO PRIVATE SECOND LEVEL Ospedale Privato Accreditato Villa Torri Bologna (BO) 0,6246 0,618053
EMILIA ROMAGNA AUSLBO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato Santa Viola Bologna (BO) 01231 0,736787
EMILIA ROMAGNA AUSLBO PRIVATE BASE LEVEL Casa Di Cura Villa Erbosa Ospedale Privato - Bologna (BO) 06291 0,510149
EMILIA ROMAGNA AUSLBO PUBLIC IRCCS IRCCS Policlinico S. Orsola - Bologna (BO) 1 1

EMILIA ROMAGNA AUSLBO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato Accreditato Villa Bellombra - Bologna (BO) 00432 0,728297
EMILIA ROMAGNA AUSLBO PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO UNICO - AZIENDA DI BOLOGNA 1 0,980477
EMILIA ROMAGNA AUSLBO PRIVATE | PRIVATE NURSING HOMES Villa Ranuzzi - Bologna (BO) o 1

EMILIA ROMAGNA AUSLFE PUBLIC SECOND LEVEL Azienda Ospedaliero-Universitaria Ferrara (FE) 07536 0,676907
EMILIA ROMAGNA AUSLFE PRIVATE BASE LEVEL Casa Di Cura Quisisana SRL Ferrara (FE) 1 0,785199
EMILIA ROMAGNA AUSLFE PRIVATE BASE LEVEL Casa Di Cura Salus SRL Ferrara (FE) 1 0,778615
EMILIA ROMAGNA AUSLFE PUBLIC FIRST LEVEL PRESIDIO OSPEDALIERQ UNICO - COMACCHIO - ( FE ) 04711 0470732
EMILIA ROMAGNA AUSLIML PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO IMOLA 04831 0463576
EMILIA ROMAGNA AUSL IML PUBLIC BASE LEVEL Ospedale Montecatone Rehabilitation Instirute - Imola (BO) 0,0004 0,40735%
EMILIA ROMAGNA AUSL MO PUBLIC SECOND LEVEL Azienda Ospedaliero-Universitaria Modena (MO} 06972 0,591601
EMILIA ROMAGNA AUSL MO PRIVATE SECOND LEVEL Hesperia Hospital Modena SRL Modena (MO) 1 0,703623
EMILIA ROMAGNA AUSL MO PUBLIC FIRST LEVEL Nuovo Ospedale Civile Di Sassualo SPA Sassuola (MO) 1 0,957779
EMILIA ROMAGNA AUSL MO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato Accreditato Villa Rosa - Modena (MO) o 0,649048
EMILIA ROMAGNA AUSL MO PRIVATE | PRIVATE NURSING HOMES Ospedale Privato "Villa Igea SPA" Modena (MO} 00046 0419128
EMILIA ROMAGNA AUSL MO PRIVATE BASE LEVEL Prof. Fogliani Casa Di Cura SRL Modena (MO) 08135 0,649574
EMILIA ROMAGNA AUSLMO PRIVATE BASE LEVEL Villa Pincta SRL Pavullo Nel Frignano (MO) 04539 0,601571
EMILIA ROMAGNA AUSL MO PUBLIC SECOND LEVEL OSPEDALIERO PROVINCIALE - CARPI - (MO ) 1 1

EMILIA ROMAGNA AUSLPC PRIVATE BASE LEVEL Casa Di Cura Privata Piacenza SPA Piacenza (PC) 1 0,810436
EMILIA ROMAGNA AUSLPC PRIVATE BASE LEVEL Casa Di Cura Privata S. Antenino SRL Piacenza (PC) 0,1448 0,674232
EMILIA ROMAGNA AUSLPC PRIVATE | PRIVATE NURSING HOMES Casa Di Cura 8 Giacomo SRL - Ponte Dell'vlio (PC) 01929 0,533984
EMILIA ROMAGNA AUSLPC PUBLIC SECOND LEVEL PRESIDIO UNICO PIACENZA - PIACENZA - ( PC ) 06691 0,670952
EMILIA ROMAGNA AUSLPR PUBLIC SECOND LEVEL Azienda Ospedaliero-Universitaria Parma (PR) 0,8466 0,798585
EMILIA ROMAGNA AUSLPR PRIVATE BASE LEVEL Casa Di Cura Citta' Di Parma Parma (PR) 1 0,988475
EMILIA ROMAGNA AUSLPR PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Villa Igea - Salsomaggiore Terme (PR) o 0,771325
EMILIA ROMAGNA AUSLPR PRIVATE | PRIVATE NURSING HOMES Centro Cardinal Ferrari SRL Fontanellato (PR) 0,0036 0,556136
EMILIA ROMAGNA AUSLPR PRIVATE BASE LEVEL Hospital Piccole Figlie Parma (PR) 09525 0,612529
EMILIA ROMAGNA AUSLPR PRIVATE BASE LEVEL Hospital Val Parma Langhirano (PR} 1 0,534342
EMILIA ROMAGNA AUSLPR PRIVATE | PRIVATE NURSING HOMES Fondazione Don Carlo Gaocchi Onlus - Parma (PR) 05756 0,600578
EMILIA ROMAGNA AUSLPR PUBLIC FIRST LEVEL PRESIDIO OSPEDALIERO AZIENDALE - AUSL PAR - FIDENZA - ( PR ) 0,7001 0,647642
EMILIA ROMAGNA AUSLPR PRIVATE | PRIVATE NURSING HOMES Villa Maria Luigia - Montechiarugolo (PR) o 0,539678
EMILIA ROMAGNA AUSLRE PRIVATE BASE LEVEL Casa Di Cura Privata Polispecialistica Reggio Nell'emilia (RE) 06372 0,578566
EMILIA ROMAGNA AUSLRE PRIVATE BASE LEVEL Salus Hospital {Casa Di Cura Privata) Reggio Nell'emilia (RE) 08206 0,634182
EMILIA ROMAGNA AUSLRE PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO PROVINCIALE - REGGIO NELL'EMILIA - ( RE ) 1 0,992597
EMILIA ROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Casa Di Cura Privata San Lorenzino SPA Cesena (FC) 07751 0,602686
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Casa Di Cura Prof. E. Montanari Morciano Di Romagna (RN) 06182 0,532602
EMILIA ROMAGNA | AUSLROMAGNA | PRIVATE | PRIVATE NURSING HOMES Casa Di Cura Privata Villa Azzurra - Riolo Terme (RA) o 0,741289
EMILIA ROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Casa Di Cura San Francesco Ravenna (RA) 0,0867 0,602251
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Casa Di Cura Villa Maria Rimini (RN} 07565 0,618792
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE IRCCS LR.S.T. SRL IRCCS Meldola (FC) 00131 0,406521
EMILIA ROMAGNA | AUSLROMAGNA | PRIVATE | PRIVATE NURSING HOMES Luce Sul Mare - Bellaria-igea Marina (RN). o 0,696636
EMILIAROMAGNA | AUSL ROMAGNA PRIVATE BASE LEVEL Malatesta Novello Cesena (FC) 1 0,67692
EMILIAROMAGNA | AUSLROMAGNA | PUBLIC FIRST LEVEL Ospedale "Degli Infermi " Faenza (RA) 05939 0,579597
EMILIA ROMAGNA | AUSLROMAGNA |  PUBLIC SECOND LEVEL Ospedale "Santa Maria Delle Croci” Ravenna (RA) 07704 0,629709
EMILIAROMAGNA | AUSL ROMAGNA PUBLIC FIRST LEVEL Ospedale "Umberto i” Lugo (RA) 05193 0,527429
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Ospedale Privato Accreditato Villa Igea Forli' (FC) 06279 0,586772
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Ospedale Privato Domus Nova SPA Ravenna (RA) 09971 0,62774
EMILIAROMAGNA | AUSL ROMAGNA PRIVATE BASE LEVEL Ospedale Privato San Pier Damiano Facnza (RA) 05967 0,541527
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL 0,7245 0,59967
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE SECOND LEVEL Villa Maria Cecilia Hospital Cotignola (RA) 1 0,786186
EMILIAROMAGNA | AUSL ROMAGNA PRIVATE | PRIVATE NURSING HOMES Villa Salus SRL - Rimini (RN) o 0,859121
EMILIAROMAGNA | AUSLROMAGNA | PRIVATE BASE LEVEL Villa Serena Forli' (FC) 07736 0,631872
EMILIAROMAGNA | AUSLROMAGNA |  PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO CESENA - CESENA - ( FC) 05165 0,533267
EMILIAROMAGNA | AUSLROMAGNA | PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO FORLI' - FORLI - (FC ) 07797 0,633316
EMILIAROMAGNA | AUSLROMAGNA |  PUBLIC FIRST LEVEL PRESIDIO OSPEDALIERO RICCIONE-CATTOLICA - RICCIONE - ( RN ) 08277 0,690173
EMILIAROMAGNA | AUSLROMAGNA |  PUBLIC SECOND LEVEL PRESIDIO OSPEDALIERO RIMINI ( RN ) 07445 0,619921
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The DEA methodology has been applied in line with the analysis previously
conducted for the Apulia region alone, as detailed in paragraph 1.20. This approach
allows for a consistent and comparable evaluation of hospital efficiency across the
two regions, ensuring a homogeneous understanding of the results obtained.

3.6 COMPARATIVE ANALYSIS OF HOSPITAL NETWORK
EFFICIENCY BETWEEN APULIA AND EMILIA ROMAGNA: AN
ANOVA PERSPECTIVE

Efficiency scores, such as Pure Technical Efficiency (PTE), can vary in their
distribution. To ensure the application of standard statistical techniques, such as
ANOVA, the scores should ideally follow a normal distribution. To achieve this,
the PTE scores were normalized using a logarithmic transformation. This
normalization step not only allows for the use of ANOVA but also ensures that the
data is well-suited for such an analysis.

Before applying ANOVA, certain assumptions need to be met. These include the
homogeneity of variances and the normality of the distribution.

Homogeneity of Variances: As presented in Figure 39, both Levene's and Bartlett's
tests were employed. The p-values obtained (Levene's test p=0.136 and Bartlett's
test p=0.113) indicate that the variances are assumed to be equal across the groups.
Normality of the Distribution: The normality of the distribution was also checked
using multiple tests. The results, illustrated in Figure 39, showed that the
distribution is assumed to be normal based on the Shapiro-Wilk (p=0.699),
Kolmogorov-Smirnov (p=0.979), and Anderson-Darling (p=0.887) tests.

A QQ-Plot was used to provide a visual representation of the distribution of
efficiency scores, which further confirmed the normality of the data.

ANOVA — The Fourth Step of the CPDA Methodology: After the necessary
assumptions were verified, the ANOVA was applied to evaluate efficiency
differences among different hospital networks in Apulia and Emilia Romagna, as
shown in Figure 39. The analysis revealed significant differences based on both the
region and the type of network (private or public). The interaction term (REGION
* NETWORK) also showed significant differences, indicating that the efficiency
of hospital networks varies not only by region but also differently within each
region based on whether the network is public or private.
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ANOVA

ANOVA - LOG_PTE_CPDA

Sum of Squares df Mean Square F p
REGION 0.0425 1 0.04246 560 0.019
NETWORK 0.0980 1 0.09804 12.94 <.001
REGION = NETWORK 0.1736 1 0.17359 2291 <.001
Residuals 0.9319 123 0.00758

Assumption Checks

Homogeneity of Variances Tests

Statistic df df2 p

Levene's 1.88 3 123 0.136
Bartlett's 5.97 3 0.113

Note. Additional results provided by moretests

Normality tests

statistic p
Shapiro-Wilk 0.992 0.699
Kolmogorov-Smirnov 0.0418 0.979
Anderson-Darling 0.197 0.887

Note. Additional results provided by moretests

Q-Q Plot

Standardized Residuals

Theoretical Quantiles

Figure 39 ANOVA Analysis of Hospital Network Efficiency in Apulia and Emilia Romagna.
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4. DISCUSSION AND RESULTS

In this section, we will present a detailed analysis of hospital efficiency within the
Apulia-Emilia Romagna macroregion. We utilized the CPDA methodology to
derive our efficiency scores, offering a robust and comprehensive assessment of
hospital performance. This analysis delves into the differences between the two
regions in terms of pure technical efficiency and scale efficiency. Additionally, we
will examine how these efficiency measures impact the perceived quality of
healthcare, as denoted by the hospitalization propensity of resident patients.

4.1 RESEARCH QUESTION FOUR

Within the scope of our analysis based on the CPDA methodology, the propensity
for hospitalization was considered as the primary indicator of the quality of
healthcare perceived by patients. Five facilities achieved a pure technical efficiency
(PTE) score of 1:

e (Casa Di Cura Anthea — Bari;

Casa Di Cura Santa Maria — Bari;

IRCCS Policlinico S. Orsola — Bologna;

Villa Ranuzzi — Bologna;

Presidio Ospedaliero Provinciale - Carpi.

Among these, the Casa Di Cura Anthea - Bari both achieved a pure technical
efficiency score and a scale efficiency score of 1, positioning itself as the only
hospital in the macroregion to achieve technical efficiency (TE). These findings
indicate that, while several facilities maximized their efficiency in terms of resource
transformation into outputs (PTE), only one achieved both pure technical efficiency
and optimal operational size (SE). The trend graph and the related comparison of
efficiency components are shown in Figure 40.
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Figure 40 Technical Efficiency decomposition of Apulia — Emilia Romagna hospitals.

111



To further delve into these differences, we conducted a post-hoc test, the specifics
of which are detailed in Table 23. This test allowed us to pinpoint the exact locations
of differences between the groups following an ANOVA analysis. The detailed
results provide a clearer picture of the differences between hospital facilities in the
two regions in terms of pure technical efficiency.

Table 23. Post-hoc comparisons of hospital facilities in the Apulia and Emilia Romagna regions concerning
Pure Technical Efficiency (PTE).

Comparison

REGION NETWORK REGION NETWORK  Mean Difference SE df t Ptukey
EMILIA ROMAGNA PRIVATE - EMILIA ROMAGNA PUBLIC -0.0190 0.0226 123 -0.843 0.834
PUGLIA PRIVATE -0.0387 0.0204 123 -1.894 0.236
- PUGLIA PUBLIC 0.0954 0.0206 123 4.621 <.001
PUBLIC - PUGLIA PRIVATE -0.0197 0.0244 123 -0.805 0.852
- PUGLIA PUBLIC 0.1144 0.0246 123 4.649 <.001
PUGLIA PRIVATE - PUGLIA PUBLIC 0.1341 0.0227 123 5915 <.001

Note. Comparisons are based on estimated marginal means

The results provided come from a post-hoc comparison, often conducted after an
ANOVA when the latter indicates significant differences but doesn't specify where
these differences lie. The post-hoc test provides pairwise comparisons to find out
which groups differ from each other. It's important to note that the post-hoc test and
the ANOVA were conducted on the logarithmically normalized value of PTE.
EMILIA ROMAGNA (PRIVATE) vs. EMILIA ROMAGNA (PUBLIC): The
average difference in Pure Technical Efficiency (PTE) between private and public
hospitals in Emilia Romagna is -0.0190. The standard error (SE) of this difference
is 0.0226. The t-value is -0.843, and the p-value is 0.834, which is not significant
(as it is above the common alpha level of 0.05). This means there isn't a significant
difference in PTE between private and public hospitals within Emilia Romagna.
EMILIA ROMAGNA (PRIVATE) vs. APULIA (PRIVATE): The average
difference is -0.0387, with an SE of 0.0204. The t-value is -1.894 and the p-value
is 0.236, which again is not significant. This suggests that private hospitals in
Emilia Romagna and Apulia don't significantly differ in terms of PTE.

EMILIA ROMAGNA (PRIVATE) vs. APULIA (PUBLIC): The average
difference is 0.0954, with an SE of 0.0206. The t-value is 4.621 and the p-value is
less than 0.001, highly significant. This means there's a significant difference in
PTE between private hospitals in Emilia Romagna and public hospitals in Apulia,
with the latter showing higher PTE.

EMILIA ROMAGNA (PUBLIC) vs. APULIA (PRIVATE): The average
difference is -0.0197, with an SE of 0.0244. The t-value is -0.805 and the p-value
is 0.852, indicating no significant difference.

EMILIA ROMAGNA (PUBLIC) vs. APULIA (PUBLIC): The average difference
is 0.1144, with an SE of 0.0246. The t-value is 4.649 and the p-value is less than
0.001. This is again highly significant, suggesting that public hospitals in Apulia
have significantly higher PTE compared to those in Emilia Romagna.

APULIA (PRIVATE) vs. APULIA (PUBLIC): The average difference is 0.1341,
with an SE of 0.0227. The t-value is 5.915 and the p-value is less than 0.001. This
result indicates a significant difference between private and public hospitals within
Apulia, with public hospitals showing higher PTE.

In summary, the most pronounced differences in PTE are found between private
hospitals in Emilia Romagna and public hospitals in Apulia, and between public
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hospitals of the two regions. Public hospitals in Apulia consistently show higher
PTE scores in these comparisons.

The analysis of scale efficiency revealed intriguing differences across regions,
different networks, and various hospital levels. Let's begin by examining the scale
efficiency differences among healthcare facilities in the Apulia and Emilia-
Romagna regions (Table 24). The non-parametric Kruskal-Wallis test, applied to
the SE_CPDA data, produced a 42 value of 0.142 with one degree of freedom. The
associated p-value of 0.706 suggests that there are no statistically significant
differences in scale efficiency across hospitals in these two regions.

Table 24. Kruskal-Wallis Test Results for Scale Efficiency across the Apulia and Emilia Romagna Regions.

b4 df P

SE CPDA  0.142 1 0.706

However, the picture changes when scale efficiency is analyzed distinguishing
between the private and public hospital networks of the macro-region (Table 25).
The Kruskal-Wallis test indicated a y2 value of 33.4 with one degree of freedom,
and a p-value less than 0.001, signaling statistically significant differences. Pairwise
comparisons underscored a pronounced difference between the private and public
networks: a W value of -8.17 with a p-value less than 0.001 denotes that the public
network exhibits greater scale efficiency compared to its private counterpart.

Table 25. Kruskal-Wallis Test Results for Scale Efficiency across the private and public hospital networks of
the macro-region Apulia and Emilia Romagna Regions.

b4 df p

SE_CPDA 334 1 <.001

Further analyses were conducted to explore scale efficiency differences across
various hospital levels (Table 26). The Kruskal-Wallis test returned a 2 value of
58.7 with 4 degrees of freedom and a p-value less than 0.001, pointing to the
presence of significant differences across levels.

Table 26. Kruskal-Wallis Test Results for Scale Efficiency across various hospital levels of the macro-region
Apulia and Emilia Romagna Regions.

v odf P

SE_CPDA 58.7 4 <.001

Table 27. Dwass — Steel — Critchlow — Fligner pairwise comparisons for Scale Efficiency across various
hospital levels of the macro-region Apulia and Emilia Romagna Regions.

w p
BASE LEVEL FIRST LEVEL -8.14 <.001
BASE LEVEL IRCCS -2.10 0.573
BASE LEVEL PRIVATE NURSING HOMES -1.80 0.708
BASE LEVEL SECOND LEVEL -7.90 <.001
FIRST LEVEL IRCCS 243 0.425
FIRST LEVEL PRIVATE NURSING HOMES 5.99 <.001
FIRST LEVEL SECOND LEVEL -5.44 0.001
IRCCS PRIVATE NURSING HOMES 1.12 0.933
IRCCS SECOND LEVEL -3.45 0.105
PRIVATE NURSING HOMES SECOND LEVEL -7.54 <.001
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Pairwise comparisons (Table 27) provided additional insights:

e The comparison between base-level hospitals and first-level hospitals yielded
a W value of -8.14 and a p-value less than 0.001, indicating statistically significant
differences.

e The difference between base-level hospitals and IRCCS isn't statistically
significant, with a W value of -2.10 and a p-value of 0.573.

e There are no significant differences between base-level hospitals and private
nursing homes, with a W value of -1.80 and a p-value of 0.708.

e  Comparing base-level and second-level hospitals, significant differences arise
with a W value of -7.90 and a p-value less than 0.001.

e  There are no statistically significant differences between first-level hospitals
and IRCCS, and between IRCCS and private nursing homes.

e However, significant differences exist between first level and second level
hospitals (W = -5.44, p = 0.001), and between private nursing homes and second
level hospitals (W =-7.54, p <0.001).

These findings highlight the varied performance in terms of scale efficiency across
healthcare facilities in the Apulia-Emilia Romagna macro-region. While healthcare
facilities across the two regions don't markedly differ in terms of scale efficiency,
clear differences arise when considering the private or public nature of the facilities
and their service level.

4.2 PERCEIVED QUALITY INFLUENCED BY HOSPITAL EFFICIENCY
IN APULIA AND EMILIA ROMAGNA

In line with the analysis previously conducted solely for the Apulia region, as
described in Section 1.22.1, we expanded our investigation to also include the
Emilia Romagna region. The relationship between the quality perceived by patients,
measured through their propensity for hospitalization, and the efficiency of a
hospital is a crucial aspect to consider when assessing the effectiveness of a
hospital's organizational structure and inpatient practices in the Apulia and Emilia
Romagna regions.

This correlation can offer insights into how efficiently a hospital can meet patients'
needs and expectations, as well as potential discrepancies between the perceived
quality of care and the actual efficiency in providing it. Understanding this
relationship can help in pinpointing potential areas for improvement in hospital
management and resource allocation, ultimately leading to better outcomes and
increased patient satisfaction. Moreover, grasping the connection between hospital
efficiency and perceived quality of care can also have significant policy
implications.

This study aimed to investigate the influence of the identified hospital efficiency in
both Apulia and Emilia Romagna on the hospitalization propensity of resident
patients. Before applying linear regression, outliers were removed. We assessed the
Spearman correlation coefficient between the target variable and the SE feature,
which are not normally distributed, both for the entire hospital network in Apulia
and Emilia Romagna and for the private and public hospital networks, using the
"correlation" widget of the Orange software. The correlation analysis, shown in
Table 28, pertains to the entire model of the Apulia and Emilia-Romagna macro-
region.
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Table 28. Spearman correlation coefficient between the target variable and the two features for Apulia and
Emilia — Romagna regions.

NETWORK TARGET VARIABLE SE
PUBLIC HOSPITAL NETWORK PROPENSION HOSPITALIZATION -0.863

The results of the linear regression model, illustrated in Figure 41, highlight a
significant relationship between hospital scale efficiency, represented by the
"SE CPDA" variable, and the patients' "Propension Hospitalization". Examining
the model's fit measures, we observe a correlation coefficient R of 0.894, indicating
a strong linear relationship between the variables. The high percentage of the
determination coefficient R? (79.9%) suggests that "SE _CPDA" explains a
significant portion of the variance in "Propension Hospitalization".

The Omnibus ANOVA test revealed an F statistic of 167 with a p-value less than
0.001. This confirms the statistical significance of the model and indicates
"SE CPDA" as arelevant predictor of "Propension Hospitalization". Analyzing the
model's coefficients, the intercept is 7.56, representing the predicted "Propension
Hospitalization" when "SE CPDA" is zero. The coefficient for "SE CPDA" is -
9.51, revealing a decrease of 9.51 units in "Propension Hospitalization" for every
unitary increase in "SE_CPDA". This negative relationship is further supported by
the standardized estimate of -0.894.

Regarding the linear regression assumptions, normality tests, such as Shapiro-Wilk,
Kolmogorov-Smirnov, and Anderson-Darling, indicate a normal distribution of the
residuals. Moreover, heteroskedasticity tests, like Breusch-Pagan, Goldfeld-
Quandt, and Harrison-McCabe, show no evidence of heteroskedasticity, confirming
the constancy of the residuals' variance across the levels of the independent
variable.

In conclusion, the results suggest a marked negative linear relationship between
"SE CPDA" and "Propension Hospitalization" in the public hospital network of the
Apulia-Emilia Romagna macroregion. The fundamental assumptions of linear
regression, such as the normality of residuals and homoscedasticity, are met,
making the model suitable for the analysis of the provided data.
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Linear Regression

Model Fit Measures

Model R R2
1 0.894 0.799
Omnibus ANOVA Test
Sum of Squares df Mean Square F P
SE_CPDA 100.1 1 100.103 167 <.001
Residuals 252 42 0.601

Note. Type 3 sum of squares

Model Coefficients - PROPENSION HOSPITALIZATION

Predictor Estimate SE t P Stand. Estimate
Intercept 7.56 0.557 13.6 <.001
SE_CPDA -9.51 0737 -129 <.001 -0.894

Assumption Checks

Normality Tests

Statistic P
Shapiro-Wilk 0.980 0.637
Kolmogorov-Smirnov 0.0837 0.892
Anderson-Darling 0.329 0.507

Note. Additional results provided by moretests

Heteroskedasticity Tests

Statistic p
Breusch-Pagan 2.14 0.144
Goldfeld-Quandt 1.82 0.094
Harrison-McCabe 0.402 0.190

Note. Additional results provided by moretests

Q-Q Plot

Standardized Residuals

-2 -1 0 1 2
Theoretical Quantiles

Figure 41 Linear Regression between "SEcpps" and "Propension Hospitalization" in the Apulia and Emilia
Romagna Regions.
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S.  RESPONSES TO II SESSION RESEARCH QUESTIONS

The answers to the research question proposed in II Session is as follows:

A, In the Apulia-Emilia Romagna macroregion, hospital efficiency displays
variability between public and private sectors and across regions. Using the CPDA
methodology, notable facilities achieved optimal technical efficiency, with a
standout in Apulia also reaching optimal scale efficiency. Public hospitals
consistently showcased superior scale efficiency compared to private ones.
Crucially, a strong negative linear relationship was identified between scale
efficiency and patient's propensity for hospitalization, indicating that hospital
efficiency directly influences the perceived quality of healthcare by resident
patients.

6. CONCLUSIONS OF II SESSION

In the context of the detailed analysis of hospital efficiency within the Apulia-
Emilia Romagna macroregion, a complex picture of performance and differences
between the two regions emerged. Using the CPDA methodology, we were able to
derive efficiency scores that offer a robust and comprehensive evaluation of
hospital performance. While five facilities, spread between Apulia and Emilia
Romagna, achieved a pure technical efficiency (PTE) score of 1, only one of these,
located in Apulia, also achieved a scale efficiency score of 1, highlighting its
excellence both in terms of resource transformation into outputs and optimal
operational size. Delving further into regional differences, it emerged that, although
there are facilities in both regions operating with optimal technical efficiency, there
is a slight predominance of high-efficiency facilities in Emilia Romagna. However,
when considering the private or public nature of the facilities, the differences
become more pronounced, with the public hospital network showing greater scale
efficiency compared to private facilities, regardless of the region.

These findings, combined with the analysis of hospitalization propensity as an
indicator of the quality of healthcare perceived by patients, suggest a direct
correlation between hospital efficiency and the quality of care. In particular, the
negative relationship between the scale efficiency "SEcppa" and "Propension
Hospitalization" underscores the importance of efficient resource management and
operational size in influencing patient perception.

In summary, while both Apulia and Emilia Romagna feature hospitals with high
performance, there are significant differences in terms of technical and scale
efficiency, which directly influence the quality of healthcare perceived by patients.
These discoveries provide valuable insights for further reflections on hospital
management practices and regional health policies.

Limitations and Future Perspectives: Despite the comprehensive analysis
provided, this study has inherent limitations. We relied on data that might not
capture recent developments in hospital structures or healthcare within the
examined regions. While the CPDA methodology is robust, it does not negate the
validity or utility of other analytical approaches. Moreover, hospitalization
propensity, though significant, captures only one facet of care quality. Future
analyses might consider factors like hospital funding or staff expertise for a more
holistic understanding. Moving forward, monitoring how efficiency and perceived
quality evolve with technological innovations, regulatory shifts, and new healthcare
policies is essential. Extending research to other regions or international contexts
could also yield further insights and identify global best practices in hospital
efficiency.
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III SESSION

ASSESSMENT OF PUBLIC HEALTH PERFORMANCE IN
RELATION TO HOSPITAL ENERGY DEMAND, SOCIO-
ECONOMIC EFFICIENCY AND QUALITY OF SERVICES

1. INTRODUCTION

Good health is essential to sustainable development, as established by the 2030
Agenda. Indeed, health has a central position in Sustainable Development Goal 3,
which concerns "Good Health and Well-being." The goal also aims to achieve
universal health coverage and provide access to safe and effective medicines and
vaccines for all. It is closely linked to over a dozen targets in other goals related to
urban health, equal access to treatments, and non-communicable diseases, among
others. In fact, it represents a unique opportunity to promote public health through
an integrated approach to public policies across different sectors. Specifically,
Target 3.8 "Achieve Universal Health Coverage" aims to provide universal health
coverage, including financial risk protection, access to quality essential health care
services, and access to safe, effective, quality, and affordable essential medicines
and vaccines for all.

Subsequent paragraphs, however, are indented. Despite this awareness underpinned
by ambitious goals in recent decades, there has been a steady increase in the number
of disasters, including pandemics, which have had significant impacts on societies
and economies. The COVID-19 pandemic has shown that many countries around
the world have been caught unprepared to deal with such a threat, and the safety net
provided by the health infrastructure has failed even in the most developed
countries, with considerable fallout and repercussions on the health sector in
general. This has led to an increase in healthcare costs, with forecasts of a further
upward trend, without an integrated system for monitoring the efficiency of the
healthcare system in general and the quality of services in particular.

Therefore, the interest of academics, healthcare managers, and policymakers has
increased in identifying measures to contain healthcare spending while ensuring
service quality. In this context, various attempts have been made to improve
provider efficiency, including activating competition between hospitals and the
implementation of incentive-based payment systems. Proposed models aimed at
maximizing public administration and social housing have demonstrated
effectiveness in meeting public needs while ensuring fair compensation for private
entities (Morano et al., 2021). Numerous studies have been conducted to assess
hospital efficiency and its variation over time, in order to provide an accurate
estimate of hospital productivity and costs, which can be used as a criterion for
payment for hospital services and to improve national health provision. As a matter
of fact in many countries, public policies concerning the reduction of beds and
medical and nursing staff, hospital mergers and acquisitions, and lower investments
in health infrastructure are now being reassessed. In addition, the decentralised
organisation of the healthcare system is also being questioned, and in many cases,
the re-centralisation of the system is being considered. Italy is one of the Western
countries that has significantly reduced healthcare spending and decentralised
management to the regional level. However, the effects of these policies are still
being debated. Moreover, despite the changes in healthcare organisation,
inequalities between regional systems have not decreased over the last 20 years. In
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the literature, there is still a broad consensus that these decentralisation plans, and
the decentralisation process in general, have had an impact on increasing health
inequalities not only between but also within regions.

Moreover nowadays, healthcare managers must consider the impact of exogenous
economic factors, such as the progressive increase in the cost of energy resources
throughout Europe, an increase that is even more relevant following the outbreak
of the conflict in Ukraine and the inflationary spiral that is still in progress.
According to the National Agency for Regional Health Services (AGENAS),
funding of EUR 1.6 billion has been provided for the National Health Service
entities for the year 2022 to counter the effects of the increase in the prices of energy
sources.

Given this evidence, the assessment of the territorial health services usually crosses
several dimensions to obtain a comprehensive composite indicator useful for
classification and comparisons. Therefore the first contribution of the present work
is to identify and measure the main latent variables that summarize the
organizational components of public nosocomial facilities, as well as variables that
can express patients' preferences for hospital choice based on best activity or
outcome criteria. The second contribution of this paper presents a machine learning
methodology using machine learning algorithms that can assist decision-makers in
their choices. The third contribution explains the interaction between identified
hospital components and per capita health expenditure on electricity through a
linear regression model.

The third section is organized as follows: after introducing the problem and the
objectives of the work, the following paragraph presents the methodological
background and the case study to which it was applied. This is followed by a
paragraph detailing the conducted study, where the most interesting results are
presented and subsequently critically discussed, complemented by an evaluation of
the proposed approach's innovativeness, potential, and limitations. The conclusions
offer insights into the implications of the methodology for decision support at
various scales and suggest possible future developments.

2. BACKGROUND

In the literature, it has been observed that various demographic and economic
factors play a role in the choice of healthcare facilities, such as income, propensity
to travel, level of education, age, type of illness, need for frequent treatment, and
trust and reputation of the facility and its operators.

The patient's decision-making process when considering the quality of services
(real or perceived) can be divided into several stages, including information
gathering, risk/benefit assessment, consultation with the physician, and choice of
treatment. The patient experience is complex and depends on several factors,
including satisfaction, quality of care, and effectiveness of the healthcare system
(Wolf et al., 2021). The perceived quality of healthcare is related to the actual
quality of care provided (Doyle et al., 2013). Patients' satisfaction with the
healthcare system is influenced by their experience of care and their perception of
adequate attention to their care needs (Bleich et al., 2009). Active patient
involvement in treatment choice improves patient satisfaction (Shay & Lafata,
2015). From the perspective of hospital facilities, a significant factor for perceived
quality is the facility's ability to effectively treat complex and specialized illnesses,
i.e., the facility's specialization and the complexity of the clinical cases treated.
Another essential aspect is the reputation of the doctors working there. These

119



factors can be emphasized by marketing policies pursued (Falavigna & Ippoliti,
2013).

According to the literature, two main points of view need consideration when
evaluating possible measures: social welfare and stakeholder theory. Hospitals
should not only ensure high-quality medical services at reasonable costs to improve
health in society, but also be concerned about the well-being of their customers and
all other stakeholders involved in the process (Hajiagha et al., 2022).

Based on these assumptions, hospital management should be aware of all the
variables that express the structure's human, financial, and technological resources,
as well as the outcomes produced and the quality of life of patients. To obtain timely
decisions by healthcare management with the aid of streamlined procedures and
tools, methodologies based on Multi-Agent Simulation to support Decision-Making
in healthcare infrastructures for the organizational management and actionable
choices in health risk (Esposito et al., 2020), as well as methods based on Dynamic
Network Visualization of space use to support spatial redesign related decisions to
improve workflow effectiveness and patient well-being (Esposito & Abbattista,
2020), have been proposed.

Artificial intelligence-based approaches composed of optimization and machine
learning (Mirmozaffari et al., 2022) have been conducted and applied in different
fields and organizations to calculate, for example, public hospital efficiency
(Hajiagha et al., 2023), rather than in the industrial and service sectors (Guede-Cid
et al., 2021).

As such methodologies involve large volumes of data, they require data mining
techniques such as feature extraction, selection, and classification to derive
meaningful information from the data. Feature selection is a technique used to
reduce dimensionality to prune the feature space and, consequently, reduce
computational cost and improve classification accuracy by means of Principal
Component Analysis (Alomari et al., 2022).

Section Three will present an extension of the work by Santamato et al., 2023,
applying the 2020 data from the Apulia Region described in Section One and the
2021 data from the Apulia Region in Section Two. A linear regression analysis will
be conducted between the two main components identified in the previous two
sections (Hospital Organization and Propensity for Hospitalization) and the hospital
energy cost. Subsequently, an ANOVA analysis of the predictive results will be
carried out. In a secondary analysis, a linear regression will be applied between the
efficiency scores identified in the previous sections, the number of hospital devices,
and the cost of hospital energy.

The analyses carried out in this study will be conducted in a machine learning
environment.

This session presents a case study of the Apulia region (Italy). The regional health
system encompasses both public and private accredited facilities within a given
region, forming an organized complex known as the regional health industry
(Falavigna & Ippoliti, 2013).

The Regional Health Service in Apulia is represented by six Aziende Sanitarie
Locali (ASLs), as shown in Table 1a. ASLs are public legal entities with autonomy
in organizational, managerial, technical, administrative, patrimonial, and
accounting matters, as well as entrepreneurial autonomy (in accordance with Article
3 of Legislative Decree No. 502 of 30 December 1992). ASLs are part of the
National Health Service.

This study focuses on the regional public hospital network in Apulia, specifically
analyzing 28 facilities as indicated in the National Health Service Data Bank of the
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Ministry of Health. The public network consists of 24 ASL Direct Hospitals, one
Hospital Authority integrated with the National Health System (NHS), one Hospital
Authority integrated with the University, and one Public Institute for
Hospitalization and Scientific Care. Some facilities, as specified in the single
hospital reorganization document approved by the Apulian Regional Council on
03/07/2019, have connected plexuses and/or hospitals located in different places
from the main structure. Thus, for greater accuracy in measuring the distance
traveled by patients, all the physical plexuses indicated in the National Outcomes
Plan have been considered. The total number of facilities considered for measuring
the active mobility of Apulian patients is 37 (see Figure 42), including admissions
made by ASL and by territorial ambit, as indicated in the National Outcomes Plan.

Figure 42 Division of regional territory into provinces and public hospitals in Apulia.

In terms of hospital classification in Apulia, there are 5 second-level hospitals, 12
first-level hospitals, 2 Scientific Hospitalization and Care Institutes (IRCCS), and
9 basic hospitals. The differences between these types of hospitals are described in
the Ministry of Health's regulations on the definition of qualitative, structural,
technological, and quantitative standards for hospital care, which are implemented
under Article 1, paragraph 169, of Law no. 311 of 30 December 2004 and Article
15, paragraph 13, letter c) of Decree-Law no. 95 of 6 July 2012, converted with
amendments by Law no. 135 of 7 August 2012. The hospital levels differ primarily
based on catchment area, number of wards, and complexity.

2.1 KEY RESEARCH QUESTIONS ADDRESSING ENERGY COSTS AND
HOSPITAL EFFICIENCY IN APULIA

In the context of our investigation into the energy and management efficiency of
hospitals in Apulia, we identified several fundamental questions that required
further exploration. These questions became the backbone of our research and
guided our subsequent analyses:

Qs: How do the variables of hospital organization and patients' propensity for
hospitalization correlate with the per capita energy cost in public health facilities in
Apulia?

This question aims to explore the dynamics between managerial and organizational
decisions within hospital facilities and their impact on energy costs. Understanding
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this relationship is crucial for formulating recommendations on how to optimize
resources without compromising the quality of care.

Q¢: What is the relationship between the pure technical efficiency (PTE) of public
hospitals in Apulia and the number of medical devices, in relation to the per capita
energy cost?

With the rise of medical technology and the importance of medical devices in care
provision, it is essential to understand how these factors influence energy costs.
This understanding can offer insights into how to balance the adoption of new
technologies with energy sustainability.

These research questions were posed in light of the preliminary findings and trends
observed in the initial stages of our analysis. The answers to these questions are
vital to provide concrete recommendations to policymakers and hospital managers
on how to address the challenges of energy management in the healthcare sector.

3. METHODOLOGY

3.1 METHODOLOGICAL APPROACH TO HOSPITAL AND ENERGY
EFFICIENCY

In an era marked by the urgent need to address climate change and pursue energy
efficiency, the strategy with which hospital resources are managed becomes of
paramount importance. Our study, drawing on a systematic review of the literature,
identified a range of crucial variables for assessing hospital efficiency based on data
sourced from the National Health Service and the National Outcomes Plan. These
variables span a range of dimensions, from human resources, capacity, and
productivity to quality of care, length of stay, and patient satisfaction. Our analysis
methodology, detailed in paragraph 1.17 of SESSION I, is based on Principal
Component Analysis (PCA). Through this, variables were segmented into two main
categories: hospital organization and propensity for patient admission. The analysis
was conducted using the Orange software, known for its advanced data mining
capabilities as outlined in paragraph 1.9 of SESSION I. The depth and breadth of
this analysis, exploring the intersection between energy efficiency, human resource
management, and hospital performance, are extensively discussed in the work by
Santamato et al., 2023.

Table 29 presents the variables in each group.

Table 29. Organization variables of Apulia Public Hospital.

Ol;]ga;q;lz;;:son Definition Reference No. Data sources
Var 1 No. of day hospital beds
Var 2 No. of day surgery beds
Var_3 in ordinT:ro); l:z:pei‘ti:lization
Var_4 No. of beds used (Santamato et al., 2023) Dif:llnsise
Var 5 No. of departments used
Var_6 Total no. of physicians
Var_7 Total no. of nurses
Var_8 Total no. of hospital staff

In the second group, we have included outcome variables that express the hospital's
performance in terms of services provided and outcomes produced, rather than
active mobility and thus the attractiveness of the facility (Table 30). The
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combination of these factors will contribute to the overall perceived quality of care
by patients.

Table 30. Outcome variables of Apulia Public Hospital.

Om,come Definition Reference No. Data sources
variables

Var 9 No. of hospitalizations NHS Database
Var_10 Intra-regional mobility active by territorial scope

Var_11 No. of deaths at 30 days after hospitalization

Var_12 No. of interventions according National Outcomes Plan

No. of hospital (Santamato et al., 2023)
Var_13 readmissions at 30 days after
hospital discharge

Var_14 No. of inpatient days

Var_15 No. of available days indicated NHS Database
Var 16 No. of surgical discharges

The methodology proposed in this paper involves a first phase of applying Principal
Component Analysis (PCA) to the initial dataset. The dataset will be reduced in
size by applying two distinct PCAs to the two groups of variables identified. The
Principal Component for the first group will express Hospital Organisation, while
the Principal Component for the second group will express Patient Admission
Propensity.

The effects of climate change, along with the recent energy crisis, have brought
energy efficiency issues in hospitals and the increased demand for more research
on energy efficiency in buildings into the spotlight (Psillaki et al., 2023). Therefore,
we included an additional study variable: the per capita cost of medical electricity
per Apulian resident in relation to the number of physicians in the year 2020. This
variable was calculated as the ratio of the resident population of the Apulia Region
in the year 2020 divided by the number of physicians in each hospital (Gutierrez-
Romero et al., 2021), multiplied by the value of the per capita health expenditure
related to the energy costs of Apulia in the same year (AGENAS).

The methodological workflow, shown in Figure 43, is a graphical representation of
the complex analyses applied in this study using data analysis and machine learning
tools, via the widgets available in the Orange software.

We chose to use the Orange software for our analyses because it represents a robust
data mining tool (Mirmozaffari et al., 2022).
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The new dataset, which includes the two identified principal components and the
value of energy expenditure per capita of the population distributed by doctor, will
be subjected to training and testing by means of 10-fold cross validation. Linear
regression will be used for this process. The learning algorithm (regressor) will
process the input dataset and produce as output a prediction model capable of
identifying the value of healthcare energy expenditure for given values of hospital
organization and propensity to hospitalization of patients.

3.2 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a machine learning technique that reduces
the complexity of a dataset by transforming a set of original variables into a new
set of linearly independent variables, called principal components. This method
simplifies the representation of the data while retaining the most important
information.

By reducing the size of the original variables, it is optimized while preserving as
much information as possible. The transformation of the data takes place in a new
coordinate system, where the new variables are orthogonal and arranged in order of
importance (Hastie et al., 2009). PCA was used as a pre-processing phase of the
data in a machine learning environment. We used Orange's select column widgets
to split the initial dataset into the two groups of Input Variables (Table 24) and
Output Variables (Table 25). We then linked the two groups to the PCA widgets,
as illustrated in Figure 44.

Data Data o
oDy ) ={xr
E o = 0,
Q0% 9ty
%e\ec\e
IMPUT INPUT HOSPITAL
@ o SELECTED PCA ORGANIZATION o2 =
CCteg p, s
s, -
A, C
STANDARDIZATED < Eﬂa Data Ny 0t [y b PCA DATASET
VARIABLES b s
ouTPUT ouTPUT PROPENSION
SELECTED PCA HOSPITALIZATION

Figure 44. PCA workflow.

Applying PCA to the first group of identified variables (Table 24), we obtained a
principal component (Input PC1) preserving almost 90% of the total variance with
minimal loss of information. The graphical representation is shown in Figure 45.

INPUT PC1 OUTPUT PC1

11 11
CUMULATIVE VARIANCE CUMULATIVE VARIANCE
1 - S — 1 — —
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02
01 . 01

0 — 0 t B N
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Figure 45. Input PC1 and Output PC1 variance representation.
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Applying PCA to the second group of identified variables (Table 25), one main
components (Output PC1) was identified, preserving almost 93% of the total
variance. The graphical representation is illustrated in Figure 46.

The incidence of the individual original variables on the main components can be
visualised by means of the data table widget. The results produced and represented
in figure 6 for the first principal component show a distribution in terms of
incidence, which is fairly homogeneous across all variables and therefore PC_1 was
renamed Hospital Organisation.

Data instances: 1
Features: 8
Meta attributes: 2

components variance VAR_1 VAR 2 VAR_3 VAR 4 VAR § VAR_6 VAR_7 VAR 8
1 PC1 0.894017 0.331244 0.290424 0.368028 0.361608 0.367425 0.369782 0.369161 0.362916

Figure 46. Incidence of Input variables on Input PC1.

The main output component was renamed Hospitalisation Propensity. The results
are illustrated in figure 47.

Data instances: 1
Features: 8
Meta attributes: 2

components variance VAR 9 VAR_10 VAR 11 VAR 12 VAR 13 VAR 14 VAR 15 VAR 16
1 PC1 0.923857 0.365744 0.338618 0.33546 0.3532 0.349674 0.364054 0.359203 0.36118

Figure 47. Incidence of Output variables on Output PC1.

3.3 MACHINE LEARNING ALGORITHM

Linear regression is a statistical model that attempts to establish a linear relationship
between a dependent variable (target) and one or more independent variables
(features) (Fang & Lahdelma, 2016).

The linear regression model produces a linear function that attempts to predict the
value of the dependent variable based on the values of the independent variables.
The model in multiple linear regression consists of more than one predictor
variable:

Y = Bo+P1X1+ BoXo+ - + BpXp + € (22)

where Y is the response variable, X;; X,; ... Xp is the predictor variables with p as
the number of variables, Sy; f1; B2 - Bp are the regression coefficients, and € is an
error to account for the discrepancy between predicted data and the observed data
(Fumo & Rafe Biswas, 2015).

3.4 TARGET VARIABLE

Sustainability issues have become fundamental in all their various environmental,
social and economic facets. One of the main challenges to be overcome by hospitals
in this regard is energy management, based on environmental sustainability, which
is used as a strategic means to achieve competitiveness and focuses on energy
efficiency that includes policies, strategies and technologies designed to reduce
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energy consumption, pollutant gas emissions and costs (Borges de Oliveira et al.,
2021).

Therefore, efficient energy management in hospitals has the potential to improve
energy efficiency on the one hand and better management of public expenditure on
health energy on the other.

Based on this assumption, in this study the per capita expenditure of the Apulian
population in the calendar year 2020, distributed by hospital doctors, was identified
as the target variable.

To calculate the cost of energy, we first calculated the ratio between the resident
population in Apulia in 2020 (Totges,., ) and the total number of doctors in both
public and private accredited hospitals, for each ASL (Totpoctors 4, )-

We then multiplied this ratio by the number of doctors in each public hospital,
weighted by ASL (Doctorsy,sp;) The resulting value for each facility, which is an
expression of the population catchment area, was then multiplied by the per capita
health energy cost of € 21.45 for the Apulian population in the year 2020, as
indicated by the National Agency for Regional Health Services (AGENAS).

TotResASL

Energy cost = ( ) * Doctorsyespi * 21.45 (23)

TOtDoctorsASL

4. DISCUSSION AND RESULTS

It describes the second phase of the study, in which the target variable is "Per-capita
energy cost" and the features are "Hospital Organisation" and "Hospital
Propensity".

The Linear regression widget is used to provide the prediction algorithm with the
dataset containing the variables to be analysed, and the performance of the model
is evaluated using the Test and scores widget with a cross-validation of 10 folds.
The results of the evaluation are described in Figure 48.

Sampling type: 10-fold Cross validation

Scores

Model MSE RMSE MAE R2
LINEAR REGRESSION 0.06876586014125485 0.26223245440115694 0.19946152373923498 0.9312341398587451

Figure 48. Prediction models performances.

The linear regression model has an MSE of 0.06, an RMSE of 0.2 and an MAE of
0.19, which indicates that the mean prediction error is relatively low. Furthermore,
the R2 of 0.93 suggests that the model explains about 93% of the variance in the
data, indicating a good level of fit.

The coefficients of the regression model for the 28 public hospitals in Apulia are
described in Figure 49.
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Data instances: 3
Features: 1
Meta attributes: 1

name coef
1 intercept 2.41838e-16
2 HOSPITAL ORGANIZATION 0.170574
3 PROPENSION HOSPITALIZATION 0.19381

Figure 49. Regression model coefficients.

The dataset resulting from the analysis model proposed in the study, with the
relevant predictive values generated by the linear regression, for the 28 public
hospital facilities in the Apulia Region, is shown in figure 50.

Data instances: 28
Features: 2
Meta attributes: 3
Target: Numeric variable 'ENERGY COST'

ENERGY COST STRUCTURE NAME LINEAR REGRESSION Fold HOSPITAL ORGANIZATION 0.894017 PROPENSION HOSPITALIZATION 0.923857
1 -0.745769 OSPEDALE OSTUNI -0.665551 1 -1.86611 -1.78255
2 -0.460426 OSPEDALE FRANCAVILLA FONTANA -0.583272 1 -1.6726 -1.52833
3 -0.378578 OSPEDALE CIVILE MARTINA FRANCA -0.371675 1 -1.25215 -0.805925
4 -0.469693 OSPEDALE DELLA MURGIA - PERINEI -0.365568 2 -0.851991 -1.1361
5 0.100588 OSPEDALE BARLETTA - 'MONS. R. DIMICCOLI' -0.103025 2 -0.304612 -0.268841
6 -0.424145 OSPEDALE SCORRANO -0.30743 2 -1.25587 -0.508038
7 0.29843 OSPEDALE ANDRIA - ‘L. BONOMO' -0.116555 3 -0.483352 -0.117045
8 16364 AO UNIV. '00 RR FOGGIA' 191123 3 5.22458 5.05528
9 -0.502842 OSPEDALE CASARANO -0.408186 3 -1.16271 -1.01687
10 0.761344 OSPEDALE BARI 'SAN PAOLO' 0.626752 4 1.83688 1.67788
1 -0.417241 OSPEDALE BISCEGLIE -0.6698 4 -1.46354 -2.06907
12 -0.600637 OSPEDALE SAN SEVERO - TERESA MASSELLI -0.45893 4 -1.24921 -1.22612
13 -0.687382 OSPEDALE MONOPOLI -0.484848 5 -1.23629 -1.48059
14 0.151812 OSPEDALE BARI "DI VENERE" - TRIGGIANO 0.23771 5 0.213875 1.13649
15 3.22886 AO UNIV. CONS. POLICLINICO BARI 3.73946 5 10.0078 8.73097
16 -0.813643 OSPEDALE PUTIGNANO -0.66868 6 -1.52997 -1.94286
17 -0.843701 OSPEDALE MANFREDONIA -0.811186 6 -1.84558 -2.34117
18 1.35276 OSPEDALE LECCE - 'V FAZZI' (SAN CESARIO) 1.89555 6 3.32307 5.42516
19 -0.523552 OSPEDALE GALATINA'S. CATERINA NOVELLA' -0.667666 7 -1.35007 -2.08443
20 =-0.522171 OSPEDALE MANDURIA 'GIANNUZZI' -0.633389 7 -1.5107 -1.70218
21 -0.322481 OSPEDALE CASTELLANETA -0.546519 7 -1.22505 -1.50083
2 -0.832146 IRCCS 'SAVERIO DE BELLIS' -0.702665 8 -1.9766 -1.90177
2 -0.638146 OSPEDALE COPERTINO -0.60114 8 -1.70254 -1.6926
24 1.92881 PRESIDIO OSPEDALERO CENTRALE TARANTO 1.13679 8 3.11079 3.55219
25 1.40147 OSPEDALE BRINDISI 'PERRINO" 1.18844 9 3.20641 3.40553
26 -0.70165 OSPEDALE CERIGNOLA ‘G.TATARELLA' -0.493111 9 -1.08998 -1.65949
27 -0.560034 ISTITUTO TUMORI GIOVANNI PAOLO Il -0.454713 10 -1.25174 -1.30056
28 -0.417241 OSPEDALE GALLIPOLI 'SACRO CUORE DI GESU' -0.265152 10 -0.642778 -0.858102

Figure 50. Hospital component scores.

In particular, the coefficient of the variable 'Company organisation' is 0.17. This
means that an increase of one unit in the variable 'Company organisation' is
associated with an increase of approximately 0.17 units in the target variable 'Per
capita expenditure on health energy'. Thus, an increase in business organisation
(e.g. greater efficiency or better resource management) is associated with an
increase in per capita expenditure on health energy.

Similarly, the coefficient of the variable 'propensity to hospitalise' is 0.19. This
means that an increase of one unit in the variable "Propensity to hospitalise" is
associated with an increase of about 0.19 units in the target variable "Per capita
expenditure on health care energy". Thus, an increase in the propensity to
hospitalise (e.g. an increased need for hospital care) is associated with an increase
in per capita expenditure on health care energy.
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The model intercept represents the value of the target variable 'Per capita
expenditure on health energy' when all other variables in the model are zero. In
practice, the intercept represents a kind of "expenditure floor" that the model
predicts even in the absence of changes in the other independent variables.
Hospitals in their business complexity and their economic, social and
environmental importance are large consumers of energy due to the continuous
operation involving the use of complex electronic equipment to support clinical
procedures.

A better management of healthcare resources in terms of a greater workforce, i.e.
more hospital staff, rather than an increase in instrumental resources, beds and/or
expansion of wards, which would contribute to an increase of an overall unit of the
hospital corporate organisation, implies an increase in per capita healthcare
expenditure on energy of 17%. From a managerial point of view, an assessment for
a potential investment in corporate organisation would imply the same percentage
increase for the energy cost item.

Analysing, at the same time, the hospital outcome factor counterbalancing the
economic one, it can be seen that the relationship between the propensity to
hospitalise patients and the relative increase in energy costs is quite robust. The
final health outcomes understood as the reduction of discomfort, the prolongation
of life, the decrease in the incidence of disease, rather than the satisfaction of users,
family members, and the general population with the perceived overall quality and
various aspects of care, are translated into the propensity to hospitalise patients. A
propensity that is an expression of a need for care that sees its own unit increase
associated with a 19% increase in the cost of energy.

A choice of resource allocation in the short/medium term can be optimised with the
methodological approach proposed in this study, considering, on the one hand, the
relationship between the hospital components and the cost of health care energy,
but on the other taking note of the annual increase in the cost of health care energy
per capita, which has increased in the three-year period 2020 - 2023, by about
142.65%, going to affect the regional health budget (AGENAS).

Observing the results of our linear regression analysis, represented graphically by
means of the bar plot widget, by ASL and by hospital facility denomination (Fig.
51), it can be seen that the five regional public 2nd level facilities and two 1st level
hospitals of ASL BA, have outliers with respect to the overall distribution of the
regression values. These results are confirmed by the scatter plot (figure 52)
distributing the predictive values by different type of level.
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Figure 51 Bar plot of linear regression predictive values.
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Figure 52 Scatter plot of linear regression predictive values.

This assumption is confirmed by the ANOVA analysis applied to the same
predictive regression values. With a p-value of <0.005, the analysis confirms a
significant difference between the different levels of the 28 public hospitals. As
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depicted in Figure 53, there is a difference between the macro group consisting of
basic, first level, and IRCCS hospitals compared to the second level hospitals.

The "LINEAR REGRESSION" column in Figure 10 provides the estimated
regression coefficients for each facility. For basic hospitals, IRCCSs, and level 1
hospitals, the estimated regression coefficients indicate that for a unit increase in
hospital organization and patient admission propensity, there is an associated
decrease in energy cost.

The opposite situation is verified for second level hospitals, in which an increase in
hospital organization and an increase in the propensity to hospitalize will produce
a higher energy cost.

BASE: -0.623383 £ 0.1102
|
o
— —
-0.86868 -0.665551 -0.60114

IRCCS: -0.578689 + 0.1240

|
-0.578669

LEVEL 1: -0.228898 £ 0.3384
|
- E—
—
-0.47602 -0.336499 -0.10979
LEVEL 2:1.97429 + 0.9429
|

| =
118844 1.89555 1.91123

-05 0 0.5 1 15 2 25 3 35 4
ANOVA: 32.596 (p=0.000,N=28)

Figure 53 Anova analysis applied to predictive regression values.

It is clear that there is no homogeneity in energy management practices among all
hospitals. The management of healthcare companies should develop guidelines
aimed at promoting a change in the organizational culture, by creating an energy
consumption management plan following the ISO 50001 guidelines and prioritizing
the acquisition of alternative or renewable energy. Additionally, they should focus
on designing, constructing, and managing hospital buildings with a focus on energy
efficiency and developing energy-related social responsibility programs (Borges de
Oliveira et al., 2021).

The study found that an increase in organizational efficiency is associated with an
increase in energy costs, while an increase in patient hospitalization rates is
associated with an increase in energy costs. The analysis also highlighted some
exceptions among hospital structures, with some showing a higher energy cost per
capita than the average. The research suggests that better management of human
resources could be more effective in reducing energy costs than purchasing new
equipment or expanding structures. Furthermore, the study emphasized that energy
costs have been increasing in recent years and that resource allocation choices must
consider these rising costs.

Policies and decisions made by policymakers should aim to incentivize the public
hospital network on the quality of services offered and not solely on economic
productivity derived from DRGs, achieving a dual optimal allocation. An efficient
allocation of economic resources that at the same time promotes an efficient
redistribution of regional admissions offers optimal outcomes in terms of perceived
quality.
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4.1 DEEP DIVE: RELATIONSHIP BETWEEN PURE TECHNICAL
EFFICIENCY, MEDICAL DEVICES, AND PER CAPITA ENERGY COST

A key component of our study revolves around the exploration of the relationship
between hospitals' Pure Technical Efficiency (PTE), the number of medical
devices, and the per capita energy cost. Using a regression model, we examined
how these factors impact the per capita energy cost.

From the regression model, we derive an R? coefficient of 0.797, indicating that the
model explains approximately 79.7% of the variance in the per capita energy cost.
The correlation coefficient R of 0.893 suggests a strong positive relationship
between the model's variables and the per capita energy cost.

Examining the model coefficients, we note that the PTE score has a positive effect
on energy cost with an estimated coefficient of 0.270 (p = 0.037). This indicates
that a unitary increase in the PTE score is associated with a 0.270 unit increase in
the per capita energy cost. Similarly, the number of medical devices has an even
more pronounced effect, with an estimated coefficient of 0.688 (p < 0.001),
suggesting that an increase in the number of medical devices leads to a significant
rise in the per capita energy cost.

Normality tests, including Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-
Darling, suggest that the model residuals follow a normal distribution. Additionally,
heteroskedasticity tests, such as Breusch-Pagan, Goldfeld-Quandt, and Harrison-
McCabe, suggest the residuals' variance is constant across the levels of the
independent variables.

In summary, the findings suggest that while adopting advanced medical devices
may enhance care quality, it can also lead to increased energy consumption. Thus,
hospitals need to strike a balance between adopting advanced technologies and
managing energy resources efficiently, also taking technical efficiency into
account.

Refer to Figure 54 for a comprehensive graphical representation of the regression
model outcomes.
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Linear Regression

Model Fit Measures
Model R R?

1 0.893 0.797

Model Coefficients - COSTO_ENERGIA_PRO_CAPITE_2020

Predictor Estimate SE t P Stand. Estimate
Intercept -3.72e-17 0.0902 -4.13e-16  1.000
Score_PTE 0.270 0.1225 220 0.037 0.270
MEDICAL_DEVICE 0.688 0.1225 561 <.001 0.688

Assumption Checks

Normality Tests

Statistic p

Shapiro-Wilk 0.959 0.337
Kolmogorov-Smirnov 0.186 0.254
Anderson-Darling 0.581 0.118

Note. Additional results provided by moretests

Heteroskedasticity Tests

Statistic p
Breusch-Pagan 2.81 0.245
Goldfeld-Quandt 0.817 0.628
Harrison-McCabe 0.549 0.624

Note. Additional results provided by moretests

Q-Q Plot

Standardized Residuals

.2 -1 0 1
Theoretical Quantiles

Figure 54 Regression results linking Technical Efficiency, medical devices, and per capita energy cost.
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4.2 IMPACTS OF TECHNICAL EFFICIENCY AND MEDICAL DEVICES
ON ENERGY COSTS: AN ANOVA ANALYSIS

In advancing our investigation, we adopted an additional methodological step by
normalizing the predictive values through the NORM function. This procedure was
adopted to ensure the data were on a common scale, facilitating further statistical
analyses.

Normality tests, like Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling,
suggest the normalized predictive values follow a normal distribution, making
ANOVA analysis suitable. The ANOVA analysis revealed significant differences
between hospital structure levels concerning the normalized predictive values, with
an F-value of 5.48 and a p-value of 0.005.

Further tests on variance homogeneity, including Levene's and Bartlett's tests,
indicate homogeneity in the variances across the groups. This is a key assumption
for ANOVA analysis and indicates the analysis yields valid results.

Post-hoc comparisons based on the estimated marginal means reveal some key
differences between hospital structure levels. Specifically, there's a significant
difference between base hospitals and second-level hospitals, with a mean
difference of -2.557 and a p-value of 0.004. Furthermore, a significant difference
was detected between first and second-level hospitals, with a mean difference of -
2.184 and a p-value of 0.011. This suggests that, even when accounting for technical
efficiency and the number of medical devices, there's a significant variation in the
per capita energy costs across these different hospital structure levels.

In conclusion, the ANOVA analysis provides further evidence of the complexities
in the relationships between hospital efficiency, medical device availability, and
energy costs. While efficiency and technology play roles, the hospital structure
level also can have a significant impact on energy costs.

For a detailed visualization of the ANOVA results and post-hoc comparisons,
please refer to Figure 55.
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ANOVA

ANOVA - NORM_PREDICTIONS

Assumption Checks

Homogeneity of Variances Tests
Statistic  df df2 p

Levene's 0.0485 3 24 0.985
Bartlett's 0.127 3 0.988

Note. Additional results provided by moretests

Normality tests

statistic p
Shapiro-Wilk 0.985 0.953
Kolmogorov-Smirnov 0.103 0.901
Anderson-Darling 0.209 0.847

Note. Additional results provided by moretests

Q-Q Plot

Standardized Residuals

Sum of Squares df Mean Square F p
FACILITY LEVEL 23.5 3 7.84 5.48 0.005
Residuals 34.3 24 1.43
[3]

Theoretical Quantiles

Post Hoc Tests

Post Hoc Comparisons - FACILITY LEVEL

Comparison
FACILITY LEVEL FACILITY LEVEL Mean Difference SE df t Ptukey
BASE - IRCCS -1.237 0.935 240 -1.322 0558
- LEVEL1 -0.373 0.527 240 -0.707 0.893
- LEVEL2 -2.557 0.667 240 -3.833 0.004
IRCCS - LEVEL1 0.864 0914 240 0945 0.781
- LEVEL2 -1.320 1.001 240 -1.319 0.560
LEVEL 1 - LEVEL2 -2.184 0.637 240 -3430 0.011

Note. Comparisons are based on estimated marginal means

Figure 55 ANOVA analysis of normalized regression predictions across different hospital facility levels.
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43 INTEGRATION OF HOSPITAL CARE AND ENERGY
SUSTAINABILITY: ADDRESSING RESEARCH QUESTIONS

In our extensive exploration of the energy and management efficiency of hospitals
in Apulia, the two pivotal research questions have significantly shaped our
analytical approach. Here's how our research addressed these questions:

As: Correlation between Hospital Organization, Patients' Propensity for
Hospitalization, and Per Capita Energy Cost:

Our detailed analysis revealed a nuanced interplay between hospital organizational
structures, the inclination of patients towards hospitalization, and the resultant
energy costs. Specifically, we observed that efficient managerial practices, while
enhancing the quality of care, could inadvertently lead to an increase in energy
expenditure. This increase is especially pronounced in facilities with a higher
number of patient admissions, underscoring the challenge of balancing patient care
with energy conservation. Hospitals, therefore, need to adopt a multifaceted
approach, optimizing managerial decisions without compromising the quality and
extent of care, all while being mindful of energy costs.

Ag: Relationship between PTE, Medical Devices, and Per Capita Energy Cost:
The integration of modern medical technology in hospitals has undeniably
improved patient care. However, our research indicated a direct correlation between
the proliferation of medical devices in Apulian public hospitals and the rise in
energy costs. Hospitals with a higher PTE score, indicating greater technical
efficiency, also showed a pronounced increase in energy expenditure with the
addition of more medical devices. This finding emphasizes the importance of a
balanced approach where the adoption of new medical technologies, essential for
improved patient outcomes, should be complemented with strategies for energy
sustainability.

In conclusion, while Apulian hospitals are at the forefront of providing quality
healthcare, there is an underlying challenge of managing energy costs. Addressing
this requires a judicious blend of efficient managerial practices, sensible adoption
of medical technologies, and a continual focus on energy conservation strategies.
Decision-makers and hospital managers must be equipped with this knowledge to
make informed choices, ensuring a sustainable, efficient, and patient-centric
healthcare environment.

5. CONCLUSION OF III SESSION

The lack of homogeneity in energy management among public hospitals is evident
from our studies. Better management of human resources could prove more
effective in reducing energy costs than purchasing new equipment and expanding
facilities.

Our in-depth analyses highlighted the importance of Pure Technical Efficiency
(PTE) scores and the number of medical devices in determining the per capita
energy cost. These variables, together with hospital organization and propensity for
admission, play a crucial role in shaping energy costs.

The link between organizational efficiency and energy costs is particularly
significant. For instance, an increase in organizational efficiency is associated with
an increase in energy costs, while an increase in patient hospitalization rates is
correlated with a rise in energy costs. These relationships underscore the need to
carefully balance managerial decisions between resource optimization and energy
cost management.
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It's clear that there is no homogeneity in energy management practices among all
hospitals. Healthcare company management should develop guidelines aimed at
promoting a change in organizational culture, by creating an energy consumption
management plan following the ISO 50001 guidelines and prioritizing the
acquisition of alternative or renewable energy.

Policy decisions should aim to incentivize the public hospital network on the quality
of services offered and not solely on economic productivity derived from DRGs,
achieving a dual optimal allocation. An efficient allocation of economic resources
that simultaneously promotes an efficient redistribution of regional admissions
offers optimal outcomes in terms of perceived quality.
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SESSION IV

ANALYSIS OF OPERATIONAL EFFICIENCY IN PUBLIC
HOSPITALS: AN INNOVATIVE MACHINE LEARNING
APPROACH

1. INTRODUCTION

In an era marked by unprecedented global health challenges, the efficiency of
healthcare systems has become a focal point of scientific inquiry. The COVID-19
pandemic, which emerged in 2020, served as a severe test for healthcare
infrastructures worldwide, exposing both their resilience and vulnerabilities. For
instance, a comparative study on the efficiency of hospital bed management in four
European countries before the pandemic outbreak highlighted how France and
Germany were better prepared compared to Italy and Spain, underscoring the
importance of a robust hospital structure (Pecoraro et al., 2020). This evolving
landscape necessitates a rigorous examination and enhancement of hospital
operational efficiency, not only as a response to the immediate crisis but as a
fundamental element for the future trajectory of public health. In this context,
transformative initiatives in hospital management emerge, aimed at improving the
energy efficiency and environmental sustainability of healthcare facilities. A recent
study highlighted the importance of integrating proposed guidelines with the
adoption of ISO 50001 energy management systems to achieve the United Nations
Sustainable Development Goal — SDG 7 clean and affordable energy” (Dion et al.,
2023).

An analysis of the efficiency of emergency departments during the pandemic, using
the Data Envelopment Analysis (DEA) model, revealed areas of potential
improvement (Taghipour et al., 2023). Furthermore, the research developed three
integrated conceptual strategic frameworks towards energy efficiency, green
hospital initiatives, and corporate governance, providing recommendations for
hospital managers and policymakers on how to effectively implement and manage
energy efficiency initiatives in healthcare facilities (Dion & Evans, 2023). An
additional study explored the impact of adopting sustainable management practices
in a hospital setting, highlighting how the integration of energy efficiency strategies
can not only reduce operational costs but also improve the quality of healthcare,
offering a replicable model for other healthcare facilities (Dulce-Chamorro &
Martinez-de-Pison, 2021).

The present study fits into this crucial context, using data related to 2020, a year
that marked a significant turning point in the history of public health. Our analysis
delves into the specific challenges faced by hospitals in the Apulia region, with the
intent to extrapolate broader trends and dynamics of hospital efficiency within Italy
and the wider European context. A recent investigation revealed how energy
management in hospitals in Apulia is closely linked to healthcare performance,
highlighting that an increase in organizational efficiency can lead to higher energy
costs (Santamato et al., 2023). A study on the hospital on the island of Rhodes
showed how adapting to organizational changes can increase efficiency and
productivity in response to pandemic pressure (Androutsou et al., 2022).

The research is driven by a dual objective: to provide a comprehensive and data-
based analysis of hospital efficiency during one of the most critical periods for the
global healthcare system and to outline strategies for long-term improvement and
optimization.
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The pressing need for an efficient and responsive healthcare system was
underscored by the rapid spread of the pandemic. A hospital's ability to effectively
manage a sudden increase in care demands while maintaining high standards of
quality emerged as a key indicator of preparedness and resilience. The Apulia
region, characterized by unique demographic, economic, and health challenges,
represents a particularly relevant case study in this context. A critical challenge
identified in this scenario is the escalation of energy costs, intensified by global
circumstances and a growing emphasis on sustainability. This aspect imposes the
need for hospitals to devise new efficient resource management strategies. The
necessity to balance energy consumption with high standards of healthcare has
become a crucial factor in evaluating hospital efficiency. Our study explores how
hospitals in the Apulia region are addressing this challenge, providing insights that
could have broader applicability at an international level, as demonstrated by a
study on hospital resource management against COVID-19 in Peru (Ninamango
Origuela & Sovero Rivera, 2022).

We aim to achieve an optimal balance between operational costs, quality of care,
and environmental sustainability. The analysis of 2020 data seeks to unveil how
hospitals have adapted to these pressing issues, identifying areas of success and
those requiring further improvements. This in-depth understanding is crucial for
guiding future decisions, encompassing public health policy, energy management,
and sustainability considerations. The paper is organized as follows: after
introducing the problem and aims of the work, the next paragraph presents the
methodological background and the case study to which it was applied. This is
followed by a chapter with details of the study conducted, where most interesting
results are presented and are then critically discussed in the following chapter along
with an assessment of the proposed approach's innovativeness, potential, and
limitations. The conclusions offer considerations of the methodology's implications
for decision support at different scales and outlines possible follow-ups.

2. BACKGROUND

The context of our study is complex and multifaceted, characterized by a series of
health, economic, and social challenges that have profoundly influenced the public
health sector in Italy and around the world. The COVID-19 pandemic has
underscored the importance of resilient health systems capable of rapidly adapting
to crisis situations. In this context, the need for a more sustainable and circular
approach to healthcare resource management clearly emerges. Within the
framework of the National Recovery and Resilience Plan (NRRP) and national and
international energy policies, the Apulia region faces the challenge of integrating
principles of circular economy and green practices into hospital management. In
response to these challenges, numerous countries, including Italy, have
implemented reform and investment plans in the healthcare sector, such as the
National Recovery and Resilience Plan (NRRP), aimed at strengthening the
response capacity of the health system and promoting innovation.

The Apulia region, with its specific demographic configuration and peculiarities in
the Italian healthcare landscape, offers a unique study context. The region faced
specific challenges during the pandemic, including an immediate response in terms
of hospital capacity, logistics, and resource management, highlighting the crucial
importance of optimal operational efficiency.

Healthcare facilities, to effectively meet emerging needs and ensure long-term
sustainability, must adopt strategies that go beyond the traditional linear model of
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resource consumption. This includes the implementation of recycling practices,
waste reduction, efficient energy use, and the adoption of renewable sources.
Furthermore, the transition to green healthcare implies a change in procurement
models, the use of technologies, and the management of hospital waste, laying the
groundwork for a more contained environmental impact and greater social
responsibility.

Recent research highlights the significant impact of integrating green practices and
circular economy principles in enhancing sustainable performance in the service
sector (Obeidat et al., 2023). This strategic intent towards green practices is crucial
for healthcare systems, particularly in regions like Apulia, where such integration
can lead to more efficient and sustainable operations.

The pressure on energy costs is a global phenomenon that has had significant
repercussions for hospitals. The rise in energy prices and the need to adopt more
sustainable practices have led to a reconsideration of how hospital resources are
managed. In this scenario, the Apulia region presents itself as an exemplary case
study, as it faces challenges common to many health systems but also local
specificities that influence its response.

Examining how Apulian hospitals manage energy costs in the context of a global
pandemic offers a unique learning opportunity. This study aims to analyze how
resource optimization can be achieved without compromising the quality of care,
exploring innovative and sustainable solutions. Moreover, the analysis aims to
provide a broader perspective on the impact of resource management decisions at
the regional and national level, fitting into a context of energy and environmental
policies increasingly central in the public agenda.

Additionally, the pandemic has brought to light the critical issue of healthcare waste
management. Insights from a study on the impact of COVID-19 on healthcare waste
emphasize the importance of sustainable management within a life cycle and
circular economy framework (Dihan et al., 2023). This perspective is crucial for the
Apulia region as it navigates the complexities of healthcare waste management in
a post-pandemic era, emphasizing the need for sustainable and circular approaches
to ensure environmental and public health safety.

2.1 RELATED WORKS

In the field of research on healthcare system efficiency, the use of machine learning
to improve resource management and energy efficiency in public hospitals emerges
as a topic of significant scientific interest. Previous studies have highlighted the
potential of these models in predicting and optimizing the use of hospital resources,
emphasizing the importance of organizational efficiency and energy consumption
management. In particular, research has shown that improving the organizational
efficiency of hospitals can lead to increased energy costs, underscoring the need for
a balanced approach that considers both operational efficiency and environmental
sustainability (Santamato et al., 2023).

The use of machine learning systems in real-world contexts highlights ethical issues
and the complexity of decision-making contexts (Kent & Ménager, 2023). Another
significant research has underscored the critical importance of data in machine
learning-based models, emphasizing the need for high-quality data to improve the
effectiveness of healthcare services (Torra, 2023). Methodological approaches
focused on the application of artificial intelligence can increase the efficiency of
healthcare processes (Dubey et al., 2023).
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In our study, we developed a neural network model that integrates concepts from
both intelligent auditing and efficiency evaluation in the healthcare sector. Drawing
inspiration from the use of an enhanced Self-Organizing Map (SOM) neural
network for intelligent auditing of hospital financial vouchers (Wang, 2022), our
model focuses on a categorical variable derived from cluster analysis. This
approach is particularly effective in handling key features such as hospital energy
costs and non-medical staff costs, crucial for predicting the scale efficiency
category of a hospital.

Our methodology also aligns with the combined use of Data Envelopment Analysis
(DEA) and Artificial Neural Networks (ANN) for evaluating hospital efficiency
(Tosun, 2012). By categorizing hospitals based on efficiency through cluster
analysis and then applying neural network processing, we offer an advanced
method for managing complex variables and large datasets. This integration
enhances predictive accuracy and operational efficiency analysis in hospital
environments, providing a comprehensive tool for assessing and improving hospital
efficiency, especially in the context of scale efficiency and resource management.
The use of machine learning in solving recurrence relations represents a promising
area, combining the analysis of complex patterns with the processing of large
amounts of data to optimize resources and improve decision-making processes in
healthcare (Klemen et al., 2023).

Concurrently, the adoption of machine learning models in electronic structure
calculations and multimodal learning is becoming a key factor in the analysis of
complex healthcare data. These models offer the ability to manage and interpret
large data sets, providing greater accuracy in identifying trends and patterns
relevant to public health (Fiedler et al., 2023) (Xu et al., 2023).

Furthermore, the integration of machine learning with data assimilation techniques
is transforming the way health information is processed and used, allowing for more
effective and informed management (Cheng et al., 2023). Quantifying uncertainty
in machine learning models, especially in biomedical applications, is crucial to
ensure the safety and reliability of decisions based on these technologies (Nemani
et al., 2023).

Finally, the application of machine learning to renewable energy systems offers
new perspectives for energy management in hospitals, contributing to the reduction
of environmental impact and improving the operational efficiency of healthcare
facilities (Zaparoli Cunha et al., 2023).

These works collectively indicate the growing importance of machine learning in
the healthcare sector, demonstrating its applicability in a variety of contexts, from
resource management to operational efficiency, and highlighting its potential in
addressing contemporary challenges in the field of public health.

2.2 MACHINE LEARNING ALGORITHMS APPLIED

In our study on hospital efficiency, we adopted a meticulous approach in applying
machine learning algorithms to ensure precise and informative analyses.

STANDARDIZATION OF VARIABLES: The standardization algorithm for
numerical health variables is a process that transforms numerical variables so that
they have a mean of 0 and standard deviation of 1. This is important because when
analyzing data from different sources, the units of measurement may be different,
and therefore variables may have different scales. Standardization allows all
variables to be put on the same scale, so that they can be compared fairly and
accurately. Furthermore, standardization is often used as a first step before applying
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multivariate analysis techniques such as PCA, in order to have a common starting
point for all numerical variables. Standardizing data is an important step in data
analysis, including the use of the data mining algorithm for PCA. Standardization
is necessary to ensure that different variables within the dataset have the same scale,
to avoid variables with higher values dominating those with lower values. This can
affect PCA and produce inconsistent or misleading results. By standardizing the
dataset, a more accurate analysis and better understanding of the data can be
obtained (Mohammed et al., 2023).

PRINCIPAL COMPONENT ANALYSIS (PCA): The PCA (Principal Component
Analysis) algorithm is a multivariate analysis technique used to reduce the
dimensionality of a dataset by identifying linear combinations of input variables
that capture most of the variance in the data. This process not only simplifies data
understanding but also improves the visualization of relationships between
variables. In the hospital context, applying PCA to input variables helped identify
key factors influencing hospital performance. Similarly, applying PCA to output
variables identified key factors affecting the quality of hospital care. Using PCA to
reduce the number of original variables to two principal components simplifies the
understanding of health data and provides useful information on the effectiveness
of hospital organization and the quality of healthcare provided by the hospital. This
approach highlights the importance of PCA in analyzing complex data, allowing
for a deeper understanding and more accurate interpretation of underlying dynamics
in various contexts (Jollife & Cadima, 2016), including healthcare.

DATA ENVELOPMENT ANALYSIS (DEA): Applying the DEA output-oriented
algorithm to evaluate hospital efficiency (Ferreira et al., 2023) in producing
Propensity for hospitalization, considering hospital organization as input and
Propensity for hospitalization as output. We have focused our attention on Scale
Efficiency (SE) to assess the operational efficiency of hospitals in relation to their
size and resource management capacity. This approach is in line with the findings
of several studies, conducted in different countries such as Tanzania, southeastern
Nigeria, and Malaysia, which have emphasized the importance of assessing
efficiency of scale in public hospitals. These studies highlight the need for resource
reallocation, the use of health ratio indicators, and the implementation of technical
and scale efficiency measures to optimize hospital performance and resource
utilization (A Rahim et al., 2021; Aloh et al., 2020; Fumbwe et al., 2021).
CLUSTER ANALYSIS (LOUVAIN ALGORITHM): We employed the Louvain
algorithm to categorize the numerical values (Xu et al., 2023) of hospitals based on
their scale efficiency scores. This step helped us to meaningfully group hospitals
based on their scale efficiency. Louvain’s algorithm, known for its efficiency and
effectiveness in various contexts, has been shown to outperform other clustering
methods in terms of accuracy and execution performance. it has demonstrated
significant improvements in execution time and communication efficiency in
distributed memory implementations (Ghosh et al., 2019). The robustness and
versatility of Louvain's algorithm in clustering complex datasets make it an ideal
choice for our analysis of hospital efficiency scores.

NEURAL NETWORK: In our study, we implemented a neural network model to
analyze operational efficiency in hospitals, focusing on energy costs and non-
medical staff costs. This approach draws inspiration from advanced methods of
predicting energy consumption in hospital settings, as explored in recent research
in the field of artificial intelligence applied to energy management (Panagiotou &
Dounis, 2022). Integrating these methods into our model allowed for a more
accurate assessment of the impact of energy costs on the scale efficiency of
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hospitals. Using a categorical variable derived from cluster analysis as the target,
our model groups hospitals based on their operational efficiency. The use of
artificial neural networks optimizes the prediction of scale efficiency, specifically
considering energy consumption and non-medical staff costs. This method not only
enhances the accuracy of the analysis but also provides strategic insights for more
efficient and sustainable hospital management.

SHAP (SHAPLEY ADDITIVE EXPLANATIONS): A key element of our
methodology was the use of the SHAP (SHapley Additive exPlanations) algorithm
to interpret the results of the neural network. The effectiveness of SHAP in
interpreting complex models has been demonstrated (Lundberg & Lee, 2017). This
tool allowed us to gain a detailed understanding of the impact of each feature in the
predictive model, particularly regarding hospital energy costs and non-medical staff
costs. The application of SHAP enabled a more precise and in-depth evaluation of
hospital efficiency.

ANOVA (ANALYSIS OF VARIANCE): We utilized ANOVA in hospital settings
(Noudeh et al., 2022) to analyze the impact of cost features on scale efficiency
scores and to examine significant differences among various hospital levels in terms
of efficiency. This allowed us to assess how specific cost variables influence
hospital efficiency. The methodological approach adopted in our study, which
utilizes ANOVA to analyze the impact of cost features on hospital efficiency, finds
a similarity in the use of ANOVA in the pedestrian safety study (Chang et al., 2022).
In both contexts, ANOVA is used to examine the effect of multiple independent
variables (cost factors in the hospital setting, environmental factors for pedestrian
safety) on a specific dependent variable (hospital efficiency, pedestrian fatality
incidents). This allows for a more detailed isolation and understanding of the impact
of each variable, also analyzed through the SHAP approach, providing a deeper
analysis of the complex dynamics in question.

This integrated approach provides us with a detailed framework of hospital
efficiency, highlighting key areas for improvement and innovation in the healthcare
sector, and offering valuable insights for resource management.

2.3 APPLICATION CONTEXT

The Apulia region faced specific challenges during the pandemic, including acute
pressure on healthcare services due to a rapid increase in COVID-19 cases. This
situation necessitated an immediate response in terms of hospital capacity, logistics,
and resource management, highlighting the crucial importance of optimal
operational efficiency. Additionally, the region had to balance the demands of the
health emergency with the need to maintain high standards of care for all patients,
not just those affected by COVID-19.

Another significant aspect was adapting to social distancing measures and
restrictions implemented to contain the virus spread, requiring significant
modifications in the organization of hospital spaces and services. These measures
directly impacted the daily operations of hospitals, influencing staff management,
internal logistics, and patient care and reception procedures.

Parallel to the immediate challenges posed by the pandemic, the Apulia region also
had to address the rising energy costs, a concern made even more pressing by the
need to operate in health emergency conditions. Efficient energy management
became a critical factor, not only for reducing operational costs but also for
contributing to environmental sustainability goals, in line with the directives of the
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National Recovery and Resilience Plan (PNRR) and national and international
energy policies.

The regional health system includes both public and private accredited facilities
within the region, forming an organized complex known as the regional health
industry (Falavigna & Ippoliti, 2013). The Regional Health Service in Apulia is
represented by six Local Health Authorities (ASLs). ASLs are public legal entities
with autonomy in organizational, managerial, technical, administrative, asset, and
accounting matters, as well as entrepreneurial autonomy (according to Article 3 of
Legislative Decree No. 502 of December 30, 1992). ASLs are part of the National
Health Service.

This study focuses on the regional public hospital network in Apulia, specifically
analyzing 28 facilities as indicated in the National Health Service Data Bank of the
Ministry of Health. The public network consists of 24 ASL Direct Hospitals, one
Hospital Authority integrated with the National Health System (NHS), one Hospital
Authority integrated with the University, and one Public Institute for
Hospitalization and Scientific Care. Some facilities, as specified in the single
hospital reorganization document approved by the Apulian Regional Council on
03/07/2019, have connected plexuses and/or hospitals located in different places
from the main structure. Thus, for greater accuracy in measuring the distance
traveled by patients, all the physical plexuses indicated in the National Outcomes
Plan have been considered. The total number of facilities considered for measuring
the active mobility of Apulian patients is 37, including admissions made by ASL
and by territorial ambit, as indicated in the National Outcomes Plan.

Regarding the classification of hospitals in Apulia, there are 5 second-level
hospitals, 12 first-level hospitals, 2 Scientific Hospitalization and Care Institutes
(IRCCS), and 9 basic hospitals. The differences between these types of hospitals
are described in the Ministry of Health's regulations on the definition of qualitative,
structural, technological, and quantitative standards for hospital care, which are
implemented under Article 1, paragraph 169, of Law no. 311 of December 30, 2004,
and Article 15, paragraph 13, letter ¢) of Decree-Law no. 95 of July 6, 2012,
converted with amendments by Law no. 135 of August 7, 2012. The hospital levels
differ primarily based on catchment area, number of wards, and complexity.
According to the Ministry of Health:

Hospitals of First Level: They provide basic services such as emergency care,
diagnostics, regular hospitalization, and outpatient services. They are usually
present in various regions of Italy and provide primary level care to the local
community.

Hospitals of Second Level: They are more specialized than first-level hospitals.
They offer more complex services such as specialized surgery, intensive care, and
hemodynamics services. They are present in numerous regions of Italy and serve as
reference points for the provision of advanced care.

Basic Hospitals: They primarily perform primary care functions. They provide
basic care, outpatient services, and primary level diagnostics. They are present in
various regions of Italy and serve as a link between primary care and more
specialized hospital facilities.

Institutes of Scientific Research and Care (IRCCS): They are specialized hospital
facilities dedicated to scientific research and highly specialized healthcare. They
are present in various regions of Italy and offer highly specialized care, playing an
important role in medical research and the development of new therapies.

This context provided a unique basis for our study, allowing us to examine how
hospital management and optimization strategies can be implemented in extreme
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crisis situations and regulatory change. Our analysis focuses on identifying
effective and sustainable practices, which can serve as a model for other regions
and health systems facing similar challenges. Ultimately, the study aims to provide
valuable insights that can positively influence health policies and resource
management at the regional.

2.4 STUDY OBJECTIVES AND RESEARCH QUESTION

The primary objective of this study is to utilize advanced machine learning models
to analyze operational efficiency in public hospitals, with a specific focus on
integrating considerations of environmental sustainability and effective resource
management. The research question guiding our work is:

Q-: “How can machine learning models contribute to the analysis and improvement
of operational efficiency in public hospitals, considering the needs for sustainability
and efficient resource management?”’.

By using the Apulia region as a sample area, we aim to create a detailed and
applicable analytical framework that can provide relevant insights for decision-
makers in the healthcare sector. The intention is to explore how machine learning
practices can be transferred and used in different healthcare contexts, thereby
offering guidance for optimizing hospital operations on a broader scale.

Specific objectives of the study include identifying the main factors that influence
efficiency in public hospitals and assessing the integration of sustainability
strategies to address current and future challenges. The purpose is to provide
decision-makers in the healthcare sector with a data-based knowledge base and
strategies that can be employed to guide informed decisions and improvements in
healthcare services.

Therefore, the ambition of this study is to make a significant contribution to the
scientific literature on machine learning applied to healthcare management and, at
the same time, to offer a practical and replicable model that can guide decision-
makers in transforming towards a more efficient, effective, and sustainable public
hospital management.
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3. METHODOLOGY

In the analysis of hospital efficiency, the use of advanced methodologies and
machine learning tools is essential for an accurate and detailed evaluation. This
study adopts an innovative approach, utilizing Orange software, a machine learning
environment (Mirmozaffari et al., 2022), to explore and analyze the operational and
allocative efficiency of hospitals in the Apulia region.

The methodology is illustrated in Figure 56, a mind map describing the
methodological workflow. This conceptual map emphasizes the use of neural
networks to analyze hospital cost variables and hospital allocative efficiency (SE)
as the target variable.
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HOSPITAL
ORGANIZATION

PRINCIPAL DATA
COMPONENT ENVELOPMENT SCALE BEFICIENC
ANALYSIS ANALYSIS (5E)
PC_OUTPUT
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Figure 56 Methodological Workflow in Hospital Efficiency Analysis

At the core of our analysis is a neural network, designed to examine three types of
hospital costs (energy cost, health and non-health staff cost) with the number of
medical devices as features, and hospital allocative efficiency (SE) as the target
variable. The process begins with the application of Principal Component Analysis
(PCA) on the initial input and output variables, creating the “Hospital
Organization” and “Hospitalization Propensity” variables, respectively. These
variables are then employed in the Data Envelopment Analysis (DEA) output-
oriented with variable returns to scale, applied to the 59 hospitals in the Apulia
hospital network. In this context, the use of a three-staged DEA approach, as
demonstrated in studies on public hospitals in emerging economies, can provide a
more in-depth and nuanced assessment of operational efficiency (Hajiagha et al.,
2023). This method allows for a comprehensive evaluation of performance metrics,
which is crucial in settings with diverse challenges and resource constraints.

We decomposed Technical Efficiency (TE) into Pure Technical Efficiency (PTE)
and Scale Efficiency (SE), obtaining SE values ranging from 0 to 1. Cluster
analysis, conducted with the Louvain algorithm on SE, identified two distinct
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clusters: high efficiency and low efficiency, transforming SE into a dichotomous
target variable for hospital allocative efficiency.

In our methodological workflow, we integrated the use of the SHAP algorithm to
analyze the influence and impact of the input features on the output and the model.
This approach allowed us to quantify the importance of each feature in predicting
hospital efficiency, providing a deeper understanding of how different variables
influence the outcome.

The predictive results obtained from the neural network analysis, performed in the
Orange machine learning environment, were further examined through ANOVA
analysis and graphically represented. This methodological approach, supported by
Orange software, provided a comprehensive and detailed view of hospital
efficiency, integrating both operational and scale variables.

The analysis highlighted how designed features influence the allocative efficiency
of hospitals, offering significant insights for management and strategic planning in
the healthcare sector. Furthermore, the categorization of scale efficiency through
cluster analysis allowed for a clearer understanding of efficiency dynamics within
the hospital system.

The use of machine learning in the analysis of hospital efficiency has proven to be
an effective approach, allowing for an in-depth and multidimensional analysis of
hospital dynamics. This study not only contributes to the literature on hospital
efficiency but also provides practical tools for decision-makers in the healthcare
sector to optimize resources and improve the quality of services offered.

3.1 CRITERIA FOR VARIABLE SELECTION IN HOSPITAL ANALYSIS

In our study on hospital efficiency, we adopted the variable structure used in the
study conducted by Santamato et al. (2023), introducing specific modifications to
refine the analysis. Among these, we distinguished human components by gender,
recognizing the importance of gender diversity in healthcare personnel, and
included the catchment area for each hospital. These modifications were made to
achieve a holistic and detailed view, which will be crucial in the subsequent step of
studying hospital allocative efficiency. We focused on how allocative efficiency
correlates with energy costs, non-medical staff costs, health personnel costs, and
the number of hospital medical devices, critical factors in the management and
sustainability of modern healthcare facilities. Figure 57 illustrates the variables
selected for this study. The data were collected from various sources, including the
National Health Service Database (NHS Database) of the Ministry of Health, the
National Outcomes Program of the National Agency for Regional Health Services,
and the new National Statistical Institute Database (ISTAT Database), for the year
2020. The data on medical device, analyzed as one of the features in the neural
network of our study, come from the comprehensive list of large medical
equipment cataloged in the national inventory by the Ministry of Health, as per the
decree of April 22, 2014.
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Figure 57 Overview of Selected Variables for Hospital Study.

The input section of the chart examines variables through a multidimensional
perspective, assessing operational capacity in terms of available and utilized
infrastructure. This segment outlines a quantitative analysis of the use of physical
resources, highlighting the correspondence between the number of beds and
departments planned and those in use, reflecting a hospital's ability to adapt to
fluctuations in the demand for healthcare services.

The human component, crucial in the healthcare context, is analyzed through the
distribution of staff, including doctors and nurses, with a gender distinction that
illuminates workplace diversity and inclusion dynamics. The total hospital staff
emerges as a key indicator of a hospital's ability to manage workload and sustain
high standards of care.

Coverage indicators, such as the catchment area, are used to assess the reach and
accessibility of the services offered.

The output section is assessed through variables that reflect the hospital's
effectiveness. The number of hospitalizations and interventions serves as a direct
measure of clinical activity. Intra-regional active kilometric mobility provides
insight into logistics and accessibility to care for patients. Health outcomes, such as
the number of deaths and hospital readmissions within 30 days, are considered
essential parameters for evaluating the quality of care and the effectiveness of
clinical interventions.

3.2 DERIVEDED VARIABLES

Apulian resident population distributed by hospital physicians:

Regarding the input variables, we used the resident population of Apulia as of
December 31, 2020, distributed based on the number of hospital physicians, to
estimate the size of the facility in terms of user and service basin.

To calculate the Apulian resident population distributed by hospital physicians, we
first identified the number of residents in each municipality in Apulia for the year
2020. Next, we identified the municipalities that make up each ASL (Local Health
Authority) and summed up the number of residents to obtain the total population
for each ASL (Tot,, ). Then, we determined the total number of physicians for
each ASL by summing up the physicians working in hospitals within each ASL
(Tot Physicians,g;). Finally, we calculated the Apulian resident population
distributed based on the number of hospital physicians for 2020 using the following
formula:

Totyes,,

Populationres = X PhySiCianSHospitals (24)

Tot Physicians,g,
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Intra-regional active mobility of patients residing in Apulia:

In the present study, a patient's decision to seek treatment where they perceive better
quality, subject to their economic availability and the medical offer proposed, is
considered. 'Positive mobility' is defined as the flow of 'immigrants,' residents in
the Apulia Region in 2020, who reach a hospital located in a different ASL from
the one where the patient is a resident. Only intra-regional movements, i.e., within
the region, made by patients’ resident in the region, have been evaluated. Therefore,
admissions of non-resident patients are not considered.

To calculate intra-regional active mobility in kilometers, we first calculated the
interpolated distance between the patient's ASL of residence and the city where the
hospital providing the service is located (Dist_kmpy,spitar). Next, we summed the

total number of active hospitalizations for each ASL ((Hospi,s;) and for each
territorial area (HoSpiyyeo) Within the region. Finally, we calculated intra-regional
active mobility in kilometers using the following formula:

Active mobilityinfrq—regionat = (HoSpigs, + HOSPigreq)X Distkaospiml (25)

This variable of intra-regional active mobility in kilometers represents the distance
traveled by patients within the same region to access hospital services provided by
different ASLs. It can be used to assess patient preference in choosing a hospital
and may be correlated with the perceived quality of hospital services.

Energy Cost:

To calculate the cost of energy, we first calculated the ratio between the resident
population in Apulia in 2020 (Totges,., ) and the total number of doctors in both
public and private accredited hospitals, for each ASL (Tot Physicians,g;).

We then multiplied this ratio by the number of doctors in each public hospital,
weighted by ASL (Physiciansy,spitais) The resulting value for each facility,
which is an expression of the population catchment area, was then multiplied by the
per capita health energy cost of € 21.45 for the Apulian population in the year 2020,
as indicated by the National Agency for Regional Health Services (AGE.NA.S).

Tot, e sl

Energy cost = Tot Physicians,s, x Physiciansyospitars X 21.45 (26)

Cost of non-health personnel:

To calculate the cost of non-health staff, we initially identified the number of non-
health personnel by subtracting the total number of doctors and nurses from the
total hospital staff (Tot non — health personnel ;). Subsequently, we identified
the cost items related to non-health staff for the year 2020, aggregated by ASL
company (CoStnon—heait pers,s, ) (Data source: NSIS — SP, CE consolidated
regional models. Extraction as of April 29, 2022. Economic data of the Regional
Health Services. Economic-financial trend for the years 2019 - 2020, Apulia
Region, AGE.NA.S.).

The cost of non-health hospital staff was calculated as the ratio of the aggregated
cost per ASL to the number of non-health staff per ASL, then multiplied by the
corresponding number of  non-health hospital staff ~ (Non —
health Personnelyspitais), using the following formula:
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Cost of non — health personnel
COStnon—healt persasL

~ Tot Non — health personnel g,
— health Personnely,spitals (27)

x Non

Cost of health personnel:

To calculate the cost of health staff, we initially identified the number of health
personnel by subtracting the total number of doctors and nurses from the total
hospital staff (Tot health personnel,s;). Subsequently, we identified the cost
items related to health staff for the year 2020, aggregated by ASL company
(CoStheqit pers,g, ) (Data source: NSIS — SP, CE consolidated regional models.
Extraction as of April 29, 2022. Economic data of the Regional Health Services.
Economic-financial trend for the years 2019 - 2020, Apulia Region, AGE.NA.S.).
The cost of health hospital staff was calculated as the ratio of the aggregated cost
per ASL to the number of health staff per ASL, then multiplied by the
corresponding number of health hospital staff (Health Personnely,spitais), using

the following formula:

Cost of health personnel
_ COSthealt persasr
Tot Health personnelys;

x Health Personnely,spitals (28)

Hospital Scale Efficiency (SE):

Hospital Scale Efficiency is derived from decomposing the overall hospital
efficiency, which is obtained through the application of Data Envelopment Analysis
(DEA) with an output-oriented approach and variable returns to scale. This analysis
considers “Hospital Organization” as the input and “Propension Hospitalization” as
the output. The formula for calculating Technical Efficiency (TE) is given by:

TE (Technical Ef ficiency)
= PTE (Pure Technical Ef ficiency) x SE (Scale Ef ficiency) (29)

In this context, Pure Technical Efficiency (PTE) reflects the ability of a hospital to
maximize outputs with given inputs, independent of its size and scale of operations.
Scale Efficiency (SE), on the other hand, measures the efficiency of the hospital's
size or scale of operations. By multiplying PTE with SE, we obtain the overall
Technical Efficiency (TE), which provides a comprehensive measure of a hospital's
operational effectiveness, considering both its operational processes and scale of
operations. Subsequently, cluster analysis is applied to categorize the Scale
Efficiency into two groups: high efficiency and low efficiency. This categorization
process helps to simplify the analysis and understanding of the hospital’s
performance in terms of scale efficiency.

3.3 SELECTION OF VARIABLES AND ANALYSIS OF IMPACT,
ADVANTAGES, AND LIMITATIONS IN THE INTERPRETATION OF
HOSPITAL EFFICIENCY THROUGH NEURAL NETWORKS: A FOCUS
ON COSTS AND SUSTAINABILITY

In the context of neural network analysis, we have chosen to use energy costs, non-
medical staff costs, healthcare personnel costs, and the number of hospital medical
devices as the main features. These variables are essential not only for
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understanding the dynamics of expenditure and resource management within
hospitals but also crucial for assessing operational efficiency from a sustainability
perspective.

Scale Efficiency (SE) has been selected as the target variable for analysis. SE
represents a key indicator of a hospital's operational efficiency, reflecting an
institution's ability to maximize outputs in relation to its operational scale. The goal
of the neural network analysis is to predict hospital operational efficiency based on
various factors, including management costs and the environmental and social
impact of hospital operations.

Including healthcare personnel costs and the number of medical devices allows us
to examine how investment in qualified human resources and advanced
technologies influences efficiency and sustainability. These variables can
significantly impact not only operational efficiency but also the quality of care,
reduction of environmental impact, and promotion of sustainable healthcare
practices.

However, the analysis must consider limitations related to data quality and the risk
of model overfitting. Moreover, the "black box" nature of neural networks can make
interpreting results difficult, especially in terms of impacts on sustainability.
Despite these challenges, integrating these variables into the neural network model
offers the opportunity to explore more deeply the interaction between operational
efficiency and sustainability. The analysis can reveal how resource optimization
and the adoption of advanced technologies can contribute to more sustainable
hospital operations, improving care quality and reducing environmental impact.

In conclusion, integrating these specific variables into a neural network model, with
a focus on sustainability, provides a powerful tool for analyzing and improving
hospital operational efficiency. This approach not only aims to optimize resources
and improve service quality but also promotes sustainable healthcare practices,
essential for the future of the healthcare sector.

3.4 IDENTIFICATION OF HOSPITAL ALLOCATIVE EFFICIENCY AS A
TARGET VARIABLE IN NEURAL NETWORK ANALYSIS

In the realm of healthcare efficiency analysis, the identification of key performance
indicators is crucial for enhancing operational effectiveness and resource allocation.
This study introduces an innovative methodological approach in the utilization of
neural network analysis, focusing on the identification of Hospital Allocative
Efficiency (SE) as the target variable. This approach represents a significant
advancement in the field, offering a more nuanced and comprehensive
understanding of hospital efficiency dynamics.

Standardization and Principal Component Analysis:

Initially, we standardized the groups of 10 input variables and 5 output variables
(Figure 2) for all 59 hospitals in the Apulia hospital network, normalizing them with
a mean of 0 and a variance of 1.

The input variables, denoted as X;, X5, ..., X1, and the output variables, denoted
Y1, Y,,...,Ys, were standardized to ensure uniformity and comparability. This
standardization process was achieved by subtracting the mean (p) and dividing by
the standard deviation (o) for each variable, as indicated in the formulas Zy, =
Xi—puy . (Y]'_/‘Yj)

) : . .
—* for input variables and Zy ; = for output variables.
p p
'] ] oy
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Subsequently, we formed the matrices of standardized variables, M;,y,; and
Moytpue, representing the sets of standardized input and output variables,
respectively. These matrices were used to calculate the covariance matrices, Cippye
and Coutputa

) 1 T _
using the formula  Cippyr = — X (Minpue)' X Mippye and  Coyrpyr =

n—il x (Moutput)T X Moytpue- This step is crucial for understanding the internal
relationships among the variables and for setting the stage for Principal Component
Analysis (PCA).

PCA was then applied to extract the principal components from the covariance
matrices. We calculated the eigenvectors and eigenvalues for each covariance
matrix and selected the eigenvectors corresponding to the largest eigenvalues. This
led to the identification of the principal components for the input and output groups,
named “Hospital Organization” and “Propension Hospitalization”, respectively,
calculated as  PCinpur = Minpue x Eigenvectoryay inpur  and  PCoyrpyur =
Moutput ve EigenveCtormax _output-

This process confirms and aligns with the techniques employed in the study by
Santamato et al., 2023, demonstrating the consistency and effectiveness of such
methodologies in the field of hospital efficiency.

Positive Shift e Data Envelopment Analysis:

We implemented a crucial step known as "Positive Shift" on the principal
components, PCiypyr and PCoyytpye. This step is essential to ensure that all values
are positive, a necessary condition for applying Data Envelopment Analysis (DEA).
The Positive Shift was realized using the following formulas:

For PCinpye: PCIMIEe = iy + min(min(PConpye ), min(PCoyrpue)) + 1 (30)

input
FOrPCoyepue:PConTEeY = PCopyrpue + min(min(PCinpye ), min(PCoypue)) + 1 (31)

output

This method ensures that both principal components are transformed in such a way
that all values are positive, making them suitable for DEA analysis. By using the
minimum value between PCiypyr and PCpyipy, for the shift, we ensure that the
analysis is based on consistent data, correctly prepared for efficiency analysis.

we proceeded with the Output-Oriented DEA with variable returns to scale (VRS).
This model was chosen for its ability to maximize outputs considering the
operational scale of hospitals. The key formulas for the VRS DEA include:

1.Output — Oriented VRS DEA Model:

max 0

Subject to:
n

2 Aixij < xi0,0=1,2,...,m. (32)
j=1
n

Z Aiyrj 2 0yro,r =12,..,5. (33)
j=1
n

Z 4j=1,420 (34)
j=1

These formulas represent the core of the DEA analysis, where x;; and y,; are the
inputs and outputs of hospitals (PC. histed ond pcS" ted) , A are the weighting

input output
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variables, 6 is the efficiency parameter to be maximized and n (=59) is the total
number of hospitals in the network..

2.Decomposition of Total Technical Efficiency (TE):

TE = PTE x SE (35)
Here, TE represents the total technical efficiency, PTE is the pure technical
efficiency, and SE is the scale efficiency. This decomposition allows for a more
detailed analysis of different aspects of hospital efficiency.

Cluster Analysis:

The use of cluster analysis to categorize hospitals based on their scale efficiency
(SE) was a critical step in transforming SE from a continuous variable into a
categorical variable, suitable for use as a target variable in predictive analysis using
neural networks. This transformation enabled the identification of significant
patterns and trends in hospital operational efficiency, facilitating the interpretation
and practical application of the findings.

The Louvain algorithm was chosen for its effectiveness in identifying communities
or clusters within large networks. This algorithm optimizes modularity Q, defined
as:

0= 7 20 |4 3] 8@ 36)

where A;; represents the weight of the edge between nodes i and j, k; and k; are
the degrees of nodes i and j, m is the sum of the weights of all edges in the network,
and 8(c;, ¢j) is 1 if i and j are in the same cluster and 0 otherwise.

Applying the Louvain algorithm to the SE values for the 59 hospitals resulted in the
identification of two distinct clusters: one with 14 hospitals (C1) and one with 45
hospitals (C2) (Fig. 58).

c2 .
[ ]

Cluster

c1
@ c2

=] c2
Cluster

Figure 58 Scatter plot of 2 clusters identified by Louvain algorithm.
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The average scale efficiency for C1 was 0.951996, while for C2 it was 0.637046.
We labeled C1 as the “high efficiency” cluster and C2 as the “low efficiency”
cluster. The average silhouette index, an indicator of the internal consistency of the
clusters, was 0.714279, suggesting a good separation between the two groups. This
categorization allowed for the transformation of the numerical SE variable into a
categorical variable, which was then used as the target variable for subsequent
analysis with neural networks.

3.5 PARAMETERS USED FOR DEFINING THE TARGET VARIABLE:
HOSPITAL ALLOCATIVE EFFICIENCY (SE)

Standardizzazione delle Variabili di Input e Output:

Objective: Normalize the data for comparability and reduce the influence of
outliers.

Method: Z-Score Standardization.

Application: Applied to the 10 input variables and 5 output variables for the 59
hospitals in the Apulian Region.

Parameters: u = 0,0 = 1.

Principal Component Analysis (PCA):

Objective: To reduce dimensionality and identify principal components.
Application: Applied separately to the standardized input and output variable
groups.

Parameters:

For 10 Input variables:

e 1 Principal Component

Explained variance 95%

The variance of the components is homogeneous (Fig. 59).
Component Loading: varimax rotation was used.

Bartlett’s Test of Sphericity: p<0.001

KMO Measure of Sampling Adequacy: MSA 0.887

For 5 Output variables:

1 Principal Component

Explained variance 88%

The variance of the components is homogeneous (Fig. 59).
Component Loading: varimax rotation was used.

Bartlett’s Test of Sphericity: p<0.001

KMO Measure of Sampling Adequacy: MSA 0.917
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Data Table

Data instances: 1
Features: 10
Meta atiributes: 2

components variance INP7_MP INP10_RESP INP8_FP INP5_MN INP6_FN INP9_HS INP2.BU INP3_DP INP4 DU INP1_BP
1 PGl 0.954227 0.318983 0314576 0.313861 0.316871 0.315813 0.319617 0.308111 0.319368 0.317284 0.317624

Data Table

Data instances: 1
Features: 5
Meta attributes: 2

components variance OUT4_INT OUT5_ REA OUT3 DEA OUT1_HOS OUT2_MOB
1 PC1 0.88791 0.447566 0.453067 0.44015 0.454725 0.44035

Figure 59 The impact of each individual original variable on the main components.

Data Envelopment Analysis:

Objective: Evaluate the efficiency of hospitals in transforming inputs into outputs.
Application: Applied to the positively shifted principal components derived from
PCA.

Parameters:
e  Variable Scale Return (VRS)
Output Oriented

[ ]
e  No weight for variables
[ ]

IPCA_Input and 1PCA_Output
o Scale Efﬁciency (SE) _ Output—Oriented CRS (Constant Returns to Scale) Efficiency

Output—Oriented VRS (Variable Returns to Scale) Efficiency
e  Output: A score of 1 indicates efficiency, while scores below 1 indicate relative
inefficiency.

Cluster Analysis:

Objective: Categorize hospitals into distinct groups based on their allocative
efficiency.

Method: Louvain Clustering.

Application: Applied to the SE scores derived from DEA.

Parameters:

e  Two clusters identified: High Efficiency (C1) and Low Efficiency (C2).
Average Scale Efficiency: C1=0.951996, C2=0.637046

Silhouette Index: 0.714279

Normalize data: yes.

PCA preprocessing: yes, 1 component.

Metric: Cosine

K neighbors: 9

Resolution: 1.0

Output: Transformation of SE into a categorical variable for neural network
analysis.

Although the analysis was conducted on the entire network of 59 hospitals in the
Apulia region, our focus is on the 28 public hospitals. This selection was driven by
the importance of providing a more detailed and specific analysis, one that
considers the unique peculiarities and challenges of the public hospital sector. The
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resulting dataset (Fig. 60), which includes the target variable for neural network
analysis, is thus an accurate and targeted reflection of the efficiency dynamics
specific to the public hospitals in Apulia.

Data Table

Data instances: 26
Features: 4
Meta attributes: 4
Target: Class 'SCALE EFFICIENCY (Categorical)

SCALE EFFICIENCY (Categorical) HOSPITAL NETWORK ASL  HOSPITAL LEVEL ENERGY COST NON-HEALTH PERSONNEL COST HEALTH PERSONNEL COST MEDICAL DEVICES
1 LOW EFFICIENCY Ospedale San Paolo Bari @A) PUBLIC  ASLBA FIRST LEVEL 0681493 20076 177668 12674
2 HIGH EFFICIENCY Ospedale Monopoli Monopoli (BA) PUBLIC  ASLBA BASELEVEL -0.699023 -0.007956 -0.405389 -0.655263
3 HIGH EFFICIENGY Ospedale Cerignola 'S Tatarslla' Cerignola (FG) PUBLIC  ASLFG FIRST LEVEL 0717041 0.47308 -0.156241 -Da3s12
4 LOWEFFICIENCY Consorziale Policlinico Bari Bari (BA) PUBLIC ASLBA SECOND LEVEL 2.9271 256925 25865 258251
5 HIGH EFFICIENCY Ospedale Casarano Casarano (LE) PUBLIC  ASLLE BASELEVEL 0.5004 -0.433544 -0.553225 0439412
&  HIGH EFFICIENCY Ospedale Scorrano Scomanc (LE) PUBLIC  ASLLE FIRST LEVEL 0463917 0356179 -0.44288 0439412
7 LOW EFFICIENCY Ospedale Andria Andria (BT) PUBLIC  ASLBT FIRST LEVEL 0105352 0.264786 00731797 0208142
8 HIGH EFFICIENGY Ospedale San Severo - Teresa Masselli San Sever (FG) PUBLIC  ASLFG  FIRST LEVEL -0.560857 0.108296 -0.062¢47 0871114
° 5 'S. Caterina Novella' Galatina (LE) ~ PUBLIC  ASLLE BASELEVEL -0.342284 -0.439901 0587555 0871114
10 HIGH EFFICIENCY Ospedale Putignanc Putignanc (BA) PUBLIC ASLBA BASE LEVEL -0.454877 -0.971291 -0.6886 0871114
11 LOW EFFICIENCY. Ospedale Lecce 'V, Fazzi' Lecoe (LE) PUBLIC  ASLLE SECOND LEVEL 187134 188741 185066 21508
12 HIGH EFFIGIENGY Ospedale Castellaneta Casteiianeta (TA) PUBLIC  ASLTA FIRST LEVEL -0.684563 066071 0646426 0439412
13 HIGH EFFICENGY Istituto Tumorl Giovanni Packo Il Barl (BA) PUBLIC  ASLBA IRGCS 0801611 0945635 0.72402 0639845
14 HIGH EFFICIENGY Ospedale Ostuni Ostuni (BR) PUBLIC  ASLBR BASELEVEL -0.49739 -0.38766 12457 0871114
15 LOW EFFIGIENCY Ospedaii Riuniti Di Fogaa Foggia (FG) PUBLIC  ASLFG SECOND LEVEL 12736 150602 13819 0208142
16 LOW EFFIGIENGY Ospedale Di Venere Bari (B4) PUBLIC  ASLBA FIRST LEVEL 0277034 0974835 0792191 0855696
17 HIGH EFFICIENCY Ospedale Francavilla Fontana Francavilla Fontana (BR)  PUBLIC ASLBR FIRST LEVEL -0.654094 -0.798362 -0.6455 -0.439412
18 HIGH EFFIGIENGY Ospedale Civile Martina Franca (TA) PUBLIC  ASLTA FIRST LEVEL 0640141 0.78667 -0.630898 0665263
19 HIGH EFFICIENCY Ospedale Bisceglie Biscegiie (BT) PUBLIC  ASLBT BASELEVEL 0132381 0666388 0599182 0871114
20 HIGH EFFICIENCY Ospedale Copertino Coperting (LE) PUBLIC  ASLLE BASELEVEL 0507699 0607616 -0.727325 0655263
21 LOW EFFICIENGY Presidio Ospedaliero centrale Taranta (TA) PUBLIC  ASLTA SECOND LEVEL 1.84301 1.19085 146959 193495
22 LOW EFFICIENGY Ospedale Perring Brindisi (BF) PUBLIC  ASLBR SEGCOND LEVEL 2.0087 0492415 141753 150325
23 HIGH EFFICIENCY Ospedale Manfredonia Manfredonia (FG) PUBLIC  ASLFG BASELEVEL 0807913 -0.308314 0875712 0655263
24 HIGH EFFICIENCY Ospedale Galipol 'Sacro Cuore Di Gesu’ Galipoli (LE)  PUBLIC  ASLLE  FIRST LEVEL 0418811 0278814 -0.460045 0438412
25 LOW EFFIGIENGY Ospedale Delia Murgia - Perinel Altamura (BA) PUBLIC  ASLBA FIRST LEVEL -0.439806 -0.182477 -0.206702 000770898
26 HIGH EFFICIENCY IRGCS ‘Saverio Da Bells’ Castellana Grotte (84) PUBLIC  ASLBA IRCCS 0.856785 1.088 102226 0439412
27 LOW EFFICIENGY Ospedale Barietta - ‘Mans. . Dimicooli Barieta (8T) ~ PUBLIC  ASLBT FIRST LEVEL 0.334897 -0.000777403 -0.109791 0871114
28 HIGH EFFICIENCY Ospedale Manduria ‘Giannuzzi' Manduria (TA) PUBLIC  ASLTA BASELEVEL 0582182 0911023 0748257 0439412

Figure 60 Dataset Report for Neural Network Analysis on the 28 Public Hospitals in the Apulia Region.

Figure 5 illustrates the dataset report that will be processed for neural network
analysis. The dataset includes 28 data instances, corresponding to the public
hospitals in the Apulia Region. The four main features are standardized variables,
with a mean of zero and a variance of one, related to hospital energy costs, number
of medical devices, health and non-health staff costs. Additionally, the dataset
includes four meta-attributes: the name of the hospital, its affiliation with the public
hospital network, the local health authority (ASL) to which the hospital belongs,
and the hospital level. The selected target variable for the analysis is Scale
Efficiency, categorized to reflect the allocative efficiency of the hospitals.

3.6 APPLICATION OF NEURAL NETWORKS AND MACHINE
LEARNING IN HOSPITAL EFFICIENCY ANALYSIS

In our study on hospital efficiency in the Apulia region, we employed advanced
machine learning techniques, with a particular focus on the use of a neural network.
The key variables analyzed include number of medical devices, energy costs, health
and non-health staff costs, treated as the main inputs in the neural network model,
aiming to classify hospital allocative efficiency into two categories: high efficiency
and low efficiency.

The neural network model was configured with the following parameters: 100
hidden layers, ReLU activation function, Adam solver, alpha 0.0001, and a
maximum of 200 iterations. We opted for an integrated approach in training and
validating our neural network model, using the entire dataset without dividing it
into separate training and validation sets. This decision was made considering the
limited size of the dataset, where division could potentially compromise
representativeness and reliability of the results. To mitigate the risk of overfitting
and ensure the generalizability of the model, we implemented cross-validation
techniques, thus allowing for a complete and iterative use of the dataset. Moreover,
we placed particular emphasis on data quality, ensuring accurate preparation and
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cleaning to provide precise and informative inputs to the model. This approach
allowed us to maximize the use of available information, while ensuring the
robustness and validity of the model in a context with a limited number of
observations. The training was replicable, with a stratified 10-fold cross-validation
sampling type. The results obtained showed high model accuracy, with an AUC of
0.994, an accuracy (CA) 0f 0.929, an F1 score 0f 0.926, precision (PREC) of 0.936,
recall o 0.929, and an MCC of 0.849.

For a more detailed evaluation of the model's performance, we included the analysis
of the confusion matrix and ROC curves. The confusion matrix revealed a high
match between the model's predictions and the actual classifications: 90.0% of
high-efficiency cases were correctly identified (High-High), while 100% of low-
efficiency cases were accurately classified (Low-Low). Only 10.0% of high-
efficiency cases were mistakenly classified as low efficiency (Low-High).

The ROC curves for both classes (high and low efficiency) were included to provide
a visual representation of the model's ability to distinguish between these two
categories. These curves demonstrate excellent class separation, with high AUC
values indicating a strong capability of the model to correctly classify hospitals
based on their allocative efficiency (Fig. 61). The inclusion of these visual analyses
not only enriches our understanding of the model's performance but also provides
a solid foundation for further investigations and practical applications in the
healthcare sector.

HIGH EFFICIENCY LOW EFFICIENCY

Figure 61 ROC Curves for High and Low Efficiency Classes in Hospital Allocative Efficiency Analysis.

Figure 62 provides a clear and detailed graphical representation of the analysis
results, effectively illustrating the dynamics and correlations emerged from the
study. This figure synthesizes the 28 instances of the hospitals studied, highlighting
the four main variables (energy costs, number of medical devices, medical and non-
medical staff costs) and the four meta-attributes (hospital name, hospital level,
ASL, neural network analysis) along with the target variable. This layout offers a
comprehensive overview of the adopted approach and the importance of each
attribute in the analysis of hospital efficiency.
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instances:
ota attributs

SCALE EFFICIENCY (Categorical) ASL  HOSPITAL LEVEL HOSPITAL Neural Network  ENERGY COST NON-HEALTH PERSONNEL COST HEALTH PERSONNEL COST MEDICAL DEVICES
1| LOW EFFICIENCY ASLBA FIRST LEVEL Ospedale San Paolo Bari (B4) LOW EFFICIENCY 0.681493 2.0078 177669 12874
2 HIGH EFFIGIENGY ASLBA BASE LEVEL Ospedale Monopoll Monopoli [BA) HIGH EFFICIENGY -0.699023 0.907956 -0.405389 -0.655263
3 HIGH EFFICIENCY ASLFG FIRST LEVEL Ospedale Cerignola 'S Tatarella’ Cerlgnola (FG) HIGH EFFICIENCY 0717041 -0.47308 -0.156241 -0.439412
4 LOW EFFIGIENGY ASLBA SEGONDLEVEL ~ Gensorziale Policlinico Bari Bari (BA) LOW EFFICIENGY 28271 256025 25865 2.58251
5 HIGH EFFICIENCY ASLLE BASE LEVEL Ospedale Casarano Casarano (LE) HIGH EFFICIENCY 05004 0433544 0553225 -0.439412
&  HIGH EFFICIENGY ASLLE  FIRST LEVEL Ospedale Scamano Scamano (LE) HIGH EFFICIENCY -0.46307 0356179 -0.44288 0.439412
7 LOW EFFIGIENCY ASLBT FIRST LEVEL Ospedale Andria Andria (BT} LOW EFFICIENGY 0.105352 0.264786 oo73r7er 0208142
8  HIGH EFFICIENCY ASLFG FIRST LEVEL Ospedale San Severo - Teresa Masselli San Severo (FG)  HIGH EFFICIENCY -0.560857 0.108296 -0.082447 -0.871114
9 HIGH EFFICIENCY ASLLE BASELEVEL Ospedale Galatina 'S. Caterina Novella' Galatina (LE)  HIGH EFFICIENCY -0.342284 -0.439091 0587555 0871114
10 HIGH EFFICENCY ASLBA BASELEVEL Ospedale Putignanc Putignanc (BA) HIGH EFFICIENCY -0.454877 0871201 06886 0871114
11 LOW EFFIGIENCY ASLLE SECONDLEVEL  Ospedale Lecoe 'V. Farzi Leccs (LE) LOW EFFICIENCY 187134 188741 185966 21508
12 HIGH EFFICENCY ASLTA FIRST LEVEL Ospedale Castellaneta Castellaneta (TA) HIGH EFFICIENCY -0.684583 06071 0546426 0.430412
13 HIGH EFFICENCY ASLBA IRGCS Istituto Tumori Giovanai Paolo | Bari (BA) HIGH EFFICIENGY 0801511 0946635 -0.72402 0.639845
13 HIGH EFFICENCY ASLBR BASE LEVEL Ospedale Ostuni Ostuni (BR) HIGH EFFICIENCY 0.49739 038768 12457 0871114
15 | LOW EFFIGIENGY ASLFG SEGCONDLEVEL ~ Ospedall Riuniti Di Foggia Foggla (FG) LOW EFFIGIENGY 12736 159692 13619 0208142
16 | LOW EFFICIENCY ASLBA FIRST LEVEL Ospediale Di Venere Bari (BA) LOW EFFICIENCY 0277034 0.074835 0792191 0.855606
17 HIGH EFFIGENGY ASLBR FIRST LEVEL Ospedale Francavilia Fontana Francavilla Fontana (BF) HIGH EFFICIENGY -0.654094 -0.798362 06455 0.439412
18 HIGH EFFICENCY ASLTA  FIRST LEVEL Ospedale Cvile Martina Franca (TA) HIGH EFFICIENCY 0649141 -0.78857 -0.630803 -0.655263
19 HIGH EFFIGENGY ASLBT BASE LEVEL Ospedale Biscegle Bisceglie (B1) HIGH EFFIGIENGY 0.132361 0656388 0509182 0871114
20 HIGH EFFICIENCY ASLLE BASELEVEL Ospedale Copertino Copertino (LE) HIGH EFFICIENCY -0.597689 0607616 0727325 -0.655263
21 LOW EFFIGIENGY ASLTA SEGCONDLEVEL  Presidio Ospedaliers centraie Taranto (TA) LOW EFFIGIENGY 164301 1.10085 1.46959 1.90405
22 LOW EFFICIENCY ASLBR SECONDLEVEL  Ospedale Perrino Brindisi (BR) LOW EFFICIENCY 2.0387 0452415 141753 1.50825
23 HIGH EFFIGIENGY ASLFG BASELEVEL Gspedale Manfredonia Manfredonia (FG) HIGH EFFICIENGY 0.807913 -0.308314 0675712 0.655263
24 HIGH EFFICIENCY ASLLE FIRST LEVEL Ospedale Gallipoli 'Sacro Cuore i Gesu' Galipoli (LE)  HIGH EFFICIENGY 0418311 0278814 -0.460045 -0.439412
25 LOW EFFIGIENCY ASLBA FIRST LEVEL Gspedalo Della Murgia - Perinel Altamura (BA) HIGH EFFICIENGY 0.439806 0.182477 0205792 0.00770898
26 HIGH EFFIGIENGY ASLBA IRGGS IRGCS ‘Saverio De Bells' Casteilana Grotte (BA) HIGH EFFICIENGY -D.856785 1.085 -1.02226 0.430412
27 LOW EFFIGIENCY ASLBT FIRST LEVEL Gspedale Barletta - ‘Mons. R, Dimiccoll Barletta (BT)  HIGH EFFICIENCY 0.334807 -0.000777403 0109781 0871114
28 HIGH EFFIGIENGY ASLTA BASE LEVEL Gspedale Manduria ‘Giannuzz' Manduria (TA) HIGH EFFICIENGY -0.582182 0811023 -0.748257 0.430412

Figure 62 Detailed Analysis of the 28 Hospital Instances with Neural Network.

The details of this analysis and the discussion of the results will be further explored
in the Results and Discussion section, where the implications of the collected data
and their relevance in the context of management and strategic planning in the
healthcare sector will be examined.

3.7 SELECTION OF KEY FEATURES FOR NEURAL NETWORK IN
HOSPITAL OPERATIONS

In the realm of hospital operations, the integration of a neural network necessitates
the careful selection of features that significantly impact operational efficiency.
Among these, four critical features stand out: energy cost, healthcare staff cost (both
medical and non-medical), and the number of medical devices (such as CT scanners
and MRI machines).

Energy Cost: The cost of energy in hospitals is a substantial component of
operational expenses. Efficient energy management not only reduces costs but also
aligns with sustainable healthcare practices. A study on hospital management
practices revealed that better-managed cardiac units paid lower prices for cardiac
devices, indicating a correlation between efficient management and cost savings,
which can extend to energy usage as well (Grennan et al., 2022).

Healthcare Staff Cost: Staffing costs, encompassing both medical and non-
medical personnel, represent a significant portion of hospital budgets. Efficient
management of these costs is crucial for financial sustainability. Research indicates
that hospitals can achieve cost reductions through improved management practices,
which include efficient staffing strategies (Abe et al., 2016).

Number of Medical Devices: The number and type of medical devices, such as CT
scanners and MRI machines, are indicative of a hospital's capacity to provide
advanced medical care. However, these devices also contribute to operational costs.
Studies have shown that hospitals can control costs by managing their medical
device inventory effectively, balancing the need for advanced technology with
financial constraints (Robinson & Brown, 2014).

Medical Devices: The cost associated with acquiring and maintaining medical
devices is a critical factor. Hospitals need to navigate the balance between having
state-of-the-art medical equipment and the associated costs. Research has
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highlighted the importance of strategic purchasing and maintenance of medical
devices to minimize costs (Cakmak & Yol, 2019).

Incorporating these features into a neural network model allows for a
comprehensive analysis of hospital operations, enabling the identification of areas
for cost optimization and efficiency improvements. This approach not only aids in
financial management but also ensures the delivery of quality healthcare services.

4. DISCUSSION AND RESULTS

In this section of our study, we delve into a thorough discussion of the results
obtained, analyzing how various machine learning models compare in the context
of hospital efficiency. We begin by examining the effectiveness of different
analytical approaches, including neural networks, logistic regression, random
forests, KNN, AdaBoost, Stochastic Gradient Descent, and Support Vector
Machines (SVM), assessing their performance through key metrics. This
comparative analysis allows us to identify the most effective model for interpreting
and predicting the factors influencing hospital efficiency.

We then explore the impact of specific operational variables, such as energy costs,
health and non-health personnel costs, and the number of medical devices, on the
efficiency of healthcare facilities. Advanced techniques like SHAP analysis are
used to decompose the relative importance of these contributing factors, providing
a detailed view of which elements contribute most significantly to the efficiency or
inefficiency of healthcare facilities.

Finally, we focus on analyzing the impact of these operational costs and the number
of medical devices on hospital allocative efficiency, using statistical analysis
methodologies to discern how different categories of expenditure and resources
influence hospital performance. Using techniques like Kruskal-Wallis ANOV A and
scatterplots, we offer an in-depth assessment of how such costs and resources
influence healthcare service delivery.

Overall, this section aims to provide an insightful and comprehensive discussion of
our research findings, with a particular focus on how data analysis and machine
learning methodologies can be used to inform and improve management practices
in the healthcare sector.

41 MACHINE LEARNING MODEL DEVELOPMENT AND
COMPARISONS

We conducted a comparative analysis of various machine learning models,
including Neural Network, Logistic Regression, SVM, Random Forest, Stochastic
Gradient Descent (SGD), KNN, and AdaBoost, using metrics such as AUC,
Accuracy, F1 Score, Precision, Recall, and MCC. The final choice of the Neural
Network was guided by a combination of high performance and robustness in
predictions.

In our rigorous evaluation methodology for the machine learning models, we
employed the 10-fold Cross Validation technique for each of the tested models.
This approach ensured a robust and reliable evaluation of each model's
performance, minimizing the risk of overfitting and providing a more accurate
estimate of their generalization ability.

For instance, in a study on the diagnosis of Alzheimer's Disease, various machine
learning algorithms, including SGD, k-Nearest Neighbors, Logistic Regression,
Random Forest, AdaBoost, Neural Network, and SVM, were successfully applied,
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demonstrating the effectiveness of these models in a complex clinical context
(Arjaria et al., 2022).

Additionally, another study compared seven algorithms in predicting one-year
mortality and clinical progression to AIDS in a small cohort of children living with
HIV, showing that machine learning models outperform logistic regression even
with limited sample sizes (Rodriguez et al., 2022).

We chose to train the models on the entire dataset, consisting of 28 instances, due
to the relatively limited number of data available. This decision was made to
maximize the use of available information, ensuring that each model had access to
the widest possible variety of data during the training phase.

The Neural Network model stood out for its exceptional performance, with an AUC
0f 0.994 and an Accuracy of 0.929. Its F1 Score of 0.926 highlighted an excellent
balance between precision and recall. Other models, such as Logistic Regression,
SVM, Random Forest, SGD, KNN, and AdaBoost, also showed good performance,
but with some limitations in terms of AUC and ability to handle data complexity.
A further example of practical application of these models was provided by a study
that used a machine learning model based on ultrasound image features to assess
the risk of sentinel lymph node metastasis in breast cancer patients, demonstrating
the high diagnostic performance of the XGBoost model (Zhang et al., 2022).
Moreover, a comparison between machine learning and logistic regression for
prognostic modeling in individuals with non-specific neck pain showed that
machine learning could offer an improvement in prediction performance,
highlighting the greater non-linearity between baseline predictors and clinical
outcome (Liew et al., 2022).

The choice of the Neural Network as the primary model was supported by this
analysis, highlighting its superiority in balancing sensitivity and specificity, as well
as its overall robustness in predictions.

Figure 63 illustrates the parameters and ROC curves for each model, visually
reflecting their discriminative capacity.

Target class: HIGH EFFICIENCY Target class: LOW EFFICIENCY
Costs: FP = 500, FN = 500 Costs: FP = 500, FN = 500
Target probability: 64.0 % Target probability: 64.0 %

W Noursi Notwork Bl Random Foreat M iy M Logistic Rogression B AduBoost M Stochastic Gradient Descent Il SVM

Model AUC CA Fi Prec Recall MCC
Neural Network 0994 0929 0926 0936 0929 0849
Random Forest 0911 0929 0926 0936 0929 0.849
kNN 0.894 0929 0926 0936 0929 0.849
Logistic Regression 0889 0829 0926 0936 0929 0849
AdaBoost 0.872 0883 0891 08983 0893 0.764
Stochastic Gradient Descent  0.800 0.929 0926 0936 0929 0.849
SVM 0972 0929 0926 0936 0929 0.849

Figure 63 Comparative ROC Curves and Performance Parameters of Machine Learning Models.
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Figure 64 graphically illustrates the Cumulative Gain Curves and associated
parameters for each model, providing a visual representation of their discriminative
ability and overall performance. These curves were crucial in measuring the
effectiveness of the models in distinguishing between different classes, especially
in scenarios with imbalanced classes.

For the high efficiency target, we observed the following results: the probability
thresholds were 0.898 for the Neural Network, 0.95 for the Random Forest, 1.0 for
the KNN, 0.844 for Logistic Regression, 1.0 for AdaBoost, 1.0 for Stochastic
Gradient Descent, and 0.858 for SVM. The area under the curve (AUC) for the
Neural Network was 0.659, while for Logistic Regression it was 0.657, both
outperforming Random Forest (0.518), KNN (0.319), AdaBoost (0.304), Stochastic
Gradient Descent (0.286), and SVM (0.651). For the low efficiency target, the
probability thresholds were 0.108 for the Neural Network, 0.1 for the Random
Forest, 0.0 for the KNN, 0.165 for Logistic Regression, 0.0 for AdaBoost, 0.0 for
Stochastic Gradient Descent, and 0.15 for SVM. The AUC for the Neural Network
was 0.8, while for Logistic Regression it was 0.796, both outperforming Random
Forest (0.761), KNN (0.618), AdaBoost (0.543), Stochastic Gradient Descent
(0.571), and SVM (0.786).

These results demonstrate the superiority of the Neural Network and Logistic
Regression in recognizing both high and low efficiency instances, with a particular
emphasis on the precision and accuracy of the Neural Network in both scenarios.

CUMULATIVE GAINS
Target: HIGH EFFICIENCY Target: LOW EFFICIENCY

rea under the curve
® Neural Network: 0.659
® Random Forest: 0.482
BKNN 0.319
® Logistic Regression: 0.657
® AdaBoost: 0.304

Stochastic Gradient Descent: 0.286
SsVM: 0.651

Figure 64 Cumulative Gain Curves for the Analyzed Machine Learning Models.

Figure 65 describes the Precision-Recall Curves for each model. These curves
provide detailed insights into the models' performance in terms of precision and
recall at various probability threshold levels. For the high efficiency target, the
Neural Network shows a probability threshold of 0.009, while the Random Forest
has a threshold of 0.025, KNN at 0, Logistic Regression at 0.018, AdaBoost at 0,
Stochastic Gradient Descent at 0, and SVM at 0.069. The area under the curve
(AUC) for the Neural Network is 0.187, comparable to that of Logistic Regression
and SVM (both at 0.187), but superior to Random Forest (0.173), KNN (0.134),
AdaBoost (0.284), and Stochastic Gradient Descent (0.08). This indicates the
effectiveness of the Neural Network in maintaining a high level of precision while
capturing a significant number of positive instances.
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For the low efficiency target, the probability thresholds for the Neural Network,
Random Forest, KNN, Logistic Regression, AdaBoost, Stochastic Gradient
Descent, and SVM are 0.996, 0.983, 1, 0.99, 1, 1, and 0.931, respectively. In this
scenario, the AUC for the Neural Network reaches 0.99, demonstrating its
superiority in accurately recognizing low efficiency instances, compared to
Random Forest (0.579), KNN (0.4), Logistic Regression (0.979), AdaBoost
(0.978), Stochastic Gradient Descent (0.2), and SVM (0.962).

PRECISION RECALL

Target: HIGH EFFICIENCY Target: LOW EFFICIENCY

Area under the curve Area under the curve

= Neural Network: 0187 ™ Neural Network: 0.99
# Random Forest: 0.161 ' Random Forest: 0.469
KNN: 0134 W kNN 0.4
™ Logistic Regression: 0187 M Logistic Regression:
W AdaBoost: 0.284 Adal 0.978

Stochastic Gradient Descent: 0.08 Stochastic Gradient Descent: 0.2
o SVM: 0187 -SVM: 0.956

Figure 65 Precision-Recall Curves for the analyzed machine learning models.

The choice of the Neural Network as the primary model was supported by this
analysis, highlighting its superiority in balancing sensitivity and specificity, as well
as its overall robustness in predictions.

4.2 DECISION-MAKING PROCESS IN SELECTING THE MACHINE
LEARNING MODEL

In our study, we embarked on a comprehensive comparative analysis of various
machine learning models, including Neural Networks, Logistic Regression, SVM,
Random Forest, Stochastic Gradient Descent (SGD), KNN, and AdaBoost. This
analysis was grounded on key metrics such as AUC, Accuracy, F1 Score, Precision,
Recall, and MCC.

Rigorous Evaluation Methodology: We adopted a stringent evaluation
methodology, employing the 10-fold Cross Validation technique for each tested
model. This approach ensured a robust and reliable assessment of each model's
performance, minimizing the risk of overfitting and providing a more accurate
estimation of their generalization capabilities.

Training on Full Dataset: Given the relatively limited data available (28
instances), we chose to train the models on the entire dataset. This decision was
aimed at maximizing the use of available information, ensuring that each model had
access to the broadest possible variety of data during the training phase.
Exceptional Performance of Neural Network: Among the analyzed models, the
Neural Network stood out for its exceptional performance, as evidenced by an AUC
0f 0.994 and an Accuracy of 0.929. Its F1 Score of 0.926 highlighted an excellent
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balance between precision and recall. While other models also demonstrated good
performance, they exhibited some limitations in terms of AUC and handling data
complexity.

Graphical Analysis and Interpretation of Results: Figures 8, 9, and 10 provided
crucial graphical representations for our analysis, illustrating the ROC curves,
Cumulative Gain Curves, and Precision-Recall Curves for each model,
respectively. These visualizations highlighted the discriminative capacity and
overall performance of the models, particularly the superiority of the Neural
Network in recognizing both high and low efficiency instances.

In conclusion, the choice of the Neural Network as the primary model was
underpinned by this in-depth analysis. Its superiority in balancing sensitivity and
specificity, coupled with its overall robustness in predictions, made it clear that it
was the most suitable model for our study. This decision reflects a methodical, data-
driven approach, focused on achieving the best possible performance.

4.3 CONFIGURATION OF THE NEURAL NETWORK MODEL
PARAMETERS

For our analysis, we adopted a Neural Network as the primary model. The
configuration of the Neural Network parameters was carefully selected to maximize
performance and adaptability to our specific needs.

Key parameters of the Neural Network include:

1.  Number of neurons in hidden layers: We chose to use 100 neurons in the
hidden layers to effectively capture the complexity of the data and enable accurate
learning of underlying relationships.

2. Activation function: We utilized the "RELU" (Rectified Linear Unit)
activation function to introduce non-linearity into the model, which is particularly
important for learning complex patterns.

3. Solver: We adopted the "adam" optimizer, known for its effectiveness in
training neural networks on moderate-sized datasets.

4. Regularization: To prevent overfitting and enhance the model's generalization
ability, we applied regularization with an alpha parameter set to 0.0001.

5. Maximum number of iterations: We set the maximum number of iterations
during training to 200, ensuring that the model has sufficient opportunities to
converge to optimal weight values.

6. Training reproducibility: We ensured the reproducibility of training results to
guarantee consistency and reliability in our experiments.

All these parameters were carefully chosen to maximize the effectiveness of our
Neural Network model in analyzing hospital efficiency within the available data.
Their configuration was based on best practices and experimentation to ensure
optimal performance.

4.4 SHAP ANALYSIS OF HOSPITAL SCALE EFFICIENCY

To deepen our understanding of efficiency in hospital management, we
implemented SHAP (SHapley Additive exPlanations) analysis. This method
allowed us to examine in detail the impact of various cost factors - energy
consumption, costs of medical and non-medical staff, and the number of medical
devices - on the efficiency predictions of our neural network model. Drawing on
approaches and findings from recent studies in urban energy analysis and efficiency
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forecasting (Gu et al., 2022), we identified energy consumption as a key factor in
efficiency predictions, highlighting the importance of considering energy costs in
any predictive model.

The analysis of staff costs and medical devices, inspired by studies with similar
approaches (Rzychon et al., 2021), clarified how each cost factor distinctly
influences efficiency predictions. We also adopted feature analysis techniques from
studies on interpreting predictions in complex machine learning models (Panda et
al., 2023), which proved extremely useful in identifying the specific contribution of
each variable.

The choice to adopt SHAP was motivated by its ability to provide clear and
understandable explanations for model predictions, along with detailed
visualizations of the influences of variables on predictive outcomes. This algorithm
has been demonstrated to be effective across a wide range of contexts and
industries, making it an ideal choice for our study on hospital efficiency.
Furthermore, we considered alternatives in interpreting neural network results.
Some studies have proposed approaches based on variational autoencoders and
multi-scale perceptual convolutional neural networks (Fang et al., 2022; Van De
Leur et al., 2022), but these methods were more specific to applications and less
adaptable to our context. Additionally, we explored other techniques for
interpreting machine learning models (Zhao et al., 2022), but we chose SHAP due
to its suitability for our research needs and its proven effectiveness.

Figure 66 visually illustrates, through SHAP value ribbons, how these cost factors
modulate the predictive probabilities for efficiency goals. The chart highlights the
features with the greatest influence on the prediction, where a longer ribbon length
indicates a more significant influence. Features colored red increase the probability
for a selected class, while those in blue decrease it.

038 Target: LOW EFFICIENCY
HEALTH PERSONNEL COST = -0.21
0.34
MEDICAL DEVICES = -0.01
033
[0:32] NON-HEALTH PERSONNEL COST = -0.18
032

L5

Target: HIGH EFFICIENCY

ENERGY COST = -0.44

068 oz

0.68 0.02 0.27)

= NON-HEALTH PERSONNEL COST =-0.18 =

067 0.26
MEDICAL DEVICES = -0.01

0.66 025

HEALTH PERSONNEL COST = -0.21
065 "

Figure 66 Visual Representation of SHAP Values for Hospital Scale Efficiency Analysis.

ENERGY COST = -0.44

High Efficiency Objective Analysis:

The SHAP analysis revealed that, starting from a baseline probability of 0.68, the
cost variables increased the predictive probability of high efficiency to 0.73. Energy
cost (SHAP Value 0.05, impact -0.44) stands out as the most influential factor,
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despite representing a significant burden. The costs of both medical (SHAP Value
0.02, impact -0.21) and non-medical staff (SHAP Value 0.02, impact -0.18)
positively influence the prediction, while remaining significant expenditure factors.
The number of medical devices (SHAP Value -0.03, impact -0.01) showed a lesser
influence, slightly reducing the probability of high efficiency.

Low Efficiency Objective Analysis:

For the low efficiency objective, the predictive probability decreased from 0.32 to
0.27. Here, energy cost (SHAP Value -0.05, impact -0.44) played a significant
negative role, reducing the probability of low efficiency. Similarly, the costs of
medical (SHAP Value -0.02, impact -0.21) and non-medical staff (SHAP Value -
0.02, impact -0.18) negatively influenced the prediction. In contrast, a higher
number of medical devices (SHAP Value 0.03, impact -0.01) slightly increased the
probability of low efficiency.

The SHAP analysis confirms that all considered cost factors significantly impact
hospital efficiency, in both high and low efficiency contexts. Energy costs emerge
as the most critical factor, strongly influencing both high and low efficiency
predictions. These findings emphasize the importance of efficient and sustainable
resource management to optimize efficiency and reduce operational costs. The
reduction of energy costs, particularly relevant in low efficiency scenarios,
underscores the importance of targeted strategies to enhance hospital efficiency. In
this context, intelligent and sustainable resource management becomes an
imperative not only economically, but also ethically and socially, to ensure efficient
and responsible healthcare service. In addition to energy costs, the analysis also
sheds light on the significant role of personnel costs in hospital efficiency. Both
medical and non-medical staff costs, though less impactful than energy costs, are
crucial elements in the overall efficiency equation. The SHAP values indicate a
subtle yet positive influence of these costs on high efficiency predictions,
suggesting that investment in skilled personnel may contribute to better operational
outcomes. However, these costs also represent a substantial part of the hospital's
budget, necessitating a balanced approach. Efficient management of personnel
resources, therefore, emerges as a key factor in maintaining optimal operational
efficiency. This involves not only controlling expenses but also ensuring that staff
allocation aligns with the hospital's efficiency goals. The strategic deployment of
personnel, coupled with effective cost management, can lead to significant
improvements in service quality and patient care, ultimately enhancing the
hospital's overall efficiency.

4.5 ANALYSIS OF THE IMPACT OF ENERGY COSTS, PERSONNEL
COSTS, AND MEDICAL DEVICES ON HOSPITAL ALLOCATIVE
EFFICIENCY

In our investigation into the impact of energy costs, healthcare and non-healthcare
personnel costs, and the number of medical devices on hospital allocative
efficiency, we adopted an innovative approach using the "Explain Model" widget
in the Orange software. This tool proved essential for interpreting our model using
the SHAP library.

The "Explain Model" widget received our already trained neural network model
and reference data as input. Using this data, the widget calculated the contribution
of each feature to the prediction for the classes of interest, in this case, "High
Efficiency" and "Low Efficiency". This allowed us to obtain a detailed and
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quantifiable understanding of the impact of each variable on the efficiency
predictions of the model.

Figure 66 presents a table detailing the combined impacts of energy costs, personnel
(healthcare and non-healthcare) costs, and medical devices on the allocative
efficiency for each of the 28 public hospitals in the Apulia region, with a focus on
the target variable "High Efficiency". The table offers a direct comparison between
hospitals, highlighting how different costs affect efficiency in variable ways across
different healthcare facilities.

Similarly, Figure 67 presents the results for the target variable "Low Efficiency".
The table in this figure allows us to observe how the same costs influence efficiency
in a low-efficiency scenario, providing an informative contrast to the results of
Figure 68.

Subsequently, we integrated these results with the non-parametric Kruskal-Wallis
ANOVA analysis. This statistical approach was used to further assess the
significance and variability of energy costs, healthcare and non-healthcare
personnel costs, and the number of medical devices in relation to hospital allocative
efficiency, also considering differences between various hospital levels.

To enhance our analysis, we incorporated insights from existing literature that
utilized the Kruskal-Wallis ANOVA in healthcare research. These studies
effectively employed this statistical method to analyze complex healthcare data
(Algarni et al., 2022; Vassilaki et al., 2021). They demonstrate the versatility and
robustness of the Kruskal-Wallis ANOVA in handling non-parametric data across
diverse healthcare scenarios, reinforcing the validity of our approach in assessing
the impact of various factors on hospital allocative efficiency. This integration of
methodologies from broader healthcare research further substantiates our findings
and offers a comprehensive perspective on the multifaceted nature of hospital
efficiency.

To further enrich the analysis, we used scatterplots to explore the correlation and
impact of these variables on the model's output in various hospital contexts.
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Figure 67 Impact of energy and non-health personnel costs on the efficiency of 28 Apulian hospitals (Target:
High Efficiency).
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Figure 68 Impact of energy and non-health personnel costs on the efficiency of 28 Apulian hospitals (Target:
Low Efficiency).

We adopted a non-parametric analytical approach, using the Kruskal-Wallis
ANOVA, to examine differences in the impacts of energy costs and non-medical
personnel costs. This methodological choice was guided by the nature of our data,
which did not adhere to the assumptions of normality required by traditional
parametric ANOVA and the non-normal variability of the inputs and outputs,
associated with the categorical nature of our output variable.

The Kruskal-Wallis ANOVA proved particularly effective in assessing whether
there were statistically significant differences between the various hospital levels
with respect to these cost variables. This non-parametric test is less sensitive to
violations of the assumptions of homogeneity of variances and adapts well to data
with asymmetric or unequal distributions. After identifying significant differences
with the Kruskal-Wallis ANOVA, we implemented DSCF post hoc tests (Dunn’s
Test for Stochastic Dominance in Categorical Variables) to analyze specific
differences more closely between hospital groups. These tests allowed us to isolate
and examine in greater depth the incidence of energy costs and non-medical
personnel costs on allocative efficiency, offering a more nuanced and detailed
understanding of the dynamics at play. Figure 69 includes ten distinct tables: two
showcasing the results of the Kruskal-Wallis test and eight tables detailing the
outcomes of the subsequent post hoc analyses, respectively for High and Low target
variables.
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TARGET: LOW EFFICIENCY

Kruskal-Wallis

TARGET: HIGH EFFICIENCY

Kruskal-Wallis

Xz df P X2 df P
I(ENERGY COST) 152 3 0.002 I(ENERGY COST) 152 3 0.002
I(NON-HEALTH PERSONNEL COST) 154 3 0.002 I(NON-HEALTH PERSONNEL COST) 154 3  0.002
I(HEALTH PERSONNEL COST) 181 3  <.001 I(HEALTH PERSONNEL COST) 181 3  <.001
I(MEDICAL DEVICES) 137 3 0.003 I(MEDICAL DEVICES) 137 3 0.003

Dwass-Steel-Critchlow-Fligner pairwise comparisons ~ Dwass-Steel-Critchlow-Fligner pairwise comparisons

Pairwise comparisons - (ENERGY COST)

Pairwise comparisons - I(NON-HEALTH PERSONNEL COST)

Pairwise comparisons - (HEALTH PERSONNEL COST)

Pairwise comparisons - (ENERGY COST)

w [4] w P
BASE LEVEL  FIRST LEVEL -1.11 0.863 BASE LEVEL  FIRST LEVEL 111 0.863
BASE LEVEL IRCCS 2.67 0.234 BASE LEVEL  IRCCS 267 0.234
BASE LEVEL SECONDLEVEL -4.24 0.014 BASE LEVEL SECONDLEVEL 424 0.014
FIRST LEVEL IRCCS 2.84 0.185 FIRSTLEVEL IRCCS -2.84 0.185
FIRSTLEVEL SECONDLEVEL -4.47 0.009 FIRSTLEVEL SECONDLEVEL 4.47 0.009
IRCCS SECOND LEVEL -2.74 0.213 IRCCS SECOND LEVEL 274 0.213

Pairwise comparisons - I(INON-HEALTH PERSONNEL COST)

w p w ]
BASE LEVEL FIRST LEVEL -3.42 0.074 BASE LEVEL FIRST LEVEL 3.42 0.074
BASE LEVEL IRCCS 2.00 0.491 BASE LEVEL IRCCS -2.00 0.491
BASE LEVEL SECOND LEVEL -4.24 0.014 BASE LEVEL SECOND LEVEL 4.24 0.014
FIRST LEVEL IRCCS 3.10 0.126 FIRST LEVEL IRCCS -3.10 0.126
FIRST LEVEL SECOND LEVEL -2.83 0.187 FIRST LEVEL SECOND LEVEL 2.83  0.187
IRCCS SECOND LEVEL -2.74 0.213 IRCCS SECOND LEVEL 274 0213

Pairwise comparisons - I(HEALTH PERSONNEL COST)

w P w 4]
BASE LEVEL FIRST LEVEL -4.32 0012 BASE LEVEL FIRST LEVEL 432 0.012
BASE LEVEL IRCCS 233 0.351 BASE LEVEL IRCCS -233 0.351
BASE LEVEL SECOND LEVEL -4.24  0.014 BASE LEVEL SECOND LEVEL 4.24 0.014
FIRST LEVEL IRCCS 3.10 0.126 FIRST LEVEL IRCCS -3.10 0.128
FIRST LEVEL  SECOND LEVEL -2.98 0.151 FIRSTLEVEL SECOND LEVEL 298 0.151
IRCCS SECOND LEVEL -2.74 0213 IRCCS SECOND LEVEL 274 0213

Pairwise comparisons - (MEDICAL DEVICES) Pairwise comparisons - (MEDICAL DEVICES)
w p w p

BASE LEVEL  FIRST LEVEL -2.61  0.251 BASE LEVEL  FIRST LEVEL 261 0.251
BASE LEVEL  IRCCS -3.00 0.146 BASE LEVEL  IRCCS 3.00 0.146
BASE LEVEL SECONDLEVEL -4.24 0.014 BASE LEVEL SECOND LEVEL 4.24 0.014
FIRST LEVEL IRCCS -1.29  0.798 FIRSTLEVEL IRCCS 129 0798
FIRST LEVEL SECONDLEVEL -3.58 0.055 FIRSTLEVEL SECONDLEVEL 3.58 0.055
IRCCS SECOND LEVEL -2.19 0.408 IRCCS SECOND LEVEL 2.19 0.408

Figure 69 Tables of Kruskal-Wallis ANOVA and Post Hoc Analysis for Energy and Non-Medical Personnel
Cost Impacts on Hospital Efficiency.

For the “High Efficiency” variable, the Kruskal-Wallis ANOVA analysis revealed
statistically significant differences in the impact values of energy costs (y> = 15.2,
p = 0.002), non-health personnel costs (3> = 15.4, p = 0.002), health personnel costs
(x* = 18.1, p <0.001), and medical devices (¥*> = 13.7, p = 0.003). In the post hoc
pairwise comparisons, significant differences were observed, for instance, between
the base level and the second level for energy costs (W =-4.24, p =0.014) and non-
health personnel costs (W =-4.24, p = 0.014).

Similarly, for the “Low Efficiency” variable, the Kruskal-Wallis ANOVA analysis
confirmed similar results, with statistically significant differences in the impact
values of the same cost variables and medical devices. In the post hoc pairwise
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comparisons, significant differences were again noted, such as between the base
level and the second level for energy costs (W = 4.24, p = 0.014) and non-health
personnel costs (W =4.24, p =0.014).

These findings underscore how the impact values of energy costs, personnel, and
the use of medical devices significantly influence hospital allocative efficiency,
with notable variations across different hospital levels. Understanding these
dynamics is crucial for optimizing resource allocation and improving efficiency in
the healthcare sector.

In this context, Figure 70 is presented, which consists of four separate scatterplots.
Each scatterplot visually represents the predictive values of a neural network for
four different feature variables, categorized by hospital levels.

ENERGY COST MEDICAL DEVICES

HEALTH PERSONNEL COST NON-HEALTH PERSONNEL COST

Figure 70 Scatter plots of hospital efficiency, depicting the impact of considered costs and medical devices.

The scatterplot displays the predictive values of a neural network on the x-axis,
divided into High Efficiency and Low Efficiency categories, while the y-axis
represents the four hospital levels: Base, First, IRCCS, and Second. The data points
are color-coded with a gradient from blue to yellow to indicate different values, and
their size varies in proportion to the magnitude of the value. A notable pattern
emerges at the intersection of the Low Efficiency and Second Level categories,
where five larger points with a yellow tint are observed, signifying a higher value
in the considered category.

In all four scatter plots, the values tending towards green-yellow are predominantly
concentrated in the Low Efficiency column, especially at the intersection with the
Second Level row.

These scatterplots provide a clear and intuitive overview of the influence of energy
costs, healthcare and non-healthcare staff costs, and the number of medical devices
on hospital efficiency, offering a detailed and nuanced understanding of cost-
efficiency dynamics in various hospital contexts. To further investigate this aspect,
we applied the Kruskal-Wallis ANOVA to the predictive values, cost variables, and
the medical device variable across the different hospital levels.
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Figure 71 presents the results of the Kruskal-Wallis analysis applied to the
predictive values obtained from the neural network analysis of hospitals, focusing
on four feature variables. The Kruskal-Wallis analysis was conducted to examine
the differences in predictive values obtained from the neural network analysis of
hospitals, considering variables such as energy cost, non-health personnel cost,
health personnel cost, and the number of medical devices. The results showed
statistically significant differences across different hospital levels. For the Neural
Network, the > value was 16.4 (df = 3, p <.001), for Energy Cost 15.5 (df=3,p =
0.001), for Non-Health Personnel Cost 17.2 (df =3, p <.001), for Health Personnel
Cost 18.6 (df =3, p <.001), and for Medical Devices 15.9 (df =3, p=0.001).

In pairwise comparisons, significant differences were observed between various
hospital levels for each variable. For example, in the Neural Network, significant
differences were found between the Base Level and the Second Level (W =5.10, p
=0.002) and between the First Level and the Second Level (W =3.87, p =0.031).
For Energy Cost, significant differences were observed between the Base Level and
the Second Level (W =4.24, p=0.014) and between the First Level and the Second
Level (W =4.47, p = 0.009). Similarly, for Non-Health Personnel Cost, significant
differences were found between the Base Level and the Second Level (W =4.24, p
=0.014) and between the First Level and the Second Level (W = 3.73, p = 0.042).
For Health Personnel Cost, significant differences were observed between the Base
Level and the Second Level (W =4.24, p = 0.014) and between the First Level and
the Second Level (W =4.02, p = 0.023). Finally, for Medical Devices, significant
differences were found between the Base Level and the Second Level (W =4.314,
p=0.012) and between the First Level and the Second Level (W =4.156,p=0.017).
These results provide a detailed and nuanced understanding of cost-efficiency
dynamics in different hospital contexts, highlighting how various costs and the use
of medical devices influence hospital efficiency at different levels.

Dwass-Steel-Critchlow-Fligner pairwise comparisons

Pairwise comparisons - ENERGY COST
w P

BASELEVEL FIRST LEVEL 11 0863
BASELEVEL IRCCS 267 0234
BASELEVEL SECONDLEVEL 424 0014
FIRST LEVEL IRCCS 310 0.126
FIRSTLEVEL SECONDLEVEL 447 0000

SECONDLEVEL 274 0213

Painwise comparisons - NON-HEALTH PERSONNEL COST
w P

BASELEVEL  FIRSTLEVEL 342 0074
BASELEVEL  IRCCS 267 024
BASELEVEL  SECOND LEVEL 424 0014
FIRSTLEVEL  IRCCS 410 0126
FIRSTLEVEL ~ SECOND LEVEL a7 omd2

One-Way ANOVA (Non-parametric) oS SECONDLEVEL 274 oana
Kruskal-Wallis

. Pairwise comparisons - HEALTH PERSONNEL GOST

X df P w_ e
ENERGY COST 155 3 0001 e e s
NON-HEALTH PERSONNEL COST 172 3  <.001 BASELEVEL SECONDLEVEL 42¢ 001

FIRST LEVEL IRCCS <310 0126

HEALTH PERSONNEL COST 186 3 <.001 FIRSTLEVEL SECONDLEVEL 402 0023
MEDICAL DEVICES 159 3  0.001 nees SEcoNpLevEL B o
Neural Network 164 3 <.001

Pairwisa comparisons - MEDICAL DEVIGES

EL FIRSTLEVEL 3275 0094
L IRCCS 2783 0200
EL SECONDLEVEL 4314 0012

RCCS 0842 0910
SECONDLEVEL 4156 0017
SECONDLEVEL 2181 0408

L IRGCS
BASELEVEL SECONDLEVEL 510 0002
FIRSTLEVEL IRCCS 108 0869
FIRSTLEVEL SECONDLEVEL 387 0031
IRCCS SECONDLEVEL 346 0088

Figure 71 Kruskal-Wallis Analysis and Pairwise Comparisons Across Hospital Levels.
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Following this, Figure 72 illustrates a boxplot of the distributions of the neural
network's predictions. In this boxplot, Low Efficiency is highlighted in red and
High Efficiency in blue, providing an immediate visual representation of the
differences in predictions for these two efficiency levels. Additionally, the Base
Level in blue and the Second Level in red offer a clear perspective on how
predictions differ between these specific hospital levels.

Figure 72 Box Plot of predictive values of scaling efficiency for different hospital levels.

Our comprehensive analysis of hospital efficiency, focusing on the hospital network
of the Apulia region and based on neural network modeling and SHAP analysis,
has provided significant insights regarding the interaction between various cost
factors and their influence on the operational efficiency of hospitals:

1. Energy Consumption

In the Apulian hospital network, energy consumption has proven to be the most
influential factor, underscoring the importance of efficient and sustainable energy
management strategies. This aspect is particularly relevant in Apulia, where
optimizing energy consumption can lead to significant reductions in operational
costs and a lesser environmental impact. Recent studies have highlighted the
importance of calculating the energy density of hospital equipment and assessing
the efficiency in the use of equipment (Cakmak & Yol, 2019), as well as the
importance of considering the determinants of electricity and thermal energy
consumption in different hospital contexts, as demonstrated in a study conducted
on Polish hospitals (Cyganska & Kludacz-alessandri, 2021).

2. Personnel Costs

Healthcare Personnel: In Apulia, although representing a significant expense, the
costs of healthcare personnel have shown a positive influence on efficiency.
Research from Romania highlights the importance of efficient management of
healthcare personnel costs in maintaining hospital efficiency (Mlesnise & Bocsan,
2016). Moreover, the expertise of medical professionals in systems like Diagnosis-
Related Groups significantly contributes to reducing hospital costs and increasing
profitability, further underscoring the role of healthcare personnel in improving
efficiency (Iltchev et al., 2013). This indicates that targeted investments in
healthcare personnel can improve operational efficiency and the quality of care.
Non-Healthcare Personnel: The costs of non-healthcare personnel have also had a
positive impact on efficiency. This highlights the crucial role of support staff in
optimizing hospital operations in the region.

3. Number of Medical Devices

In the Apulian hospital network, a greater number of medical devices slightly
negatively influenced high efficiency and positively influenced low efficiency. This
suggests that, although medical devices are essential, their optimal balance in
management and use is crucial. The adoption of intelligent and integrated
approaches for implementing energy efficiency concepts, such as the use of the
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Internet of Things and other smart techniques, can be crucial in this context (Singh
et al., 2022).

The integrated analysis of these factors in the Apulian hospital network highlights
the importance of a holistic approach in hospital management. Efficient resource
allocation, considering energy consumption, personnel costs, and the number of
medical devices, is fundamental to ensuring not only operational efficiency but also
the long-term sustainability of hospitals in the region. This approach allows for
balancing immediate efficiency needs with goals of environmental, economic, and
social sustainability, contributing to a more resilient and responsible healthcare
system in Apulia.

Our findings underscore the need for integrated and sustainable management
strategies specifically for the Apulian hospital network, where operational
efficiency goes hand in hand with environmental sustainability and the quality of
healthcare.

4.6 LIMITATIONS IN THE USE OF MACHINE LEARNING FOR
ANALYZING HOSPITAL COSTS AND RESOURCES IN PUBLIC
HOSPITALS

When applying machine learning to analyze energy costs, healthcare and non-
healthcare personnel costs, and the number of medical devices in public hospitals,
several limitations must be acknowledged. The quality of data is crucial: cost
records and resource utilization data can vary in accuracy and completeness. Energy
costs, for example, may be influenced by factors not evident in the data, such as
infrastructure age and maintenance or seasonal energy consumption variations
(Atalan et al., 2022). Similarly, healthcare personnel costs may not fully capture the
complexities of staffing efficiency or the dynamics of healthcare labor markets,
including contract variations and shift patterns (Rakshit et al., 2021).

The complexity of modeling direct relationships between these variables and
hospital operations presents another challenge. Reductions in energy or personnel
costs might result from practices that could negatively impact hospital operations,
a nuance not always captured by machine learning models (Ball, 2021; Mazumdar
et al., 2020). Additionally, the number of medical devices, while essential for
hospital operations, may not directly correlate with efficiency, as their management
and utilization are complex variables to model accurately (Philpott-Morgan et al.,
2021).

The interpretability of machine learning models, particularly neural networks, is a
significant limitation. The 'black box' nature of these models can hinder
transparency and trust in the predictions they provide, which is critical in hospital
decision-making environments (Egert et al., 2020).

Moreover, external factors such as changes in energy tariffs, labor regulations, or
medical technology advancements can quickly make machine learning models
outdated. This necessitates ongoing updates and reevaluations to maintain their
relevance and accuracy (Hill et al., 2020).

In conclusion, while machine learning offers valuable insights into hospital cost and
resource analysis, it is essential to consider these limitations. A nuanced
understanding of the complex and dynamic nature of hospital environments is
crucial for effectively leveraging machine learning in this context (Egert et al.,
2020).
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4.7 IMPLICATIONS, LIMITATIONS, AND FUTURE PERSPECTIVES OF
HOSPITAL EFFICIENCY ANALYSIS

Our in-depth analysis has revealed crucial findings for the development of context-
specific health policies, emphasizing the importance of considering a wide range of
factors, including operational costs, staffing levels, and the number of advanced
medical devices such as CT scanners and MRIs, in optimizing hospital efficiency.
These results underscore the need for a holistic and data-driven approach in
optimizing hospital efficiency, suggesting that adopting data-based approaches can
lead to more informed decisions and greater allocative efficiency. However, it is
essential to recognize the limitations of this analysis. In particular, the advanced use
of machine learning techniques, such as Neural Networks, has highlighted the
importance of considering a complex array of factors when evaluating hospital
efficiency. Our findings show that efficiency is not influenced solely by isolated
variables but rather by an interconnected network of factors, including operational
costs, staff levels, energy consumption, and the use of advanced medical devices.
Specifically, SHAP analysis provided detailed insights into how various cost factors
influence hospital efficiency. This approach revealed, for example, that energy
costs have a greater impact compared to non-medical personnel costs in certain
scenarios, while the efficient use of medical devices plays a significant role in
operational efficiency. This information is crucial for developing targeted policies
that consider the peculiarities of each individual hospital, rather than adopting a
'one-size-fits-all' approach.

Furthermore, the Kruskal-Wallis analysis and subsequent pairwise comparisons
highlighted how allocative efficiency varies significantly across different hospital
levels. This suggests that management and optimization policies should be tailored
according to the specific level of each hospital, considering their unique needs and
challenges.

The scatterplots further confirmed that there is no linear or simple relationship
between operational costs and efficiency. This emphasizes the need for a more
nuanced and contextualized analysis when developing strategies to improve
efficiency. These visualizations help decision-makers quickly identify where
interventions may be most effective.

The limited size of the dataset, which includes only 28 hospital instances from the
Apulia region, might limit the generalizability of our results. Moreover, although
machine learning models provide accurate predictions, interpreting the results
requires caution, especially in decision-making contexts that impact patient health.
Another limitation concerns the complexity and variability of factors not considered
in the study, such as the quality of care and regional health policies.

Despite these limitations, the results of our study pave the way for future
investigations and practical applications in healthcare management. Future research
should expand the scope of the datasets used and explore additional influential
variables. Integrating this quantitative approach with qualitative analysis could
provide a more holistic understanding of challenges in the healthcare sector.

In conclusion, our findings underscore the importance of a holistic and data-driven
approach in optimizing hospital efficiency. Health policies should be flexible and
adaptable, capable of responding to the specificities of each hospital context. In this
way, it is possible not only to improve efficiency but also to ensure that resources
are allocated in a way that maximizes the positive impact on the quality of
healthcare provided.
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4.8 RESPONSE TO THE RESEARCH QUESTION

A;: Our study has explored the contribution of machine learning models in
analyzing and improving operational efficiency in public hospitals, with a particular
focus on environmental sustainability and effective resource management.
Focusing on the Apulia region, we identified and analyzed key variables such as
energy costs, personnel costs (both medical and non-medical), and the number of
medical devices, using neural network models.

The results demonstrated that operational efficiency in the hospital setting is
influenced by a complex interplay of factors. We observed how the management of
energy and personnel costs, along with the efficient use of medical devices, are
crucial for promoting sustainable practices. However, it is important to emphasize
that our study focused on a specific and limited sample, which could affect the
generalizability of the results.

Despite these limitations, our findings offer significant insights for hospital
management. They suggest that a data-based and sustainability-conscious approach
can improve not only operational efficiency but also the environmental impact of
hospitals. However, it is essential that further research expands the scope of these
studies, including larger datasets and additional contextual variables, to confirm and
deepen our findings.

In conclusion, our study responds to the research question by highlighting how
machine learning models can be valuable tools in analyzing and improving the
operational efficiency of hospitals, with an eye towards sustainability. These
models provide a foundation for more informed decisions and management
strategies that can be adapted to the specificities of each hospital context, promoting
an efficiency that is sustainable both operationally and environmentally.

5. CONCLUSION OF IV SESSION

In conclusion, our study has provided significant insights into hospital efficiency,
highlighting the critical importance of an integrated approach that combines
advanced data analysis with contextual understanding. We demonstrated how
energy costs, healthcare and non-healthcare personnel costs, and the number of
medical devices such as CT scanners and MRIs, are determining factors in hospital
allocative efficiency. The heterogeneity of these impacts underscores the need for
differentiated and adaptable hospital management strategies, tailored to meet the
specific needs of each context.

Using machine learning models, particularly neural networks, we were able to
identify and quantify the impact of these operational costs and resources, offering
a solid foundation for more informed strategic decisions. However, the main
limitation of our study lies in the size of the dataset and its geographic specificity,
which could affect the generalizability of the results. Therefore, it is essential for
future research to broaden the scope of these studies, including larger datasets and
additional contextual variables.

The implications of this research are wide-ranging and relevant. The findings
emphasize the importance of data-driven, detail-informed hospital management that
considers not only cost efficiency but also the quality of care provided and
environmental sustainability. This approach can help hospitals navigate an
increasingly complex healthcare landscape and continually improve their service
delivery.

Moreover, our study highlights the importance of considering energy efficiency and
environmental sustainability as key elements in hospital management. Integrating
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sustainability into hospital management policies not only improves operational
efficiency but also contributes to a more responsible environmental impact.
Ultimately, our study contributes to the emerging literature on the application of
machine learning techniques in the healthcare sector, offering valuable insights for
further research and hospital administrative practice. The conclusions drawn
emphasize the urgency of reconsidering healthcare policies, encouraging the
adoption of data-based and personalized approaches to address the unique
challenges of each hospital facility. In doing so, we aspire not only to a more
efficient healthcare system but also one that is sensitive to patient needs and well-
being, thus promoting quality and accessible healthcare. In addition to our current
findings, it is crucial to emphasize the importance of future investigations to expand
and deepen the insights from our study. A key follow-up involves enlarging the
dataset to include a greater number of hospitals and diversifying geographic
regions. This expansion will allow for the validation of our results' generalizability
and further exploration of hospital efficiency dynamics in varied contexts.
Another vital area for future research is the analysis of the impact of environmental
sustainability policies on hospitals. Given the current focus on climate change and
sustainability, it is imperative to assess how eco-friendly practices can be
effectively integrated into hospital management, not only to reduce environmental
impact but also to enhance operational efficiency. Furthermore, exploring the
interplay between the quality of care and operational efficiency is important. Future
studies should investigate how cost optimization affects the quality of healthcare
services provided, with a keen focus on balancing economic efficiency with patient
well-being.

Additionally, adopting qualitative approaches alongside quantitative ones could
provide a more holistic understanding of challenges in the healthcare sector.
Interviews, case studies, and ethnographic analyses could enrich our understanding
of hospital dynamics, offering a more comprehensive view of the implications of
our findings.
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V SESSION

BUILDING THE FUTURE: DESIGNING A POLICY-CENTRIC
DECISION SUPPORT SYSTEM FOR HEALTHCARE IN
APULIA

1. INTRODUCTION

The evolution of Decision Support Systems (DSS) in healthcare marks a
fundamental step towards more efficient and targeted care. In Tuscany, the
implementation of such systems has led to significant improvements in hospital
management, highlighting the potential of DSS in resource optimization and
clinical decision-making (ladanza et al., 2016). These tools, in fact, leverage
advanced data analysis to provide timely and accurate decision support.

The growing relevance of DSS in the healthcare context is further underscored by
their ability to integrate cutting-edge technologies for optimal patient management,
as demonstrated in recent research (Reyana et al., 2021). This integration translates
into personalized solutions that elevate the quality of care.

Concurrently, collaborative ontology engineering emerges as an effective approach
in the development of DSS in healthcare. The semantics-based methodology,
explored in 2021 publications, enhances the accuracy and relevance of the system's
recommendations, emphasizing the importance of knowledge sharing in the field
(Spoladore & Pessot, 2021).

Moreover, the analysis of the new frontiers of clinical decision support systems
(CDSS), conducted in 2016, reveals how these tools can facilitate self-management
of chronic diseases, leveraging social computing technologies to promote patient
autonomy (Moon & Galea, 2016).

Beyond the healthcare context, the importance of Decision Support Systems (DSS)
significantly extends to the allocation of business resources. A recent development
in the IFS Applications ERP system has introduced a mathematical approach for
optimizing resources across multiple projects, offering more efficient and strategic
management (Fijas et al., 2023). Another study explored the use of human-centric
networks to improve the allocation of human resources in information systems,
emphasizing the importance of DSS in enhancing organizational efficiency (Yeon
et al., 2022). In the field of cloud manufacturing, an innovative decision-making
model based on the minority game has been proposed, demonstrating the
effectiveness of DSS in the intelligent allocation of resources (Carlucci et al., 2020).
Finally, the introduction of an intelligent information platform for human resource
allocation based on fuzzy data mining algorithms has shown a significant increase
in efficiency, greatly improving resource management in an organization (Peng,
2022).

These examples vividly illustrate the potential of DSS not only in the healthcare
sector but also in the business context, where they offer innovative solutions for
more efficient and strategic resource management. In this context, sustainability in
hospitals emerges as a crucial aspect, where Decision Support Systems (DSS) can
play a fundamental role. Using intelligent systems based on ontologies, DSS can
contribute to designing sustainable business models in the healthcare sector
(Hamrouni et al., 2021). Moreover, the implementation of real-time monitoring
systems in smart agriculture and construction logistics provides valuable insights
for similar applications in hospitals, aiming for more efficient and sustainable
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management of resources and healthcare infrastructures (Arshad et al., 2022;
Guerlain et al., 2019).

These developments underscore the importance of integrating sustainability
principles into decision support systems for hospitals, ensuring that healthcare
management not only meets the immediate needs of patients but does so in a
responsible and sustainable manner over the long term.

Within this framework, the DSS for Apulia aims to synthesize the results of
previous research sessions, offering a system that not only analyzes existing data
but also provides strategic recommendations for the improvement of regional
healthcare services. The goal is to create a replicable and practical model that can
guide decision-makers in the healthcare sector towards more efficient, effective,
and sustainable management.

2. BACKGROUND

Modern healthcare is confronted with increasing challenges related to operational
efficiency, resource sustainability, and quality of care. Against this backdrop, the
Decision Support System (DSS) project for Apulia emerges as a pioneering
initiative, aiming to revolutionize healthcare management by leveraging advanced
technologies and data analytics. This study is poised to explore the effectiveness of
the DSS in synthesizing and dissecting complex datasets, thereby providing
evidence-based decision-making support to augment the efficiency and efficacy of
healthcare services.

The DSS for Apulia is grounded in the optimized CPDA methodology, employing
optimization algorithms to accurately calculate Pure Technical Efficiency (PTE)
and Scale Efficiency (SE) scores across the entire Apulian hospital network. This
approach, outlined in Session I of the thesis, represents an innovative method: it
integrates detailed hospital healthcare variables such as the use of advanced medical
diagnostic devices (CT scans and MRIs), and cost-related variables (energy
consumption and personnel management), with machine learning tools, linear
regression (Session III), neural networks, and the SHAP algorithm (Session 1V),
crafting a complex and multi-dimensional analytical framework.

The objectives of the DSS encompass the amalgamation of heterogeneous data to
attain a holistic perspective of hospital efficiency, providing decision support to
optimize healthcare resources, and fostering sustainable practices. This strategy
aims to enhance the quality of care by reducing waiting times and boosting patient
satisfaction and proposes a replicable model for other regions, aspiring to culminate
in a reference policy for the sector.

Apulia, with its unique demographic and health profile, presents a significant
context for healthcare innovation. The urgency for more responsive and sustainable
health systems is acutely felt, given the rising demand for high-quality healthcare
services and the constraints of available resources. The DSS project positions itself
as an avant-garde endeavor, striving to overcome conventional barriers in
healthcare management with a data-driven and in-depth analytical decision-making
system.

In addition, Session II of the thesis served as a comparative benchmark, comparing
the healthcare efficiency of Apulia with that of Emilia Romagna, a region with its
own healthcare challenges and successes. This comparison allowed for the
contextualization of the performance of the Apulian healthcare system within a
broader national landscape, enabling a deeper understanding of regional disparities
and opportunities for policy transfer and adaptation.
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Furthermore, Session II rigorously tested the CPDA methodology with a broader
and more diverse dataset from Emilia Romagna, validating its robustness and
scalability. This step was essential to ensure that the developed models and
algorithms could reliably handle larger and more variable data inputs, confirming
the viability of the CPDA methodology for broader application beyond the initial
regional focus.

The insights gained from this comparative analysis and methodological testing in
Session II significantly enriched the DSS project for Apulia. They provided a
comprehensive baseline for measuring improvements and gauging the effectiveness
of the DSS in enhancing healthcare management practices. Moreover, they
underscored the necessity for adaptable and scalable healthcare analytics capable
of addressing the complexity of healthcare data across different regional healthcare
systems.

The inclusion of these insights into the thesis highlights the rigorous nature of the
research process and the commitment to developing a DSS that is not only region-
specific but also adaptable and applicable to the wider context of healthcare
management in Italy.

In conclusion, the goal of the Decision Support System (DSS) project for Apulia is
the formulation of healthcare policy. The DSS, with its advanced methodologies
and data-driven decision-making capabilities, is designed to provide valuable
insights and evidence-based recommendations that can inform the creation of
healthcare policies. These policies aim to enhance the efficiency, effectiveness, and
sustainability of healthcare services in the Apulian region, ultimately contributing
to improved patient care and satisfaction. Moreover, the DSS project aspires to
serve as a replicable model that can inspire policy development in other regions,
further advancing healthcare management practices across Italy.

It is important to note that Session V, following the background, will be structured
into three main sections. The first section will focus on the methodology of the DSS,
the second will address the discussion of results and policy formulation, while the
third will conclude with an analysis of project limitations and prospects. This
structure reflects the comprehensive and strategic approach of the DSS project for
Apulia, which aims not only to generate data but also to translate it into concrete
actions to improve the regional healthcare sector.

2.1 ACHIEVING EVIDENCE-BASED HEALTHCARE POLICIES: AN
ALGORITHMIC APPROACH FOR APULIA

In the pursuit of evidence-based healthcare efficiency in the Apulia region, Chapter
V of this thesis will outline the architecture of a methodological algorithm for a
Decision Support System (DSS). This innovative tool is grounded in seven
previously formulated research questions, which probe into the dynamics between
operational efficiency, energy costs, and the quality of care in the hospital setting.
The goal is to bridge the gap between research and operational decision-making
through the application of advanced data methodologies and analytics.

The DSS algorithm represents a pivotal step in the project for Apulia, designed to
synthesize complex datasets and provide evidence-based recommendations. These
recommendations have the potential to influence healthcare policies, with a
particular focus on sustainability and efficient resource management. The iterative
process of data collection and analysis, coupled with model development in earlier
phases, culminates in this critical stage, transforming research findings into
concrete insights.
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By translating these insights into a policy framework, the DSS aims to enhance the
efficiency, effectiveness, and sustainability of healthcare services, leveraging
machine learning models to refine analysis and promote operational improvement.
This holistic, data-driven approach exemplifies how decision support can indeed
shape policy formulation, ultimately improving the healthcare landscape and
patient care quality in the Apulia region.

3. METHODOLOGY

The DSS project for healthcare in Apulia represents an innovative initiative aimed
at revolutionizing the management of healthcare services through a
multidisciplinary methodological approach, based on the CPDA model (Cluster-
Principal Component-Data Envelopment-ANOVA Analysis). This model, chosen
for its ability to integrate advanced statistical methods and data analysis, is aimed
at providing a comprehensive evaluation of healthcare performance in the region.
At the heart of the project are key stakeholders, including healthcare decision-
makers and political decision-makers in Apulia, who play a crucial role in shaping
and being influenced by regional healthcare policies.

The project focuses on the Apulia region, with a comparative analysis that also
includes the Emilia-Romagna region, thus offering a broader context and a deeper
understanding of regional dynamics. The analysis is based on data collected in the
year 2020, providing a current snapshot of healthcare performance and challenges
in Apulia. The initiative was launched in response to the growing needs for
operational efficiency and resource sustainability in the healthcare sector, with the
goal of improving the quality of care and the management of healthcare resources.
The CPDA methodology was implemented to analyze and synthesize data, using
techniques of cluster analysis, principal component analysis, data envelopment
analysis, and ANOVA.
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Table 31. Research Questions and Methodologies in the DSS Project for Healthcare in Apulia.
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This approach allows for a thorough and systematic examination of every aspect of
the healthcare system, from resource management to the quality of care, and to
formulate recommendations based on concrete evidence.

Table 31 illustrates how each research question is linked to a specific component
of the CPDA analysis, ensuring a thorough and systematic examination of every
aspect of the healthcare system. This table represents a fundamental element of the
project, providing a clear and detailed structure for data collection and analysis, and
for the formulation of concrete conclusions.
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To focus on the processes used in the thesis to achieve the DSS project for
healthcare in Apulia, we can examine how each research session and its related
project questions contributed to the development and implementation of the system.
Here is a detailed overview:

1. Session I - Hospital Efficiency and Quality of Care:

Process: In this phase, the efficiency of hospitals in Apulia and its impact on the perceived
quality of care was evaluated. Analysis methods such as CPDA were used to calculate
efficiency scores and analyze their influence on patient choices.

Contribution to DSS: This session provided fundamental data on hospital efficiency,
essential for formulating recommendations in the DSS regarding the improvement of
hospital management and quality of care.

2. Session II - Comparative Analysis with Emilia-Romagna:

Process: A comparative analysis of hospital efficiency between Apulia and Emilia-
Romagna was conducted, examining variations in efficiency between the public and private
sectors and their impact on the perceived quality of care.

Contribution to DSS: This comparison enriched the DSS with a broader perspective,
allowing the identification of best practices and areas for improvement.

3. Session III - Correlation between Hospital Organization, Hospitalization, and
Energy Costs:

Process: The relationship between hospital organizational variables, propensity for
hospitalization, and energy costs was explored. This included analyzing the interaction
between hospital facilities, admission frequency, and energy expenses.

Contribution to DSS: The results highlighted the importance of balancing patient care with
energy savings, providing vital indications for the DSS on efficient resource management.
4. Session IV - Application of Machine Learning Models:

Process: In this phase, the contribution of machine learning models to the analysis and
improvement of operational efficiency was investigated, considering sustainability and
efficient resource management.

Contribution to DSS: The use of machine learning models enriched the DSS with advanced
analytical capabilities, allowing for the development of recommendations based on
complex data and improving operational efficiency.

Each research session played a crucial role in defining the parameters,
methodologies, and analyses that formed the basis of the DSS project. Through
thorough data collection and analysis, the use of advanced statistical techniques,
and the application of machine learning models, the DSS project was able to
develop concrete recommendations for improving the management of healthcare
services in Apulia. This process ensured that the DSS was well-founded on
empirical evidence and detailed analysis, making it a valuable tool for decision-
makers in the healthcare sector of the region.

The 'how' of our Decision Support System is materialized through a structured
workflow (Figure 73) that guides the analysis and decision-making process. The
DSS workflow is defined to illustrate the analytical process and the methodologies
adopted. The system begins with the collection of data from nationally certified
sources, which feed the statistical and machine learning analysis engine. This
engine is composed of advanced software that processes health variables through
an optimized CPDA analysis path, detailed in SESSION I and tested on a broader
dataset including analogous data used for Apulia and also for Emilia-Romagna, as
described in SESSION II of this thesis.

The CPDA workflow initially utilizes a cluster analysis, through which healthcare
structures are classified and variables are divided into two distinct clusters of inputs
and outputs. This step is fundamental for the correct application of subsequent
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techniques, as it allows for the organization of variables into homogeneous groups
that reflect their functions within the healthcare system.

Subsequently, the variables within these clusters are subjected to optimized PCA to
reduce dimensionality and identify the main components that influence efficiency
and perceived quality. Optimized DEA is then applied to assess technical and scale
efficiencies. ANOVA analysis follows to compare and deepen the results among
different hospital groups (Grey box "CPDA ANALYSIS OPTIMIZED — SESSION
[-1I" in Figure 73).

In parallel, the DSS implements a linear regression analysis, which leverages the
identified variables to model and interpret the relationships with the target
variables, providing answers to the research questions posed in SESSIONS II and
II. This process is crucial for understanding the factors that influence health
policies and resource management (White boxes "LINEAR REGRESSIONS
SESSION III" in Figure 73).

Furthermore, in SESSION IV, the DSS adopts a neural network analysis to examine
the complex non-linear relationships between cost variables, such as those related
to hospital energy costs, personnel costs, and the number of medical devices, and
the target defined by the scale efficiency identified by the CPDA process (Sand-
colored box "NEURAL NETWORK ANALYSIS — SESSION IV" in Figure 73).
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The Decision Support System described in this thesis represents an integrated
analytical ecosystem that leverages advanced data mining techniques to draw
significant insights from health data. Each component of the workflow, from cluster
analysis to optimized PCA and DEA, to ANOVA analysis, plays a specific role in
identifying efficiency levers and quality within the healthcare system. The linear
regression and neural network analyses, detailed in SESSIONS III and IV, further
enrich this framework, allowing for a detailed understanding of cost dynamics and
hospital performance. Through the application of these advanced methodologies,
the DSS provides decision-makers with support based on concrete data and rigorous
analysis, facilitating the development of informed health policies and resource
optimization in two distinct regional contexts. The synergistic work of these
analytical techniques allows for a clear roadmap for continuous improvement in the
healthcare field, emphasizing the importance of a data-driven approach to meet the
challenges of the sector.

The workflow converges in the integration of the results of the various analyses to
formulate policy recommendations. In doing so, the DSS not only provides an
assessment of efficiency and perceived quality through CPDA analysis but expands
its predictive and interpretive capacity with regression analysis and neural
networks, ensuring that policy decisions are well-informed and based on a detailed
data analysis.

In conclusion, the DSS workflow described in this session offers a complex and
structured framework to guide healthcare policymakers in the Apulia region
towards evidence-based decisions aimed at improving operational efficiency and
patient satisfaction.

4. DISCUSSIONS AND POLICY FORMULATION FOR HOSPITAL
EFFICIENCY IN THE APULIA REGION: A DSS-BASED ANALYSIS

This thesis has explored hospital efficiency and healthcare policies in the Apulia
region, utilizing an advanced approach of data mining and machine learning
implemented via the Decision Support System (DSS). The CPDA analysis,
supported by linear regression and neural network analyses, has highlighted
significant disparities in the performance of healthcare facilities, indicating key
areas for targeted interventions and improvements.

The findings underscore the need for strategic reforms for more effective
management of healthcare resources and enhancement of care quality. Policies
should focus on optimizing resources, including training and retention of healthcare
staff, and technological updating of equipment. A detailed analysis of operational
costs underscores the necessity for a more rational and economical approach to
resource utilization, without compromising the quality of care.

A crucial aspect is the sustainability of healthcare policies. Policies should
encourage the adoption of energy-efficient technologies and personnel management
practices that consider worker welfare and continuous training. This approach will
contribute to a sustainable and resilient work environment, essential for maintaining
high standards of care and fostering research and innovation.

Furthermore, differences between hospital levels within the healthcare network
require differentiated policy approaches. While primary-level hospitals may benefit
from greater integration with local services, secondary-level hospitals require
targeted investments for specialization and research. Policies reflecting these
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dynamics and facilitating access to quality information are essential for enabling
patients to make informed health choices.

This thesis has conducted a thorough exploration of efficiency dynamics in
hospitals at all levels, both private and public, in the Apulia region. The CPDA
analysis, integrated with linear regression and neural network techniques, has
revealed critical aspects of efficiency oriented towards the quality of services (PTE)
perceived by patients. Regardless of the hospital's level or nature, there is a clear
need to improve the perception of care quality through policies that emphasize
effective communication, empathy, and a more patient-centered approach.

In terms of allocative efficiency (SE), the results show how resource management
in Apulian hospitals, both public and private, can be optimized. Special attention
must be paid to energy costs, personnel management, and the utilization of medical
devices. The implications of these variables on allocative efficiency highlight the
importance of judicious resource management, considering not just economic
aspects but also environmental impact and sustainability.

Comparison with the Emilia Romagna region provides fundamental insights for
Apulia. While Emilia Romagna stands out for more established management
practices and overall higher efficiency, Apulia shows areas for improvement in cost
management and resource efficiency. This interregional comparison underscores
how adopting effective strategies, already successfully implemented in Emilia
Romagna, could lead to significant improvements in efficiency and service quality
in Apulian hospitals.

The thesis thus emphasizes the importance of a data-driven and Al-based approach
for formulating effective healthcare policies. The DSS, with its capability to provide
detailed analyses and interregional comparisons, emerges as an essential tool for
guiding sustainable and effective strategies, aimed at improving care quality and
patient experience across all levels and types of hospital networks in Apulia.

The integration of the DSS into decision-making processes can transform the way
healthcare resources are allocated and managed in Apulia, shifting focus from
reactive problem-solving to proactive prevention. The resulting policies should
emphasize creating a healthcare system that not only efficiently responds to
immediate crises but also continuously works towards improving the overall health
of the population.

In conclusion, the DSS proposes a paradigmatic shift in healthcare policies in the
Apulia region, steering them towards a model based on data analysis and machine
learning. This allows for anticipating trends, optimizing responses, and
personalizing care, ensuring that every policy decision is supported by detailed
analysis and robust empirical evidence. This approach promotes a more equitable,
resilient, and sustainable healthcare system, attentive to future needs and long-term
sustainability.

5.  CONCLUSION OF V SESSION

This thesis represented an exploratory and in-depth journey into hospital efficiency
and healthcare policies in the Apulia region, highlighting the transformative
potential of integrating advanced data mining and machine learning technologies.
Using the Decision Support System (DSS), we identified significant disparities in
the performance of healthcare facilities and outlined key areas for strategic
interventions.
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However, it is important to acknowledge the limitations of this study. The thesis is
based on data specific to the Apulia region and, therefore, the results may not be
fully generalizable to other regions or contexts with different demographic,
economic, and healthcare characteristics. Additionally, the complexity of the
machine learning models and data mining techniques employed could limit their
applicability in contexts where such technical expertise is scarce. Another limitation
concerns the availability and quality of data, which can influence the accuracy of
the analyses and the conclusions drawn.

Despite these limitations, the findings emphasize the urgent need for strategic
reforms aimed at more effective management of healthcare resources, with a
particular focus on sustainability and resource optimization. The comparison with
the Emilia-Romagna region provided valuable insights, showing how the adoption
of proven management practices can improve both efficiency and service quality.
In conclusion, while taking into account the limitations, the thesis proposes a
paradigm shift in healthcare policies in Apulia, underlining the vital role of a data-
driven and artificial intelligence-based approach. The DSS emerges as a
fundamental tool not only for detailed analysis and interregional comparisons but
also as a guide for sustainable and effective strategies aimed at improving care
quality and patient experience. The integration of the DSS into decision-making
processes marks the beginning of a new era where healthcare resources are managed
proactively, with a continuous focus on improving the health of the population. This
approach promotes a fairer, more resilient, and sustainable healthcare system, ready
to face future challenges and ensure the long-term sustainability of the healthcare
sector in Apulia.

6. CONCLUSIONS

This thesis has explored hospital efficiency and healthcare policies in the Apulia
region through an innovative approach that integrates advanced data mining and
machine learning techniques. The CPDA methodology (Cluster Analysis, Principal
Component Analysis, Data Envelopment Analysis, and Analysis of Variance),
supported using linear regression and neural network algorithms, has enabled a
detailed and robust evaluation of hospital efficiency. Optimization through Particle
Swarm Optimization (PSO) has further enhanced the discriminatory power of the
CPDA model, confirming its effectiveness compared to traditional methods.

The analysis of hospital efficiency in the Apulia-Emilia Romagna macroregion
revealed significant differences between the two regions. Specifically, the
prevalence of facilities with high technical efficiency was greater in Emilia
Romagna. However, public facilities demonstrated higher scale efficiency
compared to private ones, regardless of the region, suggesting a direct correlation
between hospital efficiency and the perceived quality of care by patients.

The study highlighted the importance of managing energy and human resources in
public hospitals, showing that greater organizational efficiency can lead to
increased energy costs. This result underscores the need to balance managerial
decisions between resource optimization and energy cost management. Adopting
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ISO 50001 guidelines for energy management and acquiring renewable energy
sources are crucial steps toward greater sustainability.

Integrating machine learning models enabled the identification and quantification
of the impact of operational costs and resources on hospital allocative efficiency.
However, the geographic specificity of the dataset and its limited size represent
limitations that affect the generalizability of the results. Future research should
include larger datasets and additional contextual variables to overcome these
limitations.

The implications of this research are wide-ranging and significant. A data-driven,
detailed approach to hospital management not only improves cost efficiency but
also the quality of care provided and environmental sustainability. This study
contributes to the emerging literature on the application of machine learning
techniques in the healthcare sector, offering valuable insights for further research
and hospital administrative practices. The conclusions emphasize the urgency of
reconsidering healthcare policies, promoting the adoption of data-based and
personalized approaches to address the unique challenges of each hospital facility.
In summary, the thesis proposes a paradigm shift in healthcare policies in Apulia,
emphasizing the crucial role of an artificial intelligence-based approach. The
implementation of the Decision Support System (DSS) emerges as a fundamental
tool for detailed analysis and interregional comparisons, guiding sustainable and
effective strategies to improve care quality and patient experience. This approach
promotes a more equitable, resilient, and sustainable healthcare system, ready to
face future challenges and ensure the long-term sustainability of the healthcare
sector in Apulia.
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