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Abstract 

 

Agricultural production is closely related to the weather conditions and farmers are exposed to natural 

hazards such as excess flood, drought, and frost. The increase of the magnitude and frequency of 

extreme weather events requires the implementation of several risk management tools that may 

enhance the resilience of farming systems to climate change. In the last years, the interest on insurance 

market against extreme weather events has grown and crop insurance schemes may play a key role 

to manage systemic weather risks, mitigating production losses and stabilizing farmers’ incomes. 

More specifically, the weather index-based insurance represents a promising tool which may 

overcome some problems associated with traditional indemnity-based insurances (e.g., asymmetric 

information, high transaction costs, moral hazard, and adverse selection). However, the weather 

index-based insurance presents a major limitation, namely basis risk: farmers may experience severe 

yield losses without any reimbursement or, on the contrary, they may obtain a compensation without 

any yield loss mainly due to the discrepancy between the pay-out triggered by the weather index and 

actual losses. Clearly, this main threat limits the spread of this innovative risk management tool. Our 

studies aim to assess the dynamics between the weather variable and crop yield, i.e., the working 

principle of the weather index-based insurances, and crop insurance demand. First, we conducted a 

case study to deepen the knowledge on the linkages between durum wheat yields and weather events 

occurring in susceptible phenological phases; second, we studied how different approaches for the 

phenological stages identification and how different weather variables (and combination of thereof) 

within the econometric model may catch further relationships between durum wheat yields and 

weather conditions otherwise not caught; third, we assessed whether the relationship yield-

temperature control for three categories of durum wheat earliness. We found several connections 

among yields and weather variables, highly related to both phenological stages, different temporal 

and design specifications within the econometric model, and earliness. We contributed to discuss on 

the feasibility of the weather index-based insurance at farm-level, also animating the debate on how 

policymakers may improve the attractiveness of these risk management tools using publicly available 

data. 

 

Keywords: climate change; farming system; crop insurance; risk management; weather index. 
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1.1 Background 

 

Agriculture is the most vulnerable sector to climate change, e.g., temperatures or rainfall may 

significantly affect the crop yields, also leading the proliferation of pathogens and hence pests and 

diseases (Malhi et al., 2021). The total economic losses from weather- and climate-related have 

caused damages reaching nearly 487 billion of euros in EEA member countries since 1980, and just 

3% of all events are responsible for 60% of economic losses (EEA, 2022a). Extreme weather events 

such as heavy precipitation, flood, drought, frost, heat, and strong wind are more and more frequent, 

intense, long-lasting, and they are the major drivers of agricultural losses (Walsh et al., 2020; Bucheli 

et al., 2023). Heavy precipitation may reduce photosynthetically active radiation up to irreversible 

tissue damages, setting the conditions for diseases due to the proliferation of pathogens, nutrient 

leaching, soil erosion, and oxygen deficit (Makinen et al., 2018; Zampieri et al., 2019), also inducing 

flash flood events, in combination with other factors as the antecedent soil moisture (Diakakis, 2012; 

Kaiser et al., 2020). Drought and water shortage may affect the metabolism of plants with changes in 

root growth and architecture, and other tissue-specific responses that modify the flux of cellular 

signals (Gupta et al., 2020). The stress due to drought events is the main factor limiting the 

development of crop and its productivity (Iqbal et al., 2020). Cold may damage the leaf and seedling 

survival, also leading to the sterility and the abortion of formed grains, especially for the cereal crops 

(Barlow et al., 2015). Heat directly affects the crop physiology, reducing photosynthesis rates, leading 

the acceleration of leaf senescence processes, oxidative damages, and pollen sterility (Rezaei et al., 

2015). On-farm and risk-sharing strategies are available to improve the resilience of farming systems 

to weather risks. The former includes risk control (i.e., risk prevention such as irrigation, shading, 

pest control, improved planning and monitoring activities), reserves (i.e., stocking, financial savings, 

additional labour input), and diversification (i.e., agricultural and structural diversification as nature 

conservation or agrotourism, off-farm allocation of resources); the latter includes risk pooling (i.e., 

mutual funds, agricultural insurance, membership in cooperatives, credit unions, producer 

organizations), and risk transfer (i.e., forwards, futures contracts) (Vroege and Finger, 2020). Member 

States may grant support for risk management tools (e.g., financial contribution to insurance 

premiums and to mutual funds) which can help farmers to manage production and income risks 

related to their agricultural activity and over which they have no control (Devot et al., 2023). The new 

Common Agricultural Policy (CAP) reform is putting increasing emphasis on instrument supporting 

proactive management of the effects of extreme weather events due to climate change (Devot et al., 

2023). Among the risk management tools, the weather index-based insurance may play a key role 

protecting farmers against weather-related risks. Unlike traditional indemnity crop insurances which 
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rely on yield losses and physical damage observations, weather index-based insurances indemnify 

the farmers based on predefined weather parameters (or indexes) as triggers, e.g., excess rainfall or 

extremely hot temperatures, easily measurable and directly related with production yields (Barnett 

and Mahul, 2007; Shirsath et al., 2019; Vroege and Finger, 2020). Therefore, the indemnification is 

triggered whenever the value of the index exceeds or falls short the threshold (Belissa et al., 2019; 

Tappi et al., 2023). The index, recorded by weather stations or provided by other data sources, is 

independent, objective, transparent, and free from manipulations (Conradt et al., 2015; Shirsath et al., 

2019 Bucheli et al., 2021). These characteristics represent the strengths of weather index-based 

insurances when compared with the traditional indemnity insurances. Sure enough, the latter show 

some issues as the asymmetric information, high transaction costs, moral hazard, and adverse 

selection (Ceballos et al., 2019; Abdi et al., 2022). However, the weather index-based insurances 

present the limit of basis risk, i.e., the discrepancy between insurance payouts and agricultural output 

(Dalhaus et al., 2018; Leblois et al., 2020). More specifically, the insured farmers may experience 

yield losses, while the weather index does not trigger a payment, or may obtain a compensation 

without having any yield losses because the index trigger the reimbursement, in other words, the 

index is not perfectly correlated with the actual losses which affected insurance policyholders 

(Heimfarth and Musshoff, 2011; Clement et al., 2018). Furthermore, following the previous 

reasoning, the insured farmers may not be adequately compensated as result of production losses 

(Dalhaus et al., 2018). Basis risk can be separated into three categories depending on the causes: (i) 

spatial (or geographical) basis risk due to the distance of weather station from the location covered 

by insurance contract; (ii) design basis risk due to the imperfect correlation between weather index 

and crop yields; (iii) temporal basis risk due to imperfect time period selection for deriving the index, 

e.g., the weather index does not capture the phenological stage more susceptible to a specific weather 

event (Dalhaus et al., 2018; Abdi et al., 2022; Shmidt et al., 2022). Although premium cost represents 

the major limitation for the weather index-based insurance widespread (Lichtenberg and Iglesias, 

2022), basis risk hampers the functioning of index insurance products and lowers insurance demand 

(Clement et al., 2019). The challenge is to identify both an effective weather index and the damage 

thresholds depending on availability of data and models, as well as on the deepening of the critical 

aspects driving the weather-yields relationships, a major driver of distrust in currently offered index-

based insurance schemes (Ceballos et al., 2019). Weather index insurance allows farmers to diversify 

their risk portfolio, also playing a crucial role in enhancing farmers' access to credit and investment 

(Tadesse et al., 2015).  
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1.2 Objective of the thesis 

 

The objectives of the thesis are at least twofold: first, it provides empirical evidence on how yields 

and weather variables are correlated, i.e., the working principle of the weather index-based 

insurances; second, it animates the debate on how policymakers may make use of publicly available 

data to calibrate an effective weather index-based insurance. More specifically, the thesis tries to 

replay to the following research questions: 

1. How durum wheat yields and weather events occurring in susceptible phenological stages are 

correlated? 

2. How different weather variables (and combinations of thereof) and different approaches 

identifying phenological stages (i.e., Growing Degree Days vs fixed time period) may lead to 

different results on the relationships between durum wheat yields and weather variables? 

3. How different durum wheat earliness (i.e., early-maturing, middle-maturing, and late-

maturing) may affect the yield-temperatures relationship across different phenological stages? 

Apart from the new knowledge to the scientific community, the thesis has direct implications for 

farmers aiming to adopt ex-ante risk management strategies (e.g., choice of earliness), and for 

policymakers planning ex-post risk management strategies (e.g., incentive to crop insurance uptake). 

 

1.3 Structure of the thesis 

 

The remainder of the thesis is composed of three research chapters, with each chapter aimed at 

achieving the research objectives discussed above (Chapter 2-4), and a last chapter with a general 

conclusion. 

 

Chapter 2 analyses the first objective deepening the connections between weather conditions and 

durum wheat yields. 

Chapter 3 focuses on the second objective emphasizing the importance of crop phenology and the 

combination of weather variables within the econometric model to catch further yield-weather 

relationships. 

Chapter 4 investigates the third objective, deepening how minimum and maximum temperatures 

may affect durum wheat yields across different phenological stages and earliness. 

Chapter 5 presents the general conclusion of this research work, also synthetizing the main findings 

of the thesis, highlighting limitations and future research directions. 

 



7 
 

References 

 

Abdi, M. J., Raffar, N., Zulkafli, Z., Nurulhuda, K., Rehan, B. M., Muharam, F. M., … & Tangang, 

F. (2022). Index-based insurance and hydroclimatic risk management in agriculture: A systematic 

review of index selection and yield-index modelling methods. International Journal of Disaster Risk 

Reduction, 67, 102653. 

Barlow, K. M., Christy, B. P., O’leary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the 

impact of extreme hea t and frost events on wheat crop production: A review. Field crops research, 

171, 109-119. 

Barnett, B. J., & Mahul, O. (2007). Weather index insurance for agriculture and rural areas in lower-

income countries. American Journal of Agricultural Economics, 89(5), 1241-1247. 

Belissa, T., Bulte, E., Cecchi, F., Gangopadhyay, S., & Lensink, R. (2019). Liquidity constraints, 

informal institutions, and the adoption of weather insurance: A randomized controlled Trial in 

Ethiopia. Journal of Development Economics, 140, 269-278. 

Bucheli, J., Dalhaus, T., & Finger, R. (2021). The optimal drought index for designing weather index 

insurance. European Review of Agricultural Economics, 48(3), 573-597. 

Bucheli, J., Conrad, N., Wimmer, S., Dalhaus, T., & Finger, R. (2023). Weather insurance in European 

crop and horticulture production. Climate Risk Management, 100525. 

Ceballos, F., Kramer, B., & Robles, M. (2019). The feasibility of picture-based insurance (PBI): 

Smartphone pictures for affordable crop insurance. Development Engineering, 4, 100042. 

Conradt, S., Finger, R., & Spörri, M. (2015). Flexible weather index-based insurance design. Climate 

Risk Management, 10, 106-117. 

Clement, K. Y., Botzen, W. W., Brouwer, R., & Aerts, J. C. (2018). A global review of the impact of 

basis risk on the functioning of and demand for index insurance. International Journal of Disaster 

Risk Reduction, 28, 845-853. 

Dalhaus, T., Musshoff, O., & Finger, R. (2018). Phenology information contributes to reduce temporal 

basis risk in agricultural weather index insurance. Scientific reports, 8(1), 1-10. 

Devot, A., Royer, L., Arvis B., Deryng, D., Caron Giauffret, E., Giraud, L., Ayral, V., and Rouillard, 

J. 2023, Research for AGRI Committee – The impact of extreme climate events on agriculture 

production in the EU, European Parliament, Policy Department for Structural and Cohesion Policies, 

Brussels 

Diakakis, M. (2012). Rainfall thresholds for flood triggering. The case of Marathonas in Greece. 

Natural Hazards, 60, 789-800. 



8 
 

EEA (2022). Economic Losses and Fatalities from Weather-and Climate-Related Events in Europe. 

Available at: https://www.eea.europa.eu/publications/economic-losses-and-fatalities-from [last 

accessed: 25 July 2023] 

Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to 

drought. Science, 368(6488), 266-269. 

Heimfarth, L., & Musshoff, O. (2011). Weather index‐based insurances for farmers in the North China 

Plain: An analysis of risk reduction potential and basis risk. Agricultural Finance Review, 71(2), 218-

239. 

Lichtenberg, E., & Iglesias, E. (2022). Index insurance and basis risk: A reconsideration. Journal of 

Development Economics, 158, 102883. 

Iqbal, M. S., Singh, A. K., & Ansari, M. I. (2020). Effect of drought stress on crop production. New 

frontiers in stress management for durable agriculture, 35-47. 

Kaiser, M., Günnemann, S., & Disse, M. (2020). Providing guidance on efficient flash flood 

documentation: an application based approach. Journal of Hydrology, 581, 124466. 

Leblois, A., Le Cotty, T., & d'Hôtel, E. M. (2020). How might climate change influence farmers' 

demand for index-based insurance?. Ecological economics, 176, 106716. 

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its 

mitigation strategies: A review. Sustainability, 13(3), 1318. 

Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., Olesen, J.E., 

293 Bindi, M., Ferrise, R., Moriondo, M., Rodrìguez, A., Ruiz-Ramos, M., Takàc, J., Bezàk, P., 

Ventrella, 294 D., Ruget, F., Capellades, G., and Kahiluoto, H. (2018). Sensitivity of European wheat 

to extreme 295 weather. Field Crops Research, 222, 209-217. 

Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms 

and modelling. European Journal of Agronomy, 64, 98-113. 

Schmidt, L., Odening, M., Schlanstein, J., & Ritter, M. (2022). Exploring the weather-yield nexus 

with artificial neural networks. Agricultural Systems, 196, 103345. 

Shirsath, P., Vyas, S., Aggarwal, P., & Rao, K. N. (2019). Designing weather index insurance of crops 

for the increased satisfaction of farmers, industry and the government. Climate Risk Management, 

25, 100189. 

Tadesse, M. A., Shiferaw, B. A., & Erenstein, O. (2015). Weather index insurance for managing 

drought risk in smallholder agriculture: lessons and policy implications for sub-Saharan Africa. 

Agricultural and Food Economics, 3, 1-21. 

https://www.eea.europa.eu/publications/economic-losses-and-fatalities-from


9 
 

Tappi, M., Carucci, F., Gagliardi, A., Gatta, G., Giuliani, M. M., & Santeramo, F. G. (2023). Crop 

varieties, phenological phases and the yield-weather relationship: evidence from the Italian durum 

wheat production. Bio-based and Applied Economics. 

Vroege, W., & Finger, R. (2020). Insuring weather risks in European agriculture. EuroChoices, 19(2), 

54-62. 

Walsh, J. E., Ballinger, T. J., Euskirchen, E. S., Hanna, E., Mård, J., Overland, J. E., Tangen, H., & 

Vihma, T. (2020). Extreme weather and climate events in northern areas: A review. Earth-Science 

Reviews, 209, 103324. 

Zampieri, M., Ceglar, A., Manfron, G., Toreti, A., Duveiller, G., Romani, M., Rocca, C., Scoccimarro, 

E., Podrascanin, Z., & Djurdjevic, V. (2019). Adaptation and sustainability of water management for 

rice agriculture in temperate regions: The Italian case‐study. Land Degradation & Development, 

30(17), 2033-2047. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Chapter 2 

 

On the relationships among durum wheat yields and weather 

conditions: evidence from Apulia region, Southern Italy 

 

Marco Tappia, Gianluca Nardoneab, Fabio Gaetano Santeramoa 

aDepartment of Agriculture, Food, Natural resources and Engineering (DAFNE), University of Foggia, Foggia, Italy  

bDepartment of Agriculture, Rural Development and Environment, Apulia Region, Italy  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific publication on Bio-Based and Applied Economics (2022). 

Available at: https://doi.org/10.36253/bae-12160  

 

https://doi.org/10.36253/bae-12160


11 
 

On the relationships among durum wheat yields and weather 

conditions: evidence from Apulia region, Southern Italy 

 

Abstract 

 

The weather index-based insurances may help farmers to cope with climate risks overcoming the 

most common issues of traditional insurances. However, the weather index-based insurances present 

the limit of the basis risk: a significant yield loss may occur although the weather index does not 

trigger the indemnification, or a compensation may be granted even if there has not been a yield loss. 

Our investigation, conducted on Apulia region (Southern Italy), aimed at deepening the knowledge 

on the linkages between durum wheat yields and weather events, i.e., the working principles of 

weather index-based insurances, occurring in susceptible phenological phases. We found several 

connections among weather and yields and highlight the need to collect more refined data to catch 

further relationships. We conclude opening a reflection on how the stakeholders may make use of 

publicly available data to design effective weather crop insurances. 

 

Keywords: climate change, farming system, phenological phase, risk, weather insurance. 

 

1. Introduction 

 

Farming activities are exposed and vulnerable to several risks, among which the weather risks are 

increasingly frequent and impactful due to cli mate change (Conradt et al., 2015). Among the several 

strategies available to reduce the weather impacts on farming systems, e.g., pest control, financial 

saving, agricultural and structural diversification (Vroege and Finger, 2020), the crop insurance 

programs can play an important role (Di Falco et al., 2014). In recent years, the attention for the 

weather index-based insurances (WIBIs) has been growing mainly because these tools may help to 

overcome some of the challenges associated with traditional indemnity-based insurances, e.g., 

asymmetric information, high transaction costs, moral hazard, and adverse selection (Norton et al., 

2013; Dalhaus and Finger, 2016; Belissa et al., 2019; Ceballos et al., 2019). Differently from the 

traditional insuranc es, which provide pay-outs depending on actual yield losses, WIBIs indemnify 

the farmers when an index, computed on rainfall or temperature and highly correlated with farms 

performance (e.g., yields), is triggered (Conradt et al., 2015; Dalhaus and Finger, 2016). Therefore, 

farmers will be indemnified when the index exceeds a pre-determined threshold (Belissa et al., 2019). 

Moreover, WIBIs can be manipulated neither by the insurers or the insured because they are collected 
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from historical and current dataset provided by recognized bodies (Belissa et al., 2020; Vroege et al., 

2021). However, WIBIs present a limit, namely basis risk: a significant yield loss may occur even if 

the weather index does not trigger the payment (Conradt et al., 2015; Dalhaus et al., 2018) or a 

compensation may be granted even if there has not been a yield loss (Heimfarth and Musshoff, 2011). 

The contribution of our study is at least twofold: first, we provide empirical evidence on how yields 

and weather conditions are correlated, more specifically, we deepen the knowledge on the linkages 

between durum wheat yields and weather events occurring in susceptible phenological stages; second, 

we start a reflection on how stakeholders may make use of publicly available data to design an 

effective crop insurance scheme. We focused on the Apulia region (Southern Italy) which is the main 

national producer of durum wheat: almost a thousand of tons of production, i.e., accounting for 25% 

of the Italian durum wheat production, and about 344 thousand cultivated hectares, i.e., accounting 

for 28% of the Italian area utilized to grow durum wheat (ISMEA, 2020). 

 

2. The Italian crop insurance system 

 

The Italy boasts a long tradition of public subsidies for agricultural risk management. The “Fondo di 

Solidarietà Nazionale” (FSN) was instituted in 1974 to finance both insurance policies and ex-post 

payments (Enjolras et al., 2012). Moreover, the EU Common Agricultural Policy allocated funds for 

agricultural insurances (art. 37 of EU Reg. 1305/2013) to cope economic losses due to adverse 

weather conditions, plant diseases, epizooties, and parasitic infestations (Santeramo et al., 2016; 

Rogna et al., 2021). Despite the public interventions, the participation level to insurance programs 

remains low (i.e., around 15 percent) mainly due to high costs of bureaucracy (i.e., complexity of 

procedures), delays in payments, lack of experience with crop insurance contracts or lack of high-

quality information on existing insurance tools (Santeramo, 2019). The role of Defense Consortia, 

introduced both to facilitate the match of insurers and farmers in the subsidized crop insurance market 

and to reduce the asymmetric information, is not negligible. It emerges a North-South territorial 

dualism that affects farmers participation: Defence Consortia are more effective in Northern Italy 

than in the Southern Italy and, also, the strong presence of producer organizations and cooperatives 

aggregates the crop insurance’s demand in the Northern Italy (Santeramo et al., 2016). Moreover, 

farmers who trust more in the intermediaries assisting them are inclined to adopt insurance tools to 

cope the risk of production loss, while risk averse farmers tend to implement other risk management 

strategies as crop or financial diversification (Trestini et al., 2018). In Italy, only the 9.9 percent of 

Utilised Agricultural Area is covered by insurance contracts and 20.9 percent of production value is 

insured (ISMEA, 2021). According to a survey conducted by ISMEA in 2018 on low participation to 
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the subsidized agricultural insurance systems, most Italian farmers renounce to subscribe insurance 

contracts due to economic reasons, highlighting the high costs of policies. The share of farmers who 

believe that their farms are not exposed to specific risks or who have had negative experiences when 

receiving compensation, losing trust on insurance market systems, is also not negligible. Indeed, 

Giampietri et al., 2020 found that the trust affects the decision-making process: under uncertainty, 

the trust may substitute the knowledge also overcoming the lack of experience, therefore, strong 

communication campaigns to improve farmers’ participation are recommended. Moreover, focusing 

on the WIBIs, also subsidized by the Measure 17 of National Rural Development Program 2014-

2020, a lack of knowledge emerged among big insured farmers, i.e., WIBIs were unknown to 93 

percent of them (ISMEA, 2020). Furthermore, some farmers believe that index-based insurances are 

inadequate to manage the weather risks due to the distrust of the objectivity of the indexes and 

parameters used, also showing an aversion to any future subscriptions. Clearly, it is necessary to 

improve the appeal and communication of these innovative risk management tools, also considering 

that any intervention aimed at promoting farmer participation should improve the competition among 

insurance providers, also reducing at the same time the asymmetric information and opportunistic 

behaviour (Menapace et al., 2016; Rogna et al., 2021; Santeramo and Russo, 2021). In this complex 

scenario, we estimate the yield response equation to investigate the responsiveness of yield to climate, 

deepening the working principles of weather index-based insurance, through a case study on durum 

wheat crop in the Apulia region, also animating the debate on the use of publicly available data to the 

development of an effective and attractive tool to manage climatic risk in agriculture. 

 

3. Data and research methodology 

 

An agronomic review on durum wheat allowed us to identify sensitive phenological stages of durum 

wheat in Apulia region and those critical weather events occur ring in certain phenological stages that 

may cause significant production losses (Table 1). Cold sensitivity is higher during the germination 

phase that occurs 10-15 days after sowing in which temperatures of few degrees centigrade below 

zero may cause considerable damages (Baldoni and Giardini, 2000, Angelini, 2007; Disciplinare di 

Produzione Inte grata della Regione Puglia, 2021). Likewise, temperatures of few degrees centigrade 

below zero during the stem elongation phase may cause stems death and serious damages to the tissue 

of the internodes (Baldoni and Giardini, 2000; Angelini, 2007; Disciplinare di Produzione Integrata 

della Regione Puglia, 2021). Flowering stage occurs in late May and lasts about 10 days in which 

wheat crop is highly sensitive to cold stress that may cause death of flowers (Angelini, 2007; Baldoni 

and Giardini, 2000; Disciplinare di Produzione Integra ta della Regione Puglia, 2021). Heat and 
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drought stress during susceptible flowering and grain filling stages (i.e., after flowering, until the first 

decade of July) may cause considerable reductions in wheat yield and quality, lead ing the 

acceleration of leaf senescence process, reducing photosynthesis, causing oxidative damage, pollen 

sterility, also reducing physiological and metabolic imbalances, photosynthesis, grain numbers and 

weight (Angelini, 2007; Asseng et al., 2011; Li et al., 2013; Farooq et al., 2014; Rezaei et al., 2015; 

Zampieri et al., 2017; Makinen et al., 2018). Heavy rainfall during the entire crop cycle may cause 

significant production losses due to the proliferation of pathogens, nutrient leaching, soil erosion, 

inhibition of oxygen uptake by roots (i.e., hypoxia or anoxia), waterlogging and lodging (Zampieri et 

al., 2017; Makinen et al., 2018). Furthermore, we collected yearly total production (tons) and area 

harvested (hectares) data for durum wheat crop from the National Institute of Statistics (ISTAT), from 

2006 to 2019, for each province of Apulia region, also calculating the respective yields (tons/ hectare). 

Then, for the same time-period, we collected 10-days frequency weather data from six synoptic 

weather stations of the Institute for Environmental Protection and Research (ISPRA), one for each 

province of Apulia region: Bari (BA), Barletta-Andria-Trani (BT), Brindisi (BR), Foggia (FG), Lecce 

(LE), Taranto (TA). Weather data include 10-days average minimum temperature (°C), i.e., the 

average of daily minimum temperatures, 10 days average maximum temperature (°C), i.e., the 

average of daily maximum temperatures, and 10-days cumulative precipitation (mm), i.e., the average 

of daily precipitation. Details on collected variables are shown in Table 2. Our empirical approach is 

based on a panel data model that includes fixed effect (i.e., it is a major advantage of the panel rather 

than cross-sectional regression) both to control for unobservable variables such as seed varieties or 

soil quality that may vary across the space, i.e., provinces, and to catch the variation across the time 

within the Apulian provinces (Tack et al., 2015; Blanc and Schlenker, 2017; Kolstad and Moore, 

2020). 

 

Table 1. Phenological stages, weather events and critical limits of durum wheat in Apulia region. 

Phenological 

stage 

Weather 

event 
Time interval Critical limit Reference 

Sowing Cold 
From the first decade of November to 

the first decade of December 

Temperature  

< 0 °C 

Baldoni and Giardini, 

2000; Angelini, 2007; 

Disciplinare di produzione 

integrata della Regione 

Puglia, 2021 

Germination Cold 
From the second decade of November to 

the second decade of December 

Temperature  

< 0 °C 

Stem 

elongation 
Cold 

From the second decade of March to the 

third decade of April 

Temperature  

< 0 °C 

Baldoni and Giardini, 

2000; Angelini, 2007 
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Flowering 

Cold 
From the second decade of May to the 

first decade of June 

Temperature  

< 0 °C 

Angelini, 2007; 

Disciplinare di produzione 

integrata della Regione 

Puglia, 2021 

Heat, 

drought 

Temperature 

> 30-31 °C 

Angelini, 2007; Rezaei et 

al., 2015 

Grain filling 
Heat, 

drought 

From the second decade of June to the 

first decade of July 

Temperature 

> 34 °C 

Angelini, 2007; Asseng et 

al., 2011; Rezaei et al., 

2015; Zampieri et al., 

2017; Makinen et al., 2018 

All phases 
Excessive 

rainfall  

From first decade of November to the 

first decade of July 

Rainfall 

> 40 mm/day 
Makinen et al., 2018 

 

Table 2. Details on collected variables. 

Variable (unit) Frequency Time-period Province 
Weather station - province 

 (no. of obs, SR in km2) 
Source 

durum wheat yield 

(tons/hectares) 
Yearly  

2006-2019 

Bari (BA) 

Barletta-Andria-

Trani (BAT) 

Brindisi (BR) 

Foggia (FG) 

Lecce (LE) 

Taranto (TA)  

- ISTAT 

average minimum 

temperature (°C) 

 

average maximum 

temperature (°C) 

 

cumulative 

precipitation (mm) 

10-days 

Bari - BA 

(501, 5.138)  

Trani - BT  

(144, 1.543)  

Brindisi - BR 

(471, 1.839)  

Monte Sant’Angelo - FG 

(504, 7.008) 

Lecce - LE 

(471, 2.799) 

Marina di Ginosa – TA 

(471, 2.437) 

ISPRA, 

UCEA,

ARPA 

Note: missing data have been integrated including Research Unit for Climatology and Meteorology (UCEA) and Regional Agency for 

the Protection of the Environment (ARPA) datasets. Table includes no. of observations and spatial resolution (SR) of weather stations. 

 

The relationship between durum wheat yields and weather events is synthesized as follows: 

 

𝑦𝑖𝑡 = 𝑓(𝑤𝑖𝑡) + 𝜇𝑖 +  𝜃𝑡 + 𝜖𝑖𝑡  
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where 𝑦𝑖𝑡is the yield over the space (𝑖) and time (𝑡) as function (𝑓) of weather (𝑤𝑖𝑡), also including 

fixed effects over space (𝜇𝑖 ) and time (𝜃𝑡 ), error term and “controls” refers to other relevant 

exogenous variables (𝜖𝑖𝑡) (Kolstad and Moore, 2020). More specifically, we conducted temporal and 

spatial autocorrelation identifying those con tiguous provinces having a larger shared borders for a 

twofold check: (i) verify if the weather events occurring in a province may affect durum wheat yields 

in the con tiguous province; (ii) control if the yields may be affected by weather events occurring at 

time t-1. Undoubtedly, both environmental and agronomic factors may justify the extreme variability 

of the durum wheat yield across the Apulian provinces: Foggia shows the highest average durum 

wheat yields while Lecce shows the lowest average yields, although it is characterized by lower yield 

variability than other provinces as Brindisi that, on the contrary, is more affected by environmental 

and agronomic factors, reason why it may benefit of crop insur ance programs more than other 

provinces to cope yields fluctuations (Table 3). 

 

Table 3. Durum wheat yields (tons/hectare) among Apulian provinces 
 

Average Minimum Maximum Standard deviation 

Bari 0.234 0.170 0.306 0.045 

BAT 0.224 0.200 0.260 0.020 

Brindisi 0.285 0.180 0.420 0.071 

Foggia 0.314 0.200 0.420 0.047 

Lecce 0.189 0.160 0.220 0.018 

Taranto 0.244 0.100 0.350 0.057 

Note: data include yearly durum wheat yield from 2006 to 2020. Source: ISTAT, 2020. 

 

4. Results  

 

Our results clearly show that a relationship links weather conditions and production yields in the 

Apulia region. More specifically, precipitation seem to have a negative effect on durum wheat yields 

(Table 4).  
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Table 4. Effects of weather variables on durum wheat yield 

VARIABLES 

Panel  

prov FE  

time trend 

Panel  

temporal correlation  

prov FE  

time trend 

Panel  

spatial correlation 

prov FE  

time trend 

Panel  

temporal correlation 

spatial correlation 

prov FE  

time trend 

     

Temperature (min) -0.00764 -0.00124 -0.46909*** -0.45553** 

 (0.10641) (0.11715) (0.17058) (0.18731) 

Temperature (min) sq. 0.00049 -0.00023 0.00892* 0.01384** 

 (0.00296) (0.00320) (0.00490) (0.00544) 

Temperature (max) 0.22572 0.28286* 0.61165** 0.66801** 

 (0.14125) (0.15378) (0.25587) (0.27703) 

Temperature (max) sq. -0.00523* -0.00612** -0.01530*** -0.02022*** 

 (0.00278) (0.00299) (0.00515) (0.00568) 

Precipitation -0.01646** -0.01625* -0.03939** -0.04670** 

 (0.00799) (0.00844) (0.01819) (0.01954) 

Precipitation sq. 0.00008 0.00007 0.00019 0.00024 

 (0.00006) (0.00006) (0.00017) (0.00018) 

Yield (lag) - 0.10464*** - -0.09290*** 

  (0.02153)  (0.03579) 

Temperature (min) 

contig. 
- - 0.23065*** 0.18642*** 

   (0.06565) (0.07019) 

Temperature (max) 

contig. 
- - 0.00822 0.04557 

   (0.10765) (0.11545) 

Precipitation contig. - - 0.00537 0.00771 

   (0.00704) (0.00837) 

Observations 1,837 1,638 914 833 

Number of id 6 6 4 4 

Note: panel regression model was processed in STATA software. It includes provincial fixed effect, time trend, temporal (i.e., yield lag) 

and spatial (contiguous variables) autocorrelation. Standard errors in parentheses: 

*** Significant at the 1 percent level 

** Significant at the 5 percent level 

* Significant at the 10 percent level 

 

However, controlling by spatial and temporal autocorrelation, the effects of temperatures have been 

caught. Minimum temperatures negatively affect durum wheat yields, while maximum temperatures 

positive ly affect the yields, both in a non-linear way. Indeed, we included the squares of weather 



18 
 

variables to catch the nonlinearity, in other terms, the trade-off between weather and yields (Blanc 

and Schlenker, 2017). Our results clearly highlight that the weather affects the yields in a nonlinear 

way, therefore, variables have a statistically significant inverted-U shape relationship (Schlenker and 

Roberts, 2009; Lobell et al., 2011). Last but not least, minimum temperatures may affect the 

contiguous provinces. According to the scientific literature, any excess (or deficit) of temperature and 

precipitation (or their combinations) may cause severe yield losses on durum wheat (Baldoni and 

Giardini, 2000; Angelini, 2007; Asseng et al., 2011; Li et al., 2013; Farooq et al., 2014; Rezaei et al., 

2015; Zampieri et al., 2017; Makinen et al., 2018). Furthermore, we estimated the model for each 

phenological phase of durum wheat to capture the potential heterogeneity in the effect of weather 

variables, also controlling by spatial and temporal autocorrelation. Our results show that the 

relationship between weather variables and yields is valid only for some weather variables in certain 

phenological phases. More specifically, the maximum temperatures and precipitation positively affect 

durum wheat yield in a nonlinear way when occur in the germination and grain filling stages, 

respectively (Table 5).  

 

Table 5. Effects of weather variables on yield by phase 

VARIABLES sowing germination stem elongation flowering grain filling 

      

Yield (lag) -0.11883 0.05952 0.17798* -0.04474 0.09403 

 (0.20660) (0.20523) (0.09219) (0.18593) (0.14041) 

Temperature (min) 0.95845 -0.00051 0.50020 -1.32087 -0.65587 

 (2.53724) (1.74362) (1.26379) (4.06620) (3.83238) 

Temperature (min) sq. -0.01783 0.01530 -0.01201 0.03550 0.02171 

 (0.11363) (0.08655) (0.05223) (0.10882) (0.08353) 

Temperature (max) 3.15220 23.00804** -2.73726 7.62398 -1.65011 

 (12.35641) (10.88917) (2.21349) (8.51643) (6.74553) 

Temperature (max) sq. -0.15964 -0.76330** 0.06023 -0.15868 0.01396 

 (0.35336) (0.33477) (0.05582) (0.15987) (0.11320) 

Precipitation 0.04601 -0.07450 -0.03735 -0.43463 0.42332* 

 (0.12015) (0.11228) (0.07473) (0.42173) (0.24351) 

Precipitation sq. -0.00034 0.00054 0.00049 0.01188 -0.00826* 

 (0.00088) (0.00084) (0.00101) (0.01680) (0.00463) 

Temperature (min) contig. 1.05294** 0.86957** 0.62187*** 0.52210 0.55304** 

 (0.41397) (0.35021) (0.17188) (0.35845) (0.23765) 

Temperature (max) 

contig. 
0.38942 0.17524 -0.06474 0.22627 0.00512 

 (1.25128) (1.33537) (0.34861) (0.52741) (0.37530) 
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Precipitation contig. -0.05370 0.01278 -0.01394 -0.10017 -0.05635 

 (0.05168) (0.04199) (0.03275) (0.11446) (0.04998) 

Observations 42 44 125 43 67 

Number of id 4 4 4 4 4 

Note: panel regression model was processed in STATA software. It includes provincial fixed effect, time trend, temporal (i.e., yield lag) 

and spatial (contiguous variables) autocorrelation. Standard errors in parentheses: 

*** Significant at the 1 percent level 

** Significant at the 5 percent level 

* Significant at the 10 percent level 

 

Moreover, minimum temperatures may affect the contiguous provinces. Clearly, ten-days data we 

have collected does not highlight the dynamics between weather events occurring in certain 

phenological stages and durum wheat yields mainly because the impacts of daily weather are not 

captured. Moreover, most variables are not statistically significant: this limit opens a reflection on 

data disaggregation level and on the need to collect more spatially and temporally refined data, also 

laying the foundations for the development of an effective index that reflects the responsiveness of 

the yields to climatic conditions to be implemented in the WIBIs. The evidence resulting from our 

econometric model on phenological stages is also in contrast with the literature: germination stage is 

highly sensitive to cold stress (Baldoni and Giardini, 2000, Angelini, 2007; Disciplinare di 

Produzione Integrata della Regione Puglia, 2021), while there are not evidences on heat stress during 

this stage. However, our study may help the debate suggesting precise directions for the future 

research. 

 

5. Conclusions 

 

Participating in index-based crop insurance schemes is a key challenge to improve the resilience of 

farming systems and adopting effective subsidies to enhance participation in the schemes is a pressing 

goal for policymakers. In this complex scenario, we investigated how temperatures and precipitation 

are correlated with yields data to reflect on potential designs for the index-based insurance schemes. 

While not novel (e.g., Chen et al., 2014), we found that weather changes affect durum wheat yields 

in a nonlinear way and some weather events occurring in certain phenological phases may have an 

impact on the yields. Our results are important to show that even with aggregated data the evidence 

is striking. However, focusing on phenological stages, our findings are in contrast with the literature 

highlighting the complexity of the phenomenon and the need to rely on more temporally and spatially 

disaggregated data. Although we provided clear evidence on the weather yield relationship, it is 

impossible to design a WIBI using 10-days weather data. Therefore, our contribution may help the 
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debate suggesting precise directions for the future research: first, a major effort should be devoted to 

the collection of weekly or daily weather observations, also identifying empirical damage thresholds 

that can be verified at farm-level, as well as the collection of production area or municipal data; a 

promising approach could be the Growing Degree Days tool so as to calibrate the more precisely the 

growing stages in a view to a better explanation of weather risks on crop performances (Conradt et 

al., 2015; Dalhaus et al., 2018; Lollato et al., 2020); last but not least, the design of the index based 

insurance schemes needs of further investigation because establishing a triggering index is a major 

challenge for the stakeholders involved in the implementation of the insurance schemes. The debate 

on crop insurance schemes is still vivid, and it will be so also in the next decade due to the central 

role that the risk management (old and novel) tools will have in the new CAP (Meuwissen et al., 

2018; Severini et al., 2019; Cordier and Santeramo, 2020). 
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Temporal and design approaches and yield-weather relationship 

 

Abstract 

 

The climate changes and the weather events affect agricultural production and farmers’ income. 

Several strategies may help improving the resilience of farms to climate change, and particular 

mention should be done to the weather index-based crop insurance schemes, as they rely on the yield-

weather relationship. A vast majority of studies investigate the limitation of the weather index 

insurance, due to the complex relationships linking weather events and yields and the difficulty to 

capture them with an index (i.e., the basis risk). The literature has not devoted sufficient attention to 

compare different specifications within the same statistical model in yield-weather estimation. Our 

study, conducted on durum wheat in Italy, shows how the identification (and design) of the 

phenological stages (i.e., temporal specifications) may help capturing or depicting the yield-weather 

relationships. The negative effects of the low temperatures, especially during the early stages of 

durum wheat, is remarkable. Our findings contribute to the debate on the design of triggers in weather 

indexes (e.g., for minimum temperatures), stimulating new research directions to assist stakeholders 

interested in planning agricultural risk management interventions. 

 

Keywords: basis risk, crop, climate, phenological stage, insurance, risk management 

 

1. Introduction  

 

Climate and extreme weather events such as drought, heat, and excess rainfall heavily affect 

agricultural production hampering the smallholder farmers on productivity-enhancing or technologies 

investments (Ceballos et al., 2019; Anghileri et al., 2022). Farmers may improve their resilience to 

climate change by implementing several agroecological practices, e.g., crop diversification, 

maintaining local genetic diversity, soil organic management and water conservation (Altieri et al., 

2015). Vroege and Finger (2020) provided an overview of risk management strategies to cope with 

climate risks, namely: on-farm strategies (e.g., risk prevention as irrigation, shading, pest control, 

financial savings, agricultural and structural diversification) and risk-sharing strategies (e.g., mutual 

funds, agricultural insurance, membership in cooperatives and producer organizations). Among these, 

crop insurance schemes may represent a suitable tool to mitigate unexpected losses and to stabilize 

farmers’ incomes (Shirsath et al., 2019; Vroege and Finger, 2020). In the past years, the focus on the 

weather index-based insurances (WIBIs) to manage climate and extreme weather-induced damage to 
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crop has increased (Barnett and Mahul, 2007; Anghileri et al., 2022). In contrast to traditional 

insurance products which provide pay-outs based on yield losses experienced by farmers and on 

physical damage observations, WIBIs are based on an independent, objective, transparent, and 

manipulation free weather index that is heavily related to crop yields, rainfall or temperatures, 

recorded by specific weather stations (or other data sources)) during a certain time window. Indemnity 

is triggered whenever the value of the index exceeds or falls short of a predetermined threshold, e.g., 

deficit or excess rainfall, drought or extreme temperatures that may have a significative impact on 

crop yields (Barnett and Mahul, 2007; Conradt et al., 2015a, 2015b; Dalhaus and Finger, 2016; 

Dalhaus et al., 2018; Shirsath et al., 2019; Bucheli et al., 2021; Tappi et al., 2022). WIBIs may play a 

crucial role in overcoming some of the issues related to the traditional indemnity-based insurances, 

such as adverse selection1, asymmetric information2, and moral hazard3 (Conradt et al., 2015a, 2015b; 

Belissa et al., 2019, Bucheli et al., 2022). However, they present a major limit, namely basis risk: 

farmers may experience severe yield losses without any reimbursement (Conradt et al., 2015a, 2015b) 

or, on the contrary, they may obtain a compensation without any yield loss (Heimfarth and Musshoff, 

2011) mainly due to the discrepancy between the pay-outs triggered by the weather index and actual 

losses. More specifically, basis risk can be decomposed in three parts: (i) spatial (or geographical) 

basis risk, due to the distance of weather stations from farms; (ii) design basis risk, due to the 

inadequate choice of index to predict the yield losses; (iii) temporal basis risk due to the inaccurate 

choice of the time-period for index determination. Some authors proposed solutions to reduce basis 

risk. Focusing on spatial basis risk, Norton et al. (2013) suggested to ensure multiple weather stations 

in a single contract as “risk portfolio”, while Boyd et al. (2019) and Leppert et al. (2021) showed the 

advantages of using an interpolation approach that includes multiple weather stations into the 

estimate, rather than relying only on the closest available station to farms. Focusing on design basis 

risk, Abdi et al. (2022), conducted a systematic review of the last 20 years on weather index insurance 

design finding that rainfall and temperature indices were prevalent compared them to those based on 

droughts and floods, vegetation, soil moisture, humidity, and sunshine hours. Regarding the temporal 

basis risk, Dalhaus et al. (2018), highlighted the importance to consider the phenological observations 

provided by public bodies to catch the vulnerability of specific crop stages to weather events. Conradt 

et al. (2015a, 2015b), proposed a more accurately flexible approach to identify crop growing stages 

rather than fixed calendar dates. Afshar et al. (2021) improved the performance of index insurance 

integrating biophysical process-based crop model, phenological monitoring through satellite remote 

 
1 Adverse selection occurs when risk exposed farms tend to subscribe insurances more often (Vroege et al., 2021). 
2 Asymmetric information occurs when farmers and insurers do not have the same information (Santeramo, 2018). 
3 Moral hazard occurs when farms purchasing insurance products are inclined to adopt riskier behaviours (Santeramo and Ford Ramsey, 

2017). 
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sensing, and machine learning techniques). Other studies included simple indexes (e.g., rainfall or 

temperatures) by summing up the weather information within the crop stages in a specific territory 

(Turvey, 2001; Kellner and Musshoff, 2011). Black et al. (2015), investigated the role of temporal 

aggregation satellite-based weather data as crop yields are linked more closely to cumulative weather 

events than to instantaneous, e.g., soil moisture is affected by the accumulation of rainfall over weeks 

or months. Moreover, several authors synthetized different approaches in yield-weather 

relationships4: Auffhammer et al. (2020), identified five pitfalls that may lead to measurement errors 

in the econometric analyses of climate change, also deepening the issues on the disaggregation level 

of weather data (across space and time) and on climate models as global climate models that provide 

long-run predictions of climate; Carter et al. (2018), compared the most used methods (i.e., cross-

sectional and panel regression analysis) to assess the climate impacts on agricultural outcomes; 

Webber et al. (2020), used a novel combination of dynamic, process-based crop model and data-

driven machine learning approach to investigate the relationship between yield and weather, also 

considering the crop phenology based on a database. Conradt et al. (2015a, 2015b), showed the 

advantages of quantile regression to design an effective insurance contract. However, the literature 

still neglects the role of the temporal and design specifications within the same econometric model 

that may lead to different results in yield-weather assessment, i.e., the working principle of index-

based insurances. Our study aims to assess how different approaches for the phenological stages 

identifications (i.e., temporal specifications) and how different weather variables and combination of 

thereof (i.e., design specifications) within the econometric model may catch further relationships 

between yields and weather conditions otherwise not caught. We focused on durum wheat in Italy, 

the first world producer of pasta from durum and territory highly suited to produce of wheat (De Vita 

et al., 2007). Crop phenology is very important to evaluate the impacts of extreme weather events, 

e.g., drought and heat during flowering and grain filling stages may lead to heavily yield losses 

(Farooq et al., 2014; Zampieri et al., 2017). Therefore, we identified five phenological stages of 

durum wheat (i.e., starting, development, flowering, maturity, end) using two approaches, i.e., fixed 

time windows and Growing Degree Days (GDD), also including different sowing dates and varieties 

(i.e., early, middle, and late). This is because the timing of a crop’s susceptibility to weather events 

may differ across farms due to the differences in management practices leading to an inaccurate 

estimation of yield losses (Afshar et al., 2021). Furthermore, we included daily weather variables and 

combination of thereof in the econometric model to assess and compare their effects on yearly durum 

 
4 We gratefully acknowledge the comment raised by the reviewer. Although our paper shows similarities with cited studies on yield-

weather relationships which deepened the issues on estimation models (e.g., global climate models, cross-sectional and panel regression 

analysis, quantile regression, long differences, etc.) and on some aspects such as nonlinearities, displacement, uncertainty, adaptation, 

and cross-study comparison, we used the same statistical method (i.e., panel regression) to assess how different specifications that also 

consider different phenological stages may show different results on yield-weather assessment. 
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wheat yields: temperatures, precipitation, crop evapotranspiration, crop water deficit, and temperature 

range as difference of daily maximum and minimum temperature. In particular, crop 

evapotranspiration and crop water deficit, phenological phases-related and crop-specific variables, 

are very important components to evaluate possible drought stress conditions occurring during growth 

stages, which are the main limiting factors in durum wheat grain yield (Djaman et al., 2018; Zhang 

et al., 2021). Often, the policymakers encourage the participation in crop insurance schemes providing 

large subsidies recognising the gravity of climate changes impacts and investment in adaptation 

strategies (Collier et al., 2009; Santeramo et al., 2016; Santeramo, 2018, 2019). However, according 

to a survey conducted in 2018 by the Institute of Services for the Agricultural Food Market (ISMEA) 

on risk management perceptions of Italian big insured farms, it emerged a low propensity to 

underwrite weather index contracts exists due to the distrust of the objectivity of the indices and 

parameters used. The deepening of the dynamics yield-weather is a key concept in improving the 

underwriting of insurance contracts, therefore, our contribution is at least twofold: first, we emphasize 

on how differences in design and temporal specifications, i.e., comparing different combinations of 

weather variables (design specifications) occurring in susceptible phenological stages of durum wheat 

(temporal specifications) may influence the yields-weather relationships, also highlighting further 

relationships otherwise not caught; second, we animate the debate on how policymakers may make 

use of publicly available data to calibrate an effective weather index-based insurance. 

 

2. Data and method 

 

2.1 Empirical yield model 

 

Our regression model is based on a panel data as a suitable method to assess the impact of climate 

change on agriculture as includes fixed effects to control for unobservable heterogeneity (e.g., soil 

quality or management practices) across the space and time (Tack et al., 2015). This approach gives 

an estimate of the short-run response to weather variation (Kolstad and Moore, 2020). Mérel and 

Gammans (2021) highlighted that the panel approaches with fixed effects widely used in short-run 

weather impacts estimation may also capture long-run climatic response. Our econometric regression 

is shown below: 

𝑦𝑖𝑡 = 𝑓(𝑤𝑖𝑡) +  𝜃𝑖𝑡 +  𝜀𝑖𝑡  

 

where 𝑦𝑖𝑡 is the yield over the province (i) and year (t) as function (f) of daily weather variables (𝑤𝑖𝑡), 

𝜃𝑖𝑡 capture the fixed effects over the space (i) and time (t), and (𝜀𝑖𝑡) is the error term. Furthermore, 
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we designed our econometric model identifying three specifications that include different weather 

variables and combinations of thereof: (i) specification A (baseline), in which the durum wheat yield 

is function of temperatures, precipitation, and their squares; (ii) specification B, in which the durum 

wheat yield is function of temperatures, precipitation, and their squares, crop evapotranspiration, and 

crop water deficit; (iii) specification C, in which the durum wheat yield is function of precipitation 

and its square, crop evapotranspiration, crop water deficit, daily temperature range and its square. We 

included the squares of weather variables to capture the nonlinearity, i.e., the trade-off between 

weather and yields (Blanc and Schlenker, 2020). For each temporal and design specification, we 

adopted the same econometric regression, i.e., multiple panel regression. Generally, multiple 

regression is used to assess the relationship between several independent variables (e.g., weather 

variables) and a dependent variable (e.g., yield). This approach may lead to a more accurate and 

precise understanding of the connections between variables, more specifically, multiple panel 

regression may capture the influence of all the independent variables together as well as separately 

on dependent variable examined rather than simple panel regression (Nageswara Rao, 1983). 

Although gridded datasets provide highly disaggregated weather observations, discrepancy with what 

really occur on the farms may emerge, e. g., adding or removing weather stations, missing values, 

and the spatial correlation introduced by extrapolation algorithms may create potential biases in the 

econometric analysis (Auffhammer et al., 2020). 

 

 

2.2 Study area and collected data 

 

Durum wheat is the main cereal crop in Italy with a production of 4 million of tons cultivated in 1.2 

million of hectares. Production is concentrated in Southern and Central Italy, while Northern Italy 

produces slightly more than 10 percent of national production. Province of Foggia (Southern Italy) is 

the main durum wheat producer of Italy with 750,000 tons (Fig. 1).  
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Fig. 1: Durum wheat Italian production by province. Source: ISTAT, 2020. 

 

We collected yearly durum wheat yields data (i.e., total production over area harvested) of 30 main 

durum wheat-producing Italian provinces5 from the National Institute of Statistics (ISTAT), from 

2006 to 2020. Moreover, for the same time-period, we collected daily weather data from Joint 

Research Centre - Agri4Cast Meteorological database of European Commission that includes daily 

weather observations (i.e., temperatures, precipitation, wind speed, vapour pressure, potential 

evapotranspiration, global radiation) from stations interpolated on a 25 × 25 km grid. We aggregated 

the weather variables by average for the 30 main durum wheat-producing provinces selecting those 

most impactful on the yields (Guasconi et al., 2011): maximum air temperature (T max), minimum 

air temperature (T min), diurnal temperature range (DTR)6, and precipitation (Prec). Moreover, wind 

speed, vapour pressure and potential evapotranspiration variables have been included to calculate 

further variables that may affect the yields: crop evapotranspiration (ETc)7 and crop water deficit 

(CWD)8. Descriptive statistics of collected variables are shown in the Table 1: 

 

 

 

 

 

 
5 The main durum wheat-producing Italian provinces in decreasing order are: Foggia, Campobasso, Palermo, Ancona, Potenza, Matera, 

Enna, Macerata, Avellino, Catania, Ferrara, Caltanissetta, Perugia, Bari, Viterbo, Bologna, Ravenna, Brindisi, Siena, Agrigento. 

Benevento, Grosseto, Pisa, Chieti, Trapani, Teramo, Roma, Barletta-Andria-Trani, Rovigo, Pesaro-Urbino. 
6 Lobell (2007) showed that increasing in diurnal temperature range (i.e., the difference between maximum and minimum temperature) 

may negatively affect rice and maize yields. 
7 The Food and Agriculture Organization (FAO) defines the crop evapotranspiration as “the rate of evapotranspiration from an extensive 

surface of 8 to 15 cm tall, green grass cover of uniform height, actively growing, completely shading the ground and not short of water” 

(Xiang et al., 2020). 
8 Crop water deficit is defined as “consequence of water loss from the leaf as the stomata open to allow the uptake of carbon dioxide 

from the atmosphere for photosynthesis” (Turner, 1986). 
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Table 1. Descriptive statistics of collected variables. 

Variables Obs. Mean Std. Dev. Min Max 

Durum wheat yield (tons/ha) 162,909 35.990 12.603 17 81.424 

T min (°C) 164,370 11.285 6.410 -11.650 29.938 

T max (°C) 164,370 20.123 7.829 -5.336 43.675 

Prec (mm) 164,370 1.686 4.080 0 86.938 

𝐸𝑇𝑐 (mm) BGA 54,960 -3.128 2.222 -11.240 7.312 

𝐸𝑇𝑐 (mm) FAO 56 108,120 -2.349 2.186 -11.240 7.312 

𝐸𝑇𝑐 (mm) GDD 15 68,832 -1.376 1.013 -8.797 1.909 

𝐸𝑇𝑐 (mm) GDD 25 67,784 -1.447 1.086 -9.248 1.909 

𝐸𝑇𝑐 (mm) GDD EU 54,833 -1.305 1.011 -8.589 1.909 

CWD BGA 54,960 -0.930 9.441 -2046.190 360.241 

CWD FAO 56 108,120 -1.522 7.706 -2046.190 360.241 

CWD GDD 15 68,832 -1.920 5.686 -131.135 600.759 

CWD GDD 25 67,784 -1.882 9.349 -2046.190 309.273 

CWD GDD EU 54,833 -1.984 6.124 -285.070 600.759 

DTR (°C) 164,370 8.838 3.244 0.099 22 

Note: ETc and CWD variables are phenological stage specific. BGA identifies the stages provided by Baldoni and Giardini (2000), and 

Angelini (2007); FAO 56 identifies stages provided by FAO Paper no.56; GDD 15, GGD 25, GDD EU identify stages calculated 

through Growing Degree Days approach at different sowing dates, November 15, November 25, and sowing dates provided by 

Agri4Cast EU dataset, respectively. 

 

For our purpose, we used data provided by recognised authorities which are available both to public 

bodies and private citizens9. 

 

2.3 Impacts of weather conditions on durum wheat yields 

 

The durum wheat crop is more susceptible to specific weather events in certain phenological stages, 

more specifically, cold sensitivity is higher during the starting and development stages, in which 

temperatures of 0 ◦C may cause growth arrests and considerable damages, especially when the soil is 

moist (Baldoni and Giardini, 2000; Angelini, 2007). Tack et al., 2015, found that freezing temperature 

in the fall season is one of the biggest drivers of wheat yield losses until 9 percent. Although many 

cultivars have high levels of frost tolerance, cold stress (<0 °C) during the vegetative stage may lead 

to a reduction in the rate of photosynthesis or even leaf, root, and plant death, also threatening seedling 

 
9 We gratefully acknowledge the comment raised by the reviewer. The understanding of yield-weather relationships using spatially 

(i.e., NUTS 3) and temporally (i.e., daily, or yearly) refined data publicly available represents a limit. Although the analysis of yield-

weather relationships using weather stations at farm-level could be a suitable solution for further empirical estimates, the limits 

associated with the spatial distribution still remain (i.e., private weather station are not widely distributed). Moreover, farm-level data 

are not available to public bodies to plan further policies on agricultural risk management. 
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survival (Whaley et al., 2004; Barlow et al., 2015). Moreover, the flowering stage is susceptible to 

frost (Baldoni and Giardini, 2000). Heat and drought occurring in the flowering and grain-filling 

stages (i.e., maturity-end) may lead leaf senescence, pollen sterility, oxidative damages, reduction in 

photosynthesis, adversely affecting the yields (Farooq et al., 2014; Rezaei et al., 2015; Zampieri et 

al., 2017). High temperatures during Spring season (>34 °C) concomitant with flowering and grain 

filling stages may reduce yields until 7.6 percent (Tack et al., 2015). Moreover, higher temperatures 

increase the evapotranspiration demand, reduces the crop water use efficiency, causes water stress or 

its scarcity, and is highly related to yield losses (Saadi et al., 2015; Zampieri et al., 2017). Additionally, 

heavy rainfall may cause significant production losses due to the proliferation of pathogens, nutrient 

leaching, soil erosion, inhibition of oxygen uptake by roots (i.e., hypoxia or anoxia), waterlogging, 

and lodging (Zampieri et al., 2017). However, rainfall in the Spring may partially offset negative 

warming effects on yields (Tack et al., 2015).  

 

2.4. Phenological stages identification  

 

We identified five phenological stages of durum wheat: (i) starting, from sowing to leaf development; 

(ii) development, from leaf development to anthesis; (iii) flowering, from anthesis to seed fill; (iv) 

maturity, from seed fill to dough stage; (v) end, maturity complete. Each phase has been identified 

through two approaches: (a) fixed time windows provided by Baldoni and Giardini, 2000, and 

Angelini, 2007, which indicated the time-period of crop phenology; (b) GDD, i.e., the summatory of 

mean daily temperatures starting from sowing dates. This is computed by assigning a heat value to 

each day, giving an estimate of the amount of seasonal growth of plants, and is commonly used to 

predict events and schedule management activities (Miller et al., 2001). The formers are reported in 

the Table 2, while the latter in the Table 3:  

 

Table 2. Phenological stages of durum wheat identified by fixed time windows. 

Stage BGA (Macro-region) FAO 56 

Starting 

2nd - 3rd decade of October (Northern Italy) 

1st - 2nd decade of November (Center of Italy) 

2nd - 3rd decade of November (Southern Italy and Islands) 

November 15 – December 14 

Development 2nd - 3rd decade of March – by the end of April December 15 – May 03 

Flowering 2nd - 3rd decade of May May 04 – May 14 

Maturity  3rd decade of May – by the end of June May 15 – June 12 

End 3rd decade of June –1st decade of July June 13 – July 12 

Note: BGA identifies phenological stages provided by Baldoni and Giardini (2000), and Angelini (2007). Flowering stage has been 

identified in FAO 56 as the first 10 days of maturity stage (Angelini, 2007). 
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For GDD calculation, we considered the following sowing dates: November 15 (Allen et al., 1998), 

November 25 (10-days shift)10, and sowing dates of wheat provided by EU JRC Agri4Cast dataset 

for each province investigated, therefore, GDD 15/25/EU will identify the sowing dates for the 

calculation of GDD. Furthermore, we included three durum wheat varieties (i.e., early, middle, and 

late) based on GDD centigrade ranges to assess the responsiveness of varieties to change in weather 

in specific phenological stages (Table 3): 

 

Table 3.  Durum wheat varieties and phenological stages identified by GDD ranges. 

Stage  Growing Degree Days (°C) 

 Early varieties Middle varieties Late varieties 

Starting  0-169  0-189  0-208  

Development  169-807 189-854  208-901  

Flowering  807-1068  854-1121  901-1174  

Maturity  1068-1434  1121-1495  1174-1556  

End  1434-1538  1495-1602  1556-1665  

Note. GDD 15/25/Agri4Cast identifies the sowing dates for the calculation of Growing Degree Days: November 15 (GDD 15); 

November 25 (GDD 25); sowing dates provided by Agri4Cast dataset.  Source: Allen et al., 1998; Miller et al., 2021; Agri4Cast winter 

soft wheat phenological database for Europe. 

 

3. Results  

 

Our main results show irregularities in high temperatures and precipitation among different 

specifications: pooled seems to catch a nonlinear negative effect of maximum temperatures on yields, 

while panels, on the contrary, catches a nonlinear positive effect. Precipitation seems to have a 

nonlinear positive impact on yields both in pooled specification and in panels that include fixed 

effects by year, exclusively (Table 4).  

 

 

 

 

 

 

 

 

 
10 Nowadays, the wheat cultivation practices commonly in use postpone sowing date to response to climate change; in this way 

would be possible to increase the received precipitation by the crop during the early growth phase (Nouri et al., 2017). 
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Table 4. General regressions on yields-weather relationships. 

VARIABLES Pooled Panel Panel year 

FE 

Panel  

time trend 

Panel 

Year FE Prov 

FE 

Panel 

Prov FE 

Time trend 

       

T min -0.87797*** -0.08726*** -0.03715*** -0.07950*** -0.03692*** -0.07926*** 

 (0.02471) (0.01063) (0.01008) (0.01058) (0.01007) (0.01058) 

(T min)2 -0.00182* 0.00310*** 0.00103** 0.00215*** 0.00103** 0.00215*** 

 (0.00103) (0.00044) (0.00042) (0.00044) (0.00042) (0.00044) 

T max -0.47194*** 0.08261*** 0.04532*** 0.05839*** 0.04546*** 0.05854*** 

 (0.02922) (0.01248) (0.01185) (0.01244) (0.01184) (0.01243) 

(T max)2 0.02647*** -0.00159*** -0.00080*** -0.00077** -0.00081*** -0.00077** 

 (0.00070) (0.00030) (0.00029) (0.00030) (0.00029) (0.00030) 

Prec 0.44666*** -0.00143 0.01133* -0.00071 0.01120* -0.00085 

 (0.01479) (0.00636) (0.00603) (0.00633) (0.00603) (0.00633) 

(Prec)2 -0.00810*** 0.00004 -0.00041* -0.00004 -0.00041* -0.00004 

 (0.00053) (0.00023) (0.00021) (0.00022) (0.00021) (0.00022) 

year FE   Yes  Yes  

prov FE     Yes Yes 

year    Yes  Yes 

Obs. 162,909 162,909 162,909 162,909 162,909 162,909 

No. of prov  30 30 30 30 30 

Note: we also provided stand-alone estimations for each weather variables. Although some relationships are captured through the 

analyses of a single independent variable, multiple regression that includes multiple weather variables considers their combined effect 

on yields since it can capture the effects of temperatures (both minimum and maximum), otherwise not caught by single variable 

analyses, which represent the main challenge of grain producers under climate change scenarios (Barlow et al., 2015). 

 

Focusing on nonlinear effects of temperatures in the specification which control by fixed effects and 

time trend, it emerged that low temperature negatively affects durum wheat yield until 19 ◦C, while 

high temperatures positively affect yields until 39 ◦C11. In general, the results highlight a strong 

relationship between durum wheat yields and weather variables, more specifically, low temperatures 

negatively affect the yields, while high temperatures seem to have a positive effect, both in a nonlinear 

way. According to the literature, frost during the crop cycle of wheat may cause spikelets death and 

limited internode extension leading to yield losses (Whaley et al., 2004), while heat stress may affect 

both quality and grain yields up to 50% due to rapidly senesced of leaves (Asseng et al., 2011). 

Changing in design (i.e., including further agrometeorological variables such as ETc, CWD, and DTR 

to assess yields-weather relationships) and in temporal specifications (i.e., using different approaches 

 
11 The thresholds have been calculated by turning point method. 



35 
 

to identify the phenological stages also related to ETc) of our econometric model seems to have no 

effect on the negative relationship low temperatures-yields and on the positive relationship ETc-

yields. However, the positive effects of high temperatures and the negative effects of precipitation on 

yields are strongly related to the design of specifications as they can be captured only in FAO 56 (i.e., 

specification B) and in GDD EU (i.e., specifications B and C), respectively (Table 5).
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Table 5. Relationship among durum wheat yields and weather conditions using different temporal and design specifications. 

  BGA FAO 56 GDD 15 GDD 25 GDD EU 

 Baseline B C B C B C B C B C 

T min -

0.07926*** 
-0.05365** 

 -

0.07592*** 

 -

0.05392*** 

 -0.04081**  -

0.05372*** 

 

 (0.01058) (0.02432)  (0.01202)  (0.01595)  (0.01602)  (0.01804)  

(T min)2 0.00215*** 0.00133  0.00219***  0.00021  -0.00101  0.00052  

 (0.00044) (0.00101)  (0.00062)  (0.00116)  (0.00115)  (0.00137)  

T max 0.05854*** 0.02770  0.03399**  0.02017  -0.01226  -0.00448  

 (0.01243) (0.02962)  (0.01491)  (0.02326)  (0.02248)  (0.02609)  

(T max)2 -0.00077** 0.00013  0.00025  0.00111  0.00236***  0.00231**  

 (0.00030) (0.00069)  (0.00042)  (0.00082)  (0.00077)  (0.00093)  

DTR   0.01593  0.03735***  0.04951***  0.04290***  0.03904*** 

   (0.01376)  (0.00887)  (0.01127)  (0.01139)  (0.01315) 

DTR2   0.00044*  0.00012  0.00004  0.00042  0.00069 

   (0.00026)  (0.00021)  (0.00038)  (0.00037)  (0.00044) 

(Prec) -0.00085 -0.00612 -0.00780 -0.00502 -0.00936 -0.00411 -0.00557 -0.00983 -0.01178 -0.02373* -0.02580** 

 (0.00633) (0.01217) (0.01213) (0.00829) (0.00825) (0.01085) (0.01081) (0.01015) (0.01013) (0.01250) (0.01244) 

(Prec)2 -0.00004 -0.00039 -0.00034 -0.00020 -0.00010 -0.00008 -0.00007 0.00003 0.00006 0.00039 0.00041 

 (0.00022) (0.00044) (0.00044) (0.00031) (0.00031) (0.00035) (0.00035) (0.00038) (0.00038) (0.00040) (0.00039) 

ETc  0.05072*** 0.04162*** 0.07332*** 0.04434*** 0.12368*** 0.11906*** 0.12728*** 0.12684*** 0.16193*** 0.14932*** 

  (0.01396) (0.01304) (0.01312) (0.01165) (0.02567) (0.02528) (0.02500) (0.02434) (0.03137) (0.03073) 

CWD  -0.00282 -0.00284 -0.00113 -0.00166 0.00020 -0.00062 -0.00106 -0.00152 0.00168 0.00058 

  (0.00248) (0.00247) (0.00238) (0.00237) (0.00573) (0.00570) (0.00248) (0.00248) (0.00616) (0.00613) 

Obs. 162,909 54,472 54,472 107,159 107,159 68,299 68,299 67,271 67,271 54,300 54,300 

Notes: temperatures are not shown in the specification C due to the collinearity with daily range temperature variable which seems to have a positive effect on yields. We also provided an assessment 

of quality of estimation through R2 measurement. The inclusion of variables is slightly increasing the R2, in other terms, the R2 of the restricted specifications never exceed the R2 of unrestricted.
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In terms of phenological stages (Tables 9-13 in Appendix), our results show high susceptibility for 

any change in design and temporal specifications. Interesting evidence emerged, e.g., in starting stage 

(Table 9 in Appendix), minimum and maximum temperatures seem to have negative and positive 

nonlinear effects on yields, respectively, both in FAO 56 and in GDD 15 which share the same sowing 

date (i.e., November 15). According to Baldoni and Giardini (2000), low temperatures during the first 

stages, especially in conditions of high humidity, may cause major damages. The implication is that 

the choice of sowing date is relevant because it can capture temperature relationships regardless of 

the approach used to identify starting stage. To confirm this, shifting the sowing dates by 10 days 

using the same approach (i.e., GDD 15 and GDD 25), different evidence emerged, i.e., the effect of 

low temperatures is captured only in GDD 15. High temperatures seem to have no effect in 

development stage (Table 10 in Appendix), and irregularities emerged in BGA which captures the 

opposite relationship of low temperature and precipitation to the other specifications and, likewise, 

for DTR. Moreover, using the same temporal approach (i.e., GDD) but changing the sowing dates, 

the negative effect of low temperatures is always captured. The effect of ETc on yields is positive and 

it is independent of the approaches used. Again, it highlights that any change in the design or temporal 

approach to assess the effects of weather variables on yields may lead to different results, and that 

sowing dates are relevant. Precipitation seems to have no effect in the flowering stage (Table 11), 

while regularities emerge among design approaches, within the temporal specifications: the effects of 

temperatures and ETc on yields are the same among A-B, and B-C specifications. However, 

irregularities emerge among temporal approaches: high temperatures positively affect the yields 

except in GDD EU where, according to the literature (Farooq et al., 2014; Zampieri et al., 2017), the 

relationship is negative. Temporal and design approaches heavily affect the relationship yields-

weather in maturity stage (Table 12): the negative effect of low temperatures and precipitation is 

captured only in BGA and GDD EU, respectively, while the effect of high temperature is captured 

both in FAO 56 and GDD 15, although there are irregularities between specification. Moreover, the 

negative effect of cws is shown only in BGA. Finally, DTR seems to have a nonlinear negative effect 

on yields in the end stage, while BGA specifications capture more relationships yields-weather than 

others (Table 13). Focusing on durum wheat varieties (Table 6), starting from the same sowing date 

(i.e., November 15) and approach (i.e., GDD), it emerged that the relationships yields-weather is not 

affected by the variety in starting, development, and flowering stages. However, maturity and end 

stages showed clear differences in catching relationships. More specifically, late varieties in maturity 

stage and early varieties in end stage may catch the negative relationship of high temperature on 

yields. In general, low temperatures seem to have a negative effect during the early stages (i.e., 

starting and development), while the negative effect of high temperatures is always caught during the 
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flowering phase, regardless of the varieties (Farooq et al., 2014; Rezaei et al., 2015; Zampieri et al., 

2017; Mäkinen et al., 2018)
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Table 6. Relationships among durum wheat yields and weather conditions among durum wheat varieties during crop cycle. 

 Starting Development Flowering Maturity End 

 early middle late early middle late early middle late early middle late early middle late 

T min -0.15404* -0.16897** -0.17878** -0.07727*** -0.07318*** -0.06639*** 0.08320 0.10570 0.09917 0.07934 0.08918 0.04993 0.24944 0.04270 0.32460 

 (0.08242) (0.07602) (0.07034) (0.02191) (0.02160) (0.02144) (0.06113) (0.06890) (0.07273) (0.08097) (0.08439) (0.08996) (0.21432) (0.22877) (0.27129) 

(T min)2 0.00685 0.00678 0.00663 -0.00117 -0.00090 -0.00067 -0.00298 -0.00565 -0.00637 -0.00749 -0.00702 -0.00529 -0.01452 -0.00608 -0.01378 

 (0.00548) (0.00511) (0.00479) (0.00214) (0.00211) (0.00209) (0.00496) (0.00534) (0.00542) (0.00497) (0.00494) (0.00505) (0.01114) (0.01147) (0.01283) 

T max 0.31774** 0.23426* 0.25097* 0.06570 0.03823 0.02060 -0.25329*** -0.29323*** -0.17960** -0.01475 -0.05627 -0.18812* -0.68208*** -0.20209 -0.05940 

 (0.14581) (0.13782) (0.13102) (0.04244) (0.04118) (0.03986) (0.07862) (0.08304) (0.08507) (0.09672) (0.10024) (0.10657) (0.23904) (0.27092) (0.29382) 

(T max)2 -0.00689 -0.00378 -0.00433 0.00010 0.00128 0.00178 0.01152*** 0.01160*** 0.00729*** 0.00064 0.00176 0.00684** 0.02239*** 0.01259* 0.00528 

 (0.00525) (0.00500) (0.00479) (0.00196) (0.00187) (0.00178) (0.00272) (0.00276) (0.00275) (0.00281) (0.00284) (0.00293) (0.00621) (0.00686) (0.00713) 

Prec  -0.04284 -0.04768* -0.04354 -0.01746 -0.01864 -0.01563 -0.00884 0.01779 0.00761 -0.03290 -0.08944** -0.08828** -0.30095*** 0.07902 0.08993 

 (0.02985) (0.02861) (0.02745) (0.01532) (0.01494) (0.01474) (0.02866) (0.03065) (0.03137) (0.03349) (0.03481) (0.03541) (0.08871) (0.06774) (0.06887) 

(Prec)2  0.00124 0.00142 0.00142* -0.00013 -0.00002 -0.00006 0.00066 -0.00025 -0.00012 0.00081 0.00194 0.00177 0.01290*** -0.00287 -0.00215 

 (0.00091) (0.00088) (0.00086) (0.00053) (0.00052) (0.00052) (0.00105) (0.00115) (0.00117) (0.00143) (0.00151) (0.00159) (0.00482) (0.00300) (0.00278) 

prov FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 4,891 5,576 6,231 27,951 28,963 29,924 8,511 8,320 8,173 9,341 9,178 9,030 2,272 2,263 2,211 

No. of prov 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

Note. Phenological stages have been identified by GDD EU.
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We also provided further estimates that include spatial clusters (i.e., coastal and internal provinces, 

northern and southern provinces) to assess whether the location may affect the relationship between 

durum wheat yield and weather conditions12. The results remain robust among the specifications and 

the effects of weather variables on yields are statistically significant (Table 14, in the online 

appendix). More specifically, clustering for coastal provinces, the yield-weather relationships are 

captured only in Northern provinces. Clustering for coastal and internal provinces, the yield-weather 

relationships are captured only in Northern provinces. Clustering for northern and southern provinces, 

the effects of low temperatures on yields is captured both in coastal and internal provinces, while the 

effects of high temperatures is captured in the internal provinces, and the effect of precipitation is 

captured only in the coastal provinces. These results (showed in the Table 15, online appendix) 

suggest that the weather indexes could be different based on the spatial locations, in other words, 

some weather variables are more important in some provinces than others, despite the relationships 

are stable between specifications. 

 

4. Conclusions 

 

The weather conditions severely affect crop yields and may be coped with crop insurance schemes, 

which help farmers coping with unexpected yield losses (Shirsath et al., 2019; Vroege and Finger, 

2020). The WIBI, whose working principle is based on the yield-weather relationships, are promising 

risk management tools (Barnett and Mahul, 2007; Anghileri et al., 2022) although it presents a major 

limitation (i.e., basis risk). Nonetheless, the design of the WIBI, and the challenges imposed by the 

basis risk, are at the core of a vivid debate (Norton et al., 2013; Dalhaus et al., 2018; Boyd et al., 

2019; Afshar et al., 2021; Leppert et al., 2021). Numerous studies have focused on empirical evidence 

to model the yield-weather relationships (Carter et al., 2018; Auffhammer et al., 2020). However, 

literature falls short of studies that compare specifications within the same econometric model to 

assess yield-weather relationships. Focusing on durum wheat in Italy, we investigate how weather 

events that occur in phenological stages identified by different approaches (i.e., temporal 

specifications) and how different weather variables and combination of thereof (i.e., design 

specifications) of the econometric model may lead to different results in the yield-weather assessment. 

We found several connections among weather and yields. The evidence suggests that the number of 

observations is not related to the number of yields-weather relationships, e.g., comparing starting and 

development stages characterized by 4,520 and 22,746 observations, respectively, it emerged that the 

former captured more. In general, ETc and DTR positively affect the yields in all phenological stages, 

 
12 We gratefully acknowledge the comment raised by the reviewer. 



41 
 

and they are the only variables that do not seem to be affected by changes in temporal and design 

specifications. The choice of sowing dates may play a crucial role: a 10-days shift, using the same 

temporal and design approaches, may lead to a different estimation of yield losses due to changes in 

weather. Clustering for spatial dummies among provinces, it emerged that some weather variables are 

more important in some provinces than others. This should be considered by policymakers to plan 

risk management tools as weather insurances based on indexes which may be different depending on 

the location. Another implication is that the choice of specifications of the econometric model is very 

important to catch the relationships weather-yields. The negative effect of low temperatures, 

especially during the early stages, is always caught, regardless of specifications. GDD EU provided 

by Agri4Cast dataset seems to be the best model that is likely closest to what could happen on farms 

supported by the agronomic literature: minimum temperatures negatively affect the yields when they 

occur in the starting and development stages (Baldoni and Giardini, 2000; Whaley et al., 2004; 

Angelini, 2007; Barlow et al., 2015), maximum temperatures negatively affect the yields when they 

occur in the flowering stage (Farooq et al., 2014; Rezaei et al., 2015; Zampieri et al., 2017; Mäkinen 

et al., 2018), heavily precipitation negatively affect the yields when it occurs in the maturity stage 

(Zampieri et al., 2017; Mäkinen et al., 2018). Changes in design and temporal specifications seem to 

have no effect on the negative relationship low temperatures-yields and on the positive relationship 

ETc-yields. This result may contribute to establish a triggering index (i.e., for minimum temperatures) 

that represent a main challenge for agricultural policy focused on agricultural risk management. 

Given the importance of weather conditions on crop yields, financial insurance for extreme weather 

events is a key challenge to manage the risks threatening smallholder farmers. Therefore, 

understanding the dynamics of yields-weather relationship is essential to calibrate the WIBIs, and 

increased both its effectiveness and attractiveness. Policymakers, who already provide large subsidies 

to improve crop insurance participation, may make use of publicly available data (i. e., Agri4Cast 

datasets) to develop an effective tool for agricultural risk management. Unfortunately, farm-level 

weather data are not available to public bodies. Although the analyses of more refined data (i.e., at 

farm level) could be a suitable solution for further empirical estimates also representing a next step 

of our approach, the limits related to the spatial distribution of the weather station still remain (i.e., 

private weather stations are not widely distributed). 
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6. Appendix 

 

Below the method for 𝐸𝑇𝑐 identification: 

 

𝐸𝑇𝑐 is highly crop- and phenological stage-specific and it is one of the main factors determining how 

much precipitation remains in the soil available for the crops (Enenkel et al., 2019). 𝐸𝑇𝑐 has been 

identified by the following formula: 

𝐸𝑇𝑐 =  𝑘𝑐 ∗  𝐸𝑇0 

where, 𝑘𝑐 is the crop coefficient specific (i.e., property of plant used in predicting evapotranspiration) 

for durum wheat and 𝐸𝑇0 is the daily potential evapotranspiration (i.e., amount of water that would 

be evaporated and transpired by a specific crop) included into Agri4Cast dataset.  

We identified 𝑘𝑐 variable through the following formula proposed by Allen et al., 1998 for the 

correction of climatic factors: 

𝑘𝑐 = 𝑘𝑐(𝑇𝑎𝑏) + [0.04 (𝑢2 − 2) − 0.004 (𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ

3
)

0.3

 

where  𝐾𝑐(𝑇𝑎𝑏) is a table crop coefficient highly related to each phenological stages (Table 7), 𝑢2 is 

wind speed at 2 meters high, 𝑅𝐻𝑚𝑖𝑛 is mean value of minimum daily relative humidity, and ℎ is plant 

height.  

 

Table 7. Crop coefficient values (𝐾𝑐(𝑇𝑎𝑏)) by phenological stage of durum wheat 

 Starting Development Flowering Maturity End 

𝐾𝑐(𝑇𝑎𝑏) 0.7 0.7 1.15 1.15 0.30 

Source: Allen et al., 1998. Flowering is identified as the first 10-days of maturity stage (Angelini, 2007). 

 

Since Agri4Cast dataset includes wind speed variable at 10 meters high (𝑢10), we used the following 

formula to convert 𝑢10 in 𝑢2: 

𝑢2 =  𝑢10 ∗
4.87

ln[67.8 ∗ (10 − 5.42)]
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Moreover, since Agri4Cast dataset includes vapour pressure (𝑣𝑝) variable, we used the following 

formulas (Wang et al., 2007; Suzuki et al., 2012) to calculate saturated vapour pressure (formula 1) 

and thus to identify the relative humidity variable (formula 2). 

 

Formula 1. Saturated vapour pressure (𝑠𝑣𝑝) calculation 

𝑠𝑣𝑝 = 0.6108 ∗ 𝐸𝑥𝑝 
17.27 ∗ 𝑎𝑣𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑎𝑣𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 237.3 
 

 

Formula 2. Relative humidity (𝑅𝐻) calculation 

𝑅𝐻 =
𝑣𝑝

𝑠𝑣𝑝
∗ 100 

The heights for the growing stages of durum wheat are shown below (Table 8): 

 

Table 8. Wheat height by phenological stage 

 Starting Development Flowering Maturity End 

Plant heights (meters) 0.2 0.5 1.00 1.00 1.00 

Source: Song et al., 2019
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Table 9. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in starting stage. 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.07707 -0.03676  -0.14455*** -0.12045***  -0.18915*** -0.17006***  0.00047 0.03226  -0.16897** -0.13179*  

 (0.09958) (0.10202)  (0.04170) (0.04260)  (0.05257) (0.05399)  (0.03756) (0.03948)  (0.07602) (0.07763)  

(T min)2 -0.00455 -0.00614  0.00597** 0.00498*  0.01298*** 0.01191***  -0.00735** -0.00895***  0.00678 0.00596  

 (0.00565) (0.00575)  (0.00288) (0.00291)  (0.00364) (0.00368)  (0.00317) (0.00322)  (0.00511) (0.00514)  

T max -0.10743 -0.12262  0.18507** 0.15493*  0.33811*** 0.31198***  0.16984** 0.11281  0.23426* 0.20127  

 (0.17007) (0.17425)  (0.07913) (0.08040)  (0.09905) (0.10026)  (0.07360) (0.07605)  (0.13782) (0.13915)  

(T max)2 0.00706 0.00826  -0.00596** -0.00449  -0.01237*** -0.01125***  -0.00562* -0.00266  -0.00378 -0.00166  

 (0.00561) (0.00574)  (0.00296) (0.00301)  (0.00375) (0.00379)  (0.00339) (0.00352)  (0.00500) (0.00509)  

DTR   0.11978**   0.09014***   0.07863*   0.02376   -0.00044 

   (0.06052)   (0.03088)   (0.04162)   (0.03477)   (0.05367) 

DTR2   0.00063   -0.00222*   -0.00306*   0.00224   0.00495** 

   (0.00237)   (0.00132)   (0.00174)   (0.00170)   (0.00229) 

Prec 0.05852** 0.08664 0.06849 0.02213 0.08883** 0.09531*** 0.00823 0.07888* 0.09914** 0.03043 0.14545*** 0.15287*** -0.04768* -0.01368 0.00543 

 (0.02814) (0.06061) (0.05951) (0.01870) (0.03449) (0.03398) (0.02496) (0.04493) (0.04444) (0.02651) (0.05115) (0.04975) (0.02861) (0.06048) (0.05992) 

(Prec)2 -0.00148* -0.00171** -0.00173** -0.00073 -0.00101 -0.00103 -0.00034 -0.00053 -0.00062 -0.00107 -0.00157* -0.00164* 0.00142 0.00114 0.00108 

 (0.00077) (0.00078) (0.00078) (0.00062) (0.00063) (0.00063) (0.00079) (0.00080) (0.00080) (0.00092) (0.00093) (0.00093) (0.00088) (0.00089) (0.00089) 

ETc  1.60408** 1.68510**  0.95394** 0.85173**  0.64023 0.18005  1.47130** 1.94526***  1.81301** 1.45603** 

  (0.71628) (0.71445)  (0.41759) (0.40811)  (0.63563) (0.61859)  (0.61330) (0.59757)  (0.74246) (0.72742) 

CWD  0.01058 -0.00349  0.03380** 0.03738**  0.03800* 0.04891**  0.05105** 0.05375**  0.01203 0.02275 

  (0.03751) (0.03643)  (0.01674) (0.01642)  (0.02099) (0.02071)  (0.02174) (0.02115)  (0.03341) (0.03309) 

Obs. 4,520 4,520 4,520 13,380 13,380 13,380 7,472 7,472 7,472 9,342 9,342 9,342 5,576 5,576 5,576 

Focusing on the starting stage, FAO 56 and GDD 15 are the specifications which capture more relationships. In general, minimum temperatures have a nonlinear negative effect on yields, while maximum temperatures showed 

irregularities: their impact on yields seems to be positive in FAO 56 and GDD 15 specifications and negative in GDD 25 specifications. Precipitation, evapotranspiration crop water deficit and temperature range seem to have 

positive effects on yields among specifications. The interesting evidence is that choice of sowing date is relevant because it can capture temperature relationships regardless of the approach used to identify the starting stage: 

shifting the sowing dates by 10 days using the same temporal approach (i.e., GDD 15 and GDD 25), different evidence emerged, i.e., the effect of low temperatures is captured only in GDD 15.  
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Table 10. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in development stage. 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min 0.04932 0.09701**  -0.05969*** -0.04633***  -0.05224*** -0.04028**  -0.07089*** -0.05924***  -0.07318*** -0.06211***  

 (0.04598) (0.04692)  (0.01581) (0.01596)  (0.01929) (0.01954)  (0.02069) (0.02097)  (0.02160) (0.02186)  

(T min)2 -0.00270 -0.00498*  0.00136 0.00061  -0.00413** -0.00511***  0.00011 -0.00068  -0.00090 -0.00210  

 (0.00277) (0.00281)  (0.00116) (0.00117)  (0.00171) (0.00173)  (0.00185) (0.00188)  (0.00211) (0.00214)  

T max 0.00010 0.07379  0.02729 0.01204  0.00387 -0.01970  -0.01202 -0.02930  0.03823 0.00814  

 (0.06146) (0.06569)  (0.02270) (0.02360)  (0.03472) (0.03566)  (0.03492) (0.03587)  (0.04118) (0.04219)  

(T max)2 0.00060 -0.00081  0.00015 0.00151*  0.00269* 0.00440***  0.00259* 0.00403***  0.00128 0.00327*  

 (0.00178) (0.00187)  (0.00078) (0.00082)  (0.00150) (0.00157)  (0.00144) (0.00150)  (0.00187) (0.00196)  

DTR   -0.06203***   0.02928**   0.06807***   0.05656***   0.07059*** 

   (0.02286)   (0.01181)   (0.01596)   (0.01629)   (0.01799) 

DTR2   0.00305***   0.00088**   0.00081   0.00044   0.00044 

   (0.00067)   (0.00042)   (0.00076)   (0.00074)   (0.00090) 

Prec -0.03440* -0.02545 -0.00537 -0.01655 0.02867* 0.02511 -0.01122 0.05282** 0.03626 -0.02074 0.02424 0.01177 -0.01864 0.05558* 0.04522 

 (0.02035) (0.03980) (0.03860) (0.01032) (0.01576) (0.01531) (0.01428) (0.02682) (0.02625) (0.01369) (0.02551) (0.02501) (0.01494) (0.03026) (0.02956) 

(Prec)2 0.00057 0.00044 0.00074 0.00023 0.00027 0.00028 -0.00010 -0.00024 -0.00027 0.00040 0.00031 0.00029 -0.00002 -0.00005 -0.00006 

 (0.00092) (0.00107) (0.00105) (0.00041) (0.00041) (0.00041) (0.00055) (0.00056) (0.00056) (0.00051) (0.00052) (0.00052) (0.00052) (0.00052) (0.00052) 

ETc  0.46315*** 0.41526***  0.26413*** 0.25985***  0.39320*** 0.43532***  0.34540*** 0.35045***  0.38343*** 0.38349*** 

  (0.07092) (0.06859)  (0.04400) (0.04298)  (0.11347) (0.11229)  (0.10206) (0.10097)  (0.14019) (0.13852) 

CWD  0.01520 0.06053  0.05088*** 0.04741***  0.05481** 0.03882*  0.04049* 0.02777  0.06316*** 0.05421** 

  (0.07528) (0.07166)  (0.01539) (0.01476)  (0.02189) (0.02124)  (0.02274) (0.02211)  (0.02406) (0.02341) 

Obs. 22,746 22,746 22,746 62,559 62,559 62,559 35,215 35,215 35,215 34,060 34,060 34,060 28,963 28,963 28,963 

Focusing on the development stage, high temperatures seem to have no effect and irregularities emerged in BGA specification which captures the opposite relationship of low temperature and 

precipitation to the other specifications and, likewise, for DTR. The negative effect of low temperatures (clearly, excluding BGA specifications) is always stable among specifications. The effect of 

crop evapotranspiration is always positive, and it is independent of the approaches used.  
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Table 11. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in flowering stage. 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

                

T min -0.00611 0.07508  0.09715 0.18535  0.13949** 0.14277**  0.26033*** 0.27162***  0.10570 0.11048  

 (0.14895) (0.15072)  (0.11433) (0.11528)  (0.06170) (0.06173)  (0.07543) (0.07552)  (0.06890) (0.06891)  

(T min)2 -0.00331 -0.00631  -0.00693 -0.01025**  -0.00865* -0.00865*  -0.01990*** -0.02011***  -0.00565 -0.00536  

 (0.00558) (0.00565)  (0.00448) (0.00452)  (0.00455) (0.00455)  (0.00507) (0.00507)  (0.00534) (0.00534)  

T max 0.59654*** 0.69347***  0.53529*** 0.67048***  0.01816 0.03664  0.20011** 0.25175**  -0.29323*** -0.26843***  

 (0.15739) (0.16004)  (0.13078) (0.13295)  (0.08382) (0.08469)  (0.09928) (0.10084)  (0.08304) (0.08356)  

(T max)2 -0.01228*** -0.01456***  -0.01059*** -0.01382***  0.00028 -0.00013  -0.00585* -0.00720**  0.01160*** 0.01106***  

 (0.00337) (0.00343)  (0.00286) (0.00291)  (0.00274) (0.00275)  (0.00308) (0.00311)  (0.00276) (0.00277)  

DTR   0.22450***   0.15151***   -0.07859**   -0.00022   -0.13133*** 

   (0.04830)   (0.03767)   (0.03219)   (0.03533)   (0.03796) 

DTR2   -0.00451***   -0.00255***   0.00365***   0.00078   0.00648*** 

   (0.00102)   (0.00081)   (0.00112)   (0.00115)   (0.00130) 

Prec -0.00864 -0.00635 -0.01925 -0.00877 -0.00639 -0.01764 0.02479 0.02765 0.02593 0.03729 0.04096 0.03361 0.01779 0.02309 0.02479 

 (0.03223) (0.03223) (0.03190) (0.02634) (0.02633) (0.02611) (0.02226) (0.02279) (0.02275) (0.02582) (0.02683) (0.02679) (0.03065) (0.03115) (0.03113) 

(Prec)2 0.00091 0.00073 0.00081 0.00046 0.00024 0.00020 -0.00030 -0.00041 -0.00038 -0.00107 -0.00130 -0.00115 -0.00025 -0.00049 -0.00047 

 (0.00127) (0.00127) (0.00127) (0.00104) (0.00104) (0.00104) (0.00075) (0.00076) (0.00076) (0.00099) (0.00100) (0.00100) (0.00115) (0.00115) (0.00115) 

ETc  0.22025*** 0.14044**  0.31185*** 0.22138***  0.16555 0.13164  0.28979*** 0.22201**  0.33541** 0.38240*** 

  (0.06449) (0.06171)  (0.05579) (0.05367)  (0.10877) (0.10620)  (0.10037) (0.09745)  (0.13072) (0.12813) 

CWD  -0.00134 -0.00159  -0.00138 -0.00165  -0.00140 -0.00120  -0.00457 -0.00351  -0.00372 -0.00429 

  (0.00252) (0.00252)  (0.00251) (0.00251)  (0.00745) (0.00745)  (0.01266) (0.01267)  (0.00736) (0.00735) 

Obs. 9,366 9,366 9,366 13,826 13,826 13,826 10,523 10,523 10,523 9,733 9,733 9,733 8,320 8,320 8,320 

Focusing on the flowering stage, precipitation seems to have no effect, while regularities emerge among design approaches, within the temporal specifications: the effects of temperatures and crop 

evapotranspiration on yields are the same among A-B, and B-C specifications. Irregularities emerge among temporal approaches: high temperatures positively affect the yields except in GDD EU 

specifications in which, according to the literature (Farooq et al., 2014; Zampieri et al., 2017), the relationship is negative. 
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Table 12. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in maturity stage. 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.37334*** -0.37913***  -0.13784 -0.10064  -0.02572 -0.01137  -0.09798 -0.06438  0.08918 0.11826  

 (0.11263) (0.11265)  (0.12993) (0.13138)  (0.07999) (0.08000)  (0.08796) (0.08804)  (0.08439) (0.08494)  

(T min)2 0.01023*** 0.01060***  0.00220 0.00100  -0.00162 -0.00171  0.00360 0.00242  -0.00702 -0.00810  

 (0.00347) (0.00348)  (0.00463) (0.00467)  (0.00469) (0.00469)  (0.00482) (0.00482)  (0.00494) (0.00495)  

T max -0.01358 0.01765  0.65506*** 0.70619***  -0.15447 -0.06513  -0.27295*** -0.17456  -0.05627 -0.02941  

 (0.12090) (0.12211)  (0.14099) (0.14383)  (0.09737) (0.09884)  (0.10581) (0.10694)  (0.10024) (0.10080)  

(T max)2 0.00089 0.00033  -0.01328*** -0.01444***  0.00456* 0.00236  0.00931*** 0.00687**  0.00176 0.00114  

 (0.00227) (0.00229)  (0.00288) (0.00295)  (0.00274) (0.00277)  (0.00283) (0.00285)  (0.00284) (0.00285)  

DTR   0.05376   0.19044***   0.04800   -0.03622   0.00446 

   (0.03723)   (0.04125)   (0.03427)   (0.03586)   (0.04059) 

(DTR2   -0.00032   -0.00384***   -0.00078   0.00317***   0.00026 

   (0.00064)   (0.00080)   (0.00102)   (0.00100)   (0.00116) 

Prec -0.00074 -0.03811 -0.04444 0.03846 0.03815 0.02097 -0.03247 -0.03272 -0.03021 -0.01711 -0.00480 -0.00067 -0.08944** -0.08145** -0.08118** 

 (0.02437) (0.03251) (0.03245) (0.02753) (0.02755) (0.02708) (0.02520) (0.02695) (0.02687) (0.02692) (0.02699) (0.02685) (0.03481) (0.03583) (0.03583) 

(Prec)2 -0.00080 -0.00132 -0.00136 -0.00094 -0.00102 -0.00079 0.00017 -0.00041 -0.00046 -0.00005 -0.00067 -0.00074 0.00194 0.00161 0.00163 

 (0.00092) (0.00097) (0.00096) (0.00099) (0.00100) (0.00099) (0.00102) (0.00103) (0.00103) (0.00111) (0.00111) (0.00111) (0.00151) (0.00152) (0.00152) 

ETc  0.01991 0.01393  0.09875* 0.03310  0.40524*** 0.42765***  0.47143*** 0.50595***  0.28030*** 0.27057*** 

  (0.01865) (0.01850)  (0.05283) (0.05023)  (0.08132) (0.07906)  (0.07901) (0.07705)  (0.09531) (0.09333) 

CWD  -0.13153* -0.15214**  -0.00153 -0.00177  -0.02463 -0.02628  -0.00110 -0.00123  0.00048 0.00019 

  (0.07681) (0.07590)  (0.00251) (0.00252)  (0.01993) (0.01988)  (0.00255) (0.00255)  (0.01759) (0.01756) 

Obs. 18,286 18,286 18,286 12,934 12,934 12,934 12,073 12,073 12,073 11,332 11,332 11,332 9,178 9,178 9,178 

Focusing on the maturity stage, temporal and design approaches heavily affect the relationship yields-weather: the negative effect of low temperatures and precipitation is captured only in BGA and 

GDD EU, respectively, while the effect of high temperature is captured both in FAO 56 and GDD 15, although there are irregularities between specification. Moreover, the negative effect of crop water 

deficit emerged only in BGA.  
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Table 13. Relationship among durum wheat yields and weather conditions using different temporal and design specifications in end stage 

 BGA FAO 56 GDD 15 GDD 25 GDD EU 

 A B C A B C A B C A B C A B C 

                

T min -0.89806*** -0.90668***  -1.07104*** -0.97157***  -0.33464* -0.29524  0.15128 0.13080  0.04270 0.11882  

 (0.24879) (0.25268)  (0.19485) (0.19768)  (0.20040) (0.20200)  (0.25445) (0.25550)  (0.22877) (0.23223)  

(T min)2 0.02657*** 0.02678***  0.03009*** 0.02769***  0.01595 0.01315  -0.00765 -0.00739  -0.00608 -0.01025  

 (0.00668) (0.00677)  (0.00533) (0.00539)  (0.01008) (0.01017)  (0.01158) (0.01163)  (0.01147) (0.01164)  

T max 0.61715** 0.80632***  0.12082 0.21623  -0.21556 -0.12902  0.15077 0.27495  -0.20209 -0.19573  

 (0.25485) (0.27820)  (0.19883) (0.21949)  (0.21750) (0.22654)  (0.24956) (0.26278)  (0.27092) (0.28746)  

(T max)2 -0.00855** -0.01166**  -0.00030 -0.00208  0.00983* 0.00923  -0.00080 -0.00285  0.01259* 0.01364*  

 (0.00430) (0.00468)  (0.00340) (0.00373)  (0.00549) (0.00565)  (0.00595) (0.00618)  (0.00686) (0.00714)  

DTR   -0.35830***   -0.19934***   -0.13960*   -0.06303   -0.17483* 

   (0.06415)   (0.05091)   (0.07397)   (0.08239)   (0.09170) 

DTR2   0.00788***   0.00496***   0.00967***   0.00489**   0.01316*** 

   (0.00105)   (0.00084)   (0.00208)   (0.00212)   (0.00255) 

Prec -0.11547** -0.34154** -0.19514 -0.01553 0.06087 0.09715 0.00649 0.00404 0.00490 -0.15376** -0.23842** -0.20973* 0.07902 0.17782 0.17620 

 (0.05688) (0.15870) (0.15350) (0.03583) (0.08889) (0.08584) (0.04762) (0.09549) (0.09416) (0.06278) (0.11386) (0.11205) (0.06774) (0.11794) (0.11474) 

(Prec)2 0.00391 0.00269 0.00536 -0.00145 0.00040 0.00175 -0.00035 -0.00007 0.00006 0.00671** 0.00596* 0.00644* -0.00287 -0.00095 -0.00095 

 (0.00340) (0.00350) (0.00346) (0.00173) (0.00232) (0.00225) (0.00183) (0.00204) (0.00203) (0.00302) (0.00332) (0.00330) (0.00300) (0.00337) (0.00336) 

ETc  0.03537 0.03429  0.16767*** 0.19978***  0.40697*** 0.43824***  0.21101 0.18342  0.37090** 0.37985** 

  (0.05960) (0.05677)  (0.04730) (0.04537)  (0.14773) (0.14569)  (0.14738) (0.14628)  (0.17731) (0.17338) 

CWD  -1.62832 -0.20619  0.72720 1.19979*  0.07984 0.10319  -0.35360 -0.18636  0.56697 0.56275 

  (1.08240) (1.02036)  (0.67277) (0.63120)  (0.39077) (0.38214)  (0.48807) (0.47327)  (0.48333) (0.46774) 

Obs. 8,920 8,920 8,920 13,380 13,380 13,380 3,016 3,016 3,016 2,804 2,804 2,804 2,263 2,263 2,263 

Focusing on the end stage, DTR seems to have a nonlinear negative effect on yield, while BGA specifications seem to capture more relationships yields-weather than others. More specifically, minimum 

temperatures and precipitation have a negative effect on yields, while maximum temperatures have a positive effect. Although the effect of precipitation seems not to be influenced by design 

specifications (e.g., GDD 25), the relationships are not captured among temporal specifications.
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Table 14. Spatial clusters among Italian provinces 

 all provinces 

VARIABLES baseline NS CI NSCI 

     

T min -0.03692*** -0.03692*** -0.03692*** -0.03692*** 

 (0.01007) (0.00082) (0.00539) (0.00361) 

(T min)2 0.00103** 0.00103*** 0.00103 0.00103 

 (0.00042) (0.00039) (0.00167) (0.00136) 

T max 0.04546*** 0.04546*** 0.04546*** 0.04546*** 

 (0.01184) (0.00075) (0.01535) (0.00996) 

(T max)2 -0.00081*** -0.00081*** -0.00081 -0.00081 

 (0.00029) (0.00021) (0.00105) (0.00082) 

Prec 0.01120* 0.01120*** 0.01120 0.01120 

 (0.00603) (0.00101) (0.01288) (0.00935) 

(Prec)2 -0.00041* -0.00041*** -0.00041* -0.00041** 

 (0.00021) (0.00004) (0.00022) (0.00020) 

Obs. 162,909 162,909 162,909 162,909 

No. of prov 30 30 30 30 

Notes: baseline shows the general relationships yield-weather variables. NS includes clusters Northern and Southern provinces; CI 

includes clusters Coastal and Internal provinces; NSCI includes a combination of thereof. Robust standard errors in parentheses:    

*** p<0.01, ** p<0.05, * p<0.1 

 

We provide spatial clusters among Italian provinces. The results remain robust among specifications, 

the effects of weather on yields are statistically significant, and the relationships on the first moment 

of the distribution (i.e., the estimated coefficients of the first order variables) are confirmed.   

 

Table 15. Further combinations of clusters among Italian provinces 

 All provinces CI provinces NS provinces 

VARIABLES Baseline  N S C I  

      

T min -0.03692*** -0.03705*** -0.04145 -0.03761*** -0.04193*** 

 (0.01007) (0.00433) (0.02565) (0.00839) (0.00559) 

(T min)2 0.00103** 0.00114*** 0.00192 -0.00155** 0.00227 

 (0.00042) (0.00027) (0.00366) (0.00072) (0.00148) 

T max 0.04546*** 0.04061*** 0.04165 0.02751 0.05693*** 

 (0.01184) (0.00498) (0.03049) (0.02339) (0.01245) 

(T max)2 -0.00081*** -0.00072*** -0.00111 0.00094 -0.00156 

 (0.00029) (0.00014) (0.00209) (0.00072) (0.00096) 

Prec 0.01120* 0.01088*** 0.01287 0.03079*** 0.00176 
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 (0.00603) (0.00210) (0.01330) (0.00125) (0.00539) 

(Prec)2 -0.00041* -0.00043*** -0.00034 -0.00081*** -0.00025* 

 (0.00021) (0.00006) (0.00033) (0.00024) (0.00013) 

Obs. 162,909 71,227 91,682 42,371 120,538 

No. of prov 30 13 17 8 22 

Notes: baseline shows the general relationships yield-weather variables. CI includes Coastal and Internal provinces clustered by 

Northern (N) and Southern (S); NS includes Northern and Southern provinces clustered by Coastal (I) and Internal provinces. Robust 

standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. Focusing on the further combinations of spatial clusters among Italian 

provinces, interesting evidence emerged. Clustering for coastal and internal provinces (CI provinces), the yield-weather relationships 

are captured only in Northern provinces. Clustering for northern and southern provinces (NS provinces), the effects of low temperatures 

on yields is captured both in coastal and internal provinces, while the effects of high temperatures is captured in the internal provinces 

and the effect of precipitation is captured only in the coastal provinces. These results suggest that the weather indexes could be different 

based on the spatial locations, in other words, some weather variables are more important in some provinces than others. 
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Earliness, phenological phases and yield-temperature relationships: 

evidence from durum wheat in Italy 

 

Abstract 

 

The impacts of extreme weather events on crop production are largely heterogeneous along the timing 

dimension of the shocks, and the varieties being affected. We investigate the yield-temperature 

relationships for three categories of earliness of durum wheat: early-maturing, middle-maturing, and 

late-maturing. We disentangle the time dimension distinguishing five phenological stages, as 

identified by the Growing Degree Days approach. Our panel regression models show that the starting, 

growing, and anthesis stages are sensitive to changes in minimum temperatures, regardless of wheat 

earliness. Raises in maximum temperatures during the starting stage are associated with increases in 

yields until a certain threshold above of which decrease; the opposite is true for increases in maximum 

temperatures in the maturity stage for late-maturing varieties, and in the end stage for early-maturing 

varieties. Results imply that farmers and policymakers may adopt ex-ante and ex-post risk 

management strategies, i.e., choice of variety to avoid severe yield losses and incentives to crop 

insurance uptake, respectively. 

 

Keywords: climate change, crop insurance, growing degree days, risk management, weather index 

 

1. Introduction  

 

The climate variability and the increased frequency of extreme weather events threaten the 

agricultural sector (Auci et al., 2021). The simulations on projected yields under climate change 

conditions show losses in crop production (Challinor et al., 2014). In turn, these, may impact the 

market dynamics with price increases and changes in firms’ profitability margins (Stevanovic et al., 

2016). The risk management interventions subsidised by the Common Agricultural Policy (CAP) of 

European Union (EU), e.g., crop insurances, mutual funds, may help farmers to cope with the 

potential losses due to climatic changes (Severini et al., 2016; Meuwissen et al., 2018; Shirsath et al., 

2019; Giampietri et al., 2020; Cordier and Santeramo, 2020; Rippo and Cerroni, 2022), even better if 

combined with other ex-ante practices, e.g., agroecological strategies (Altieri et al., 2015). The 

weather-index insurances (WIIs) emerged as promising tools to indemnify farmers affected by 

weather damages (Anghileri et al., 2022). The working principle of the WIIs is a compensation based 
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on a proxy (the weather index) correlated with potential yield losses (Abdi et al., 2022). The WIIs 

may contribute solving the market failures due to moral hazard and adverse selection issues, which 

are common in traditional indemnity insurance (Santeramo, 2019; Bucheli et al., 2022). The main 

threat to the well-functioning WIIs relies on the possible low correlation between triggered pay-outs 

and the occurrence of loss events, a peculiarity referred to as ‘basis risk’ (Cesarini et al., 2021). The 

basis risk may assume multiple forms. The temporal basis risk may result from the discrepancy 

between the timing of the weather index fails and the evolution of the crop growth stages (Masiza et 

al., 2022). The phenology information collected in publicly available datasets (e.g., through satellite 

remote sensors) may help reduce the temporal basis risk (Dalhaus et al., 2018; Afshar et al., 2021). 

Indeed, the phenological stages show different susceptibilities to the weather conditions, a relevant 

aspect for the weather index definition. As for durum wheat, the timing of the undesired weather 

events matter. For instance, low temperatures are detrimental in all stages of growth, but the most 

severe negative impacts are observed during the reproductive stage (Barlow et al., 2015). High 

temperatures severely compromise the physiological processes during the flowering and grain filling 

stages (Rezaei et al., 2015; Makinen et al., 2018, Gagliardi et al., 2020). As a matter of fact, taking 

into consideration the phenological stages within which the weather event occur is crucial to 

understand the weather-yields relationships better: this concept directly translates into better 

modelling of the temporal basis risk. Although remote sensing imagery represents a promising 

technique for identifying phenological stages, many factors, such as the atmospheric conditions (e.g., 

clouds) or the biotic and abiotic environmental perturbations, may also be relevant to analyse the 

physiological process (Zeng et al., 2020), but are complex in nature and computation. On the other 

hand, a fixed calendar approach may be oversimplistic and misleading. A second-best solution is to 

use the Growing Degree Days (GDD), adopted to schedule management activities. It represents a 

suitable method to predict specific crop stages based on the amount of daily temperature degree 

(Miller et al., 2001). Conradt et al., 2015 showed that the GDD approach accurately identifies the 

phenological phases. However, the timing of the phenological stages is not homogenous across 

varieties. Apart from the studies just mentioned, the literature on the role of varieties in shaping the 

relationships between yield and weather is quite limited. Thus, departing from a vast literature on the 

yield-weather nexus (Di Falco et al., 2012; Powell and Reinhard, 2016; Delerce et al., 2016; Chavas 

et al., 2019), we deepen on the heterogeneities that the yield-temperatures relationship may show 

across different phenological stages and earliness of durum wheat, hereafter defined as early-

maturing, middle-maturing, and late-maturing. Building up the works of Tappi et al. (2022), who 

show the need to collect more refined data to investigate the relationships between yields and weather 

variables, and of Tappi et al. (2022), who focus on the role of temporal and design approaches in 
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yield-weather assessment, the aim of our paper is to assess whether the relationships yield-

temperature control for three categories of durum wheat earliness (i.e., early-maturing, middle-

maturing, and late-maturing) among five phenological stages identified by the GDD approach, 

focusing on the most representative Italian provinces in terms of durum wheat production. Apart from 

the new knowledge, our paper has direct implications for farmers aiming to adopt ex-ante risk 

management strategies (e.g., choice of variety) and for policymakers planning ex-post risk 

management strategies (e.g., incentives to crop insurance uptake). The Italian participation level in 

crop insurance schemes is still low, limited to few products, and concentrated in few areas 

(Santeramo, 2018, 2019; Coletta et al., 2018). Therefore, the focus on the yield-temperature 

relationship may directly speak with the ongoing debate on how to improve the attractiveness of 

innovative insurances in a more and more warming climate change scenario. 

 

2. Data and methodology 

 

Durum wheat is the main crop in the Mediterranean area for making pasta, couscous, semolina, and 

other products (Carucci et al., 2020). We collected yields and weather data from 2006 to 2020 of 30 

main durum wheat-producing Italian provinces, located in Central and Southern Italy (Figure 1, in 

the Appendix). Specifically, yearly durum wheat yield data (quintals of production/cultivated 

hectares) have been collected from the National Institute of Statistics (ISTAT). In contrast, daily 

weather data have been collected from JRC - Agri4Cast Meteorological database of European 

Commission that includes maximum temperatures (°C) and minimum temperatures (°C). Descriptive 

statistics of the dataset are shown in Table 1. More specifically, maximum temperatures show a mean 

value of 13.5 °C, a median value of 13.6 °C, in a range between -5.3 °C and 33 °C; minimum 

temperatures show a mean value of 5.9 °C, a median value of 6.1 °C, in a range between -11.6 °C and 

19.9 °C. 
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Table 1. Descriptive statistics of daily temperatures and yearly yield variables from 2006 to 2020 

among 30 main durum-wheat producing Italian provinces 

Variable (unit) Obs. Mean Median St. dev Min Max 

Maximum temperature 

(°C) 
68,832 13.55749 13.63 4.59804 -5.336364 32.98 

Minimum temperature 

(°C) 
68,832 5.899284 6.07 3.919422 -11.65 19.95 

Yield (q/ha) 68,299 36.81634 33 12.98301 17 81.42377 

 

Furthermore, maximum temperatures exceed 30 °C in some Southern provinces, e.g., Agrigento, 

Caltanissetta, Catania, Enna, Matera, Palermo, Trapani, while minimum temperatures exceed -2 °C 

in some Northern provinces, e.g., Bologna, Ferrara, Perugia, Pisa, Ravenna, Rovigo, Siena (Table 2, 

in the Appendix). We selected weather variables within the timeframe of the wheat production cycle. 

Several approaches are available to assess econometrically the weather impacts on society and the 

economy: cross-sections, linear and non-linear panel, long-differences, and partitioning variation 

(Hsiang, 2016; Kolstad and Moore, 2020). Cross-sectional and panel regression analyses are the most 

used to assess the climate impacts on agriculture (Carter et al., 2018). Generally, panel model 

approach uses crop yields as the output of production function, while the cross-section uses a proxy 

for land productivity, e.g., revenue or profit (Blanc and Schlenker, 2020). According to Hsiang (2016), 

climate may affect social outcomes in two ways: directly, i.e., the effects of weather in a certain time, 

and indirectly (i.e., belief effect), i.e., the consequent effects of weather on decisions and actions also 

referred to as adaptation. Belief effects and other unobservable variables may cause bias in estimates 

(Hsiang, 2016). In this complex scenario and considering the trade-off among econometrics models, 

the panel approach presents some advantages for controlling unobserved omitted variables, removing 

a possible source of bias (Hsiang, 2016; Kolstad and Moore, 2020). Moreover, nonlinear panel models 

with fixed effects may capture partially long-run adaptive response to climate change (Carter et al., 

2018), also contributing to overcoming the main limitations of panel regression: the short-run 

response to weather fluctuations (Kolstad and Moore, 2020). Therefore, our yield response equation 

is based on a non-linear panel regression: 

 

𝑦𝑖𝑡 = 𝑓(𝑤𝑖𝑡; 𝜷) + 𝜶𝒊 + 𝜶𝒕 + 𝜖𝑖𝑡 (1) 

 

where 𝑦𝑖𝑡 represents the vector of durum wheat yield data for the 30 main Italian provinces (𝑖) in 

terms of production volumes and time horizon covered (t). The function 𝑓(𝑤𝑖𝑡; 𝛽) is explained in the 
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formula (2) below. The estimated coefficients (in bold) are collected in the matrix of first and second-

order coefficients noted as 𝜷, whereas 𝜶𝒊 and 𝜶𝒕 are the vectors of the location-specific and year-

specific fixed effects, controlling for unobserved heterogeneity over space and time. The error term 

is noted by the 𝜖𝑖𝑡 (Hsiang, 2016; Tack et al., 2015; Kolstad and Moore, 2020). Five phenological 

stages of durum wheat have been identified through the GDD approach, starting from the sowing date 

in the middle of November for wheat crop cultivated in the Mediterranean area (Miller et al., 2001): 

(i) starting, from emergence to two leaves unfolded; (ii) growing, from the end of two leaves unfolded 

to the beginning of anthesis (first anthers are visible); (iii) anthesis, from the beginning of anthesis to 

beginning of seed fill; (iv) maturity, from the beginning of seed fill to dough stage; (v) end, from 

dough stage to full maturity. The GDD approach predicts plants stages from seeding to maturity using 

the accumulation of heat or temperature units above a threshold or base temperature below which no 

growth occurs (Miller et al., 2001). The function 𝑓(𝑤𝑖𝑡𝑣; 𝛽) is explicated as follows: 

 

𝑓(𝑤𝑖𝑡; 𝛽) = ∑ ∑ 𝛽𝑥𝑠
𝑥𝑠=5

𝑠=1
2
𝑥=1 𝑡𝑚𝑖𝑛𝑖𝑡

𝑥+  ∑ ∑ 𝛽𝑥𝑠
𝑥𝑠=5

𝑠=1
2
𝑥=1 𝑡𝑚𝑎𝑥𝑖𝑡

𝑥(2)13 

 

where 𝑡𝑚𝑖𝑛𝑖𝑡 and 𝑡𝑚𝑎𝑥𝑖𝑡, are the daily minimum and maximum temperatures across space (i) and 

time (t). The index s (s = {1,2,3,4,5}) indicates the phenological stage of durum wheat. The apex x 

indicates the linearity of the term. Furthermore, based on phenology calculation combined with the 

Universal Growth Staging Scale reported in Miller et al. (2001) for the wheat crop, we identified three 

categories of earliness, i.e., early-maturing, middle-maturing, and late-maturing, also identifying the 

dates of occurrence of phenological stages (table 3): 

 

Table 3. Dates of occurrence and GDD values of durum wheat among phenological stages 

 starting growing anthesis maturity end 

 start end start end start end start end start end 

Early-

maturing 

(GDD) 

Nov, 15 

(0) 

Dec, 1 

(168) 

Dec, 2 

(169) 

Mar, 29 

(806) 

Mar, 30 

(807) 

Apr, 19 

(1067) 

Apr, 20 

(1068) 

May, 16 

(1433) 

May, 17 

(1434) 

May, 22 

(1538) 

Middle-

maturing 

(GDD) 

Nov, 15 

(0) 

Dec, 5 

(188) 

Dec, 6 

(189) 

Apr, 1 

(853) 

Apr, 2 

(854) 

Apr, 22 

(1120) 

Apr, 23 

(1121) 

May, 20 

(1494) 

May, 21 

(1495) 

May, 26 

(1602) 

Late-

maturing 

Nov, 15 

(0) 

Dec, 8 

(207) 

Dec, 9 

(208) 

Apr, 5 

(900) 

Apr, 6 

(901) 

Apr, 25 

(1173) 

Apr, 26 

(1174) 

May, 23 

(1555) 

May, 24 

(1556) 

May, 30 

(1665) 

 
13 We focused on how the temperatures may affect the yields, considering the precipitations as control factor mainly because its effect 

on yields is difficult to catch (being affected by other variables such as soil texture, management practices, irrigation, etc.). A single 

rain event may impact on a smaller portion of territory than changes in temperatures affecting entire areas. Therefore, the evaluation 

of the effect of precipitation on the yields needs of further investigation. Moreover, we controlled for the market shocks, i.e., on how 

unfavourable years in terms of durum wheat price. The results are robust. 
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(GDD) 

Note: Referred to the year 2020 

 

We assume that the sowing date is the same for all varieties (i.e., November 1514), although it 

represents a limit of our paper. However, it is useful to assess yield-temperature relationships among 

different earliness identified by GDD approach. Instead, the daily thermal sum that determines the 

transition from one phenological phase to the next, changes. It is interesting to highlight that the shift 

between early-maturing and late-maturing varieties is just one week. This aspect may play a decisive 

role in assessing of the yield-temperature relationship and, hence, both on farmers decisions (e.g., 

choice of earliness) and policymakers to plan risk management policies. 

 

3. Results and discussion 

 

Results display a strong relationship between durum wheat yields and temperatures among different 

earliness, focusing on the each phenological phase (table 4, more details in the table 7, in the 

Appendix). More specifically, minimum temperatures that occur in the starting phase negatively 

affect the yields in a non-linear way, until 8-9 °C for all categories of earliness, while maximum 

temperatures seem to have a positive effect, until 14-15 °C, above of which the yield decrease (table 

4 and table 5; more details in the table 7, in the Appendix). Yield is negatively impacted by minimum 

temperatures linearly occurring in growing stage (table 4, more details in the table 7, in the Appendix). 

According to the scientific literature, 85% of worldwide wheat cultivation is yearly affected by spring 

frost causing severe yield losses due to damage of micro-organelles of the cells, excessive production 

of reactive oxygen species (ROS) and lipid peroxidation (Hassan et al., 2021). Moreover, low 

temperatures in the fall season may cause yield losses until 9 percent (Tack et al., 2015). Makinen et 

al. (2018) found that damages due to frost negatively affect all phenological stages, even more the 

reproductive phase (i.e., flowering). However, focusing on the anthesis stage, our results showed 

contradictory evidence: minimum temperatures seem to positively affect the yields in a non-linear 

way, although turning points of temperatures showed that the positive relationship is true until 7-9 °C 

for all varieties, above of which yields decrease (table 4 and table 5; more details in the table 7, in the 

Appendix). It is still interesting to highlight that the effect of minimum temperatures on yields is not 

affected by earliness. Although the end stage lasts just a week, minimum temperatures may negatively 

affect the yields of early-maturing (until 10 °C) and middle-maturing varieties. Maximum 

temperatures occurring in starting stage positively affect the yields of all varieties in nonlinear way 

 
14 Generally, the sowing date of wheat is set on the middle of November in the Mediterranean area (Allen et al., 1998) 
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until 14-15 °C above of which decrease (table 5). At the same time, the adverse effects have been 

highlighted only in maturity for late-maturing varieties and end stages for early-maturing varieties 

until a certain threshold, i.e., 17 °C and 13 °C, respectively. 

 

 

Table 4. Effect of temperatures on yields among phenological stages and earliness of durum wheat 

 starting growing anthesis maturity end 

 EM MM LM EM MM LM EM MM LM EM MM LM EM MM LM 

Minimum 

temperature 

               

Maximum 

temperature 

               

Notes: EM, MM, and LM indicate the early-, middle-, and late-maturing durum wheat earliness, respectively.  Red cells indicate a 

negative impact of temperatures on yields, blue cells a positive impact, white cells for the uncaptured relationships. 

 

Table 5. Turning points of temperatures among phenological stages and earliness (°C) 

 starting anthesis maturity end 

 EM MM LM EM MM LM EM MM LM EM MM LM 

Minimum 

temperature 
-8+ -8+ -9+ +8- +9- +7- NS NS NS -10+ NS NS 

Maximum 

temperature 
+15- +14- +14- NS NS NS NS NS -17+ -13+ NS NS 

Notes: EM, MM, and LM, indicate the early-, middle-, and late-maturing durum wheat earliness, respectively. The values show the 

threshold temperatures beyond which there is a change of sign in the regression estimates (table 7, in the Appendix). NS: not significant.  

 

We also estimated the impacts of statistically significant weather coefficients among earliness and 

phenological stages, hence, the confidence level of temperature distributions. Results show a high 

confidence level, highlighting no differences among coefficients (table 6). Therefore, the 

temperatures’ effects on yields do not vary between earliness within each phenological phase. 

 

Table 6. Confidence levels of temperatures distribution  

 starting growing anthesis maturity end 

 em ml em ml em ml em ml em ml 

Minimum  

temperature 
-0.50580 -0.79056 -0.41006 0.16589 0.17650 -1.11070 - - -0.03887 - 

Maximum 

temperature 
1.50379 0.83624 - - - - - - - - 
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Notes: em indicates the differences among coefficients of early-maturing and middle-maturing varieties divided by standard errors of 

baseline (i.e., middle-maturing variety); ml indicates the differences among coefficients of middle-maturing and late-maturing varieties 

divided by standard errors of baseline (i.e., middle-maturing variety).  

 

It follows that early-maturing varieties are the most susceptible to changes in temperature, although 

the general relationship between yield and temperature is the same among earliness. Damages due to 

low temperatures are more likely among earliness than losses due to high temperatures. Sure enough, 

the vegetative stage lasts about four months, while maturity about a month and ends in just a week. 

Therefore, it is difficult to escape from low temperatures during starting and growing stages. Although 

wheat crop needs low temperature to complete vernalization processes, frost events occurring toward 

the end of the vegetative phase may cause severe damage such as the tiller, spike number, leaf area 

reduction and photosynthetic capacity, leading to a heavy yield losses (Xiao et al., 2018).  

 

4. Conclusions 

 

Given the potential impact of climate change on yields, deepening the yield-weather relationships is 

helping farmers cope with the weather risks. Therefore, we assess the effects of temperatures on 

durum wheat yields among early-maturing, middle-maturing, and late-maturing varieties. We 

distinguished the effects across five phenological stages (i.e., starting, growing, anthesis, maturity, 

and end) identified through the GDD approach, starting from the middle of November as sowing date. 

The levels and changes in temperatures affect durum wheat yields in several ways. More specifically, 

upward changes in the minimum temperatures are detrimental for to yields when they occur in the 

starting and growing phases, regardless of the earliness. Increases in maximum temperatures are 

indeed positively correlated (until a threshold of 14-15 °C) with the yields if they occur in the starting 

stage, whereas a negative effect is found when the event occurs at the maturity for late-maturing 

varieties or end stage for early-maturing varieties. Generally, the impacts of chronic heat stress, i.e., 

high temperatures for a longer duration, are lower than the heat shocks, i.e., extreme high 

temperatures for a short duration (Li et al., 2013). However, early-maturing varieties provides a better 

adaptation under warming conditions (Mondal et at., 2013), also because they may escape from the 

damages due to high temperatures by anticipating the crop cycle. Cold stress may cause 

morphological, physiological, biochemical, and molecular modifications in wheat. Phenotypic 

screening of cold-tolerant genes, pre-sowing seed treatments, and exogenous application of growth 

hormones may be a suitable solution tolerating severe low temperature extremes (Hassan et al., 2021). 

In conclusion, a better knowledge of the yield-temperature relationships, along with a deeper 

comprehension of the informative content of the secondary data on weather dynamics, may help both 
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the farmers for the application of agronomic strategies, and policymakers for the planning of 

interventions to boost uptake in innovative crop insurance, such as the WIIs. Promoting greater 

comprehensibility of contracts’ conditions, increasing transparency of indemnities and losses, and 

also improving the dissemination of risk management tools among farmers, may improve the trust, 

hence the adoption of subsidised insurance schemes (Giampietri et al., 2020). The main limitation of 

our study is the neglet of the effects of temperatures events on grain quality, although this is far 

beyond the scope of the analysis and will be addressed in future research. Further investigations are 

required to assess the effects of precipitation on yields and the choice of sowing dates to cope with 

climate risks. 
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6. Appendix 

 

 

Figure 1. Main durum wheat-producing Italian provinces in Italy. Notes: the main durum wheat-producing Italian provinces in 

decreasing order are: Foggia (Puglia region), Campobasso (Molise region), Palermo (Sicilia region), Ancona (Marche region), Potenza 

(Basilicata region), Matera (Basilicata region), Enna (Sicilia region), Macerata (Marche region), Avellino (Campania region), Catania 

(Sicilia region), Ferrara (Emilia-Romagna region), Caltanissetta (Sicilia region), Perugia (Umbria region), Bari (Puglia region), Viterbo 

(Lazio region), Bologna (Emilia-Romagna region), Ravenna (Emilia-Romagna region), Brindisi (Puglia region), Siena (Toscana 

region), Agrigento (Siclia region), Benevento (Campania region), Grosseto (Toscana region), Pisa (Toscara region), Chieti (Abruzzo 

region), Trapani (Sicilia region), Teramo (Abruzzo), Roma (Lazio), Barletta-Andria-Trani (Puglia region), Rovigo (Veneto), Pesaro-

Urbino (Marche region) (ISTAT, 2020). 

 

Table 2. Descriptive statistics of daily temperatures, cumulative precipitation, and yearly yield 

variables for 30 main durum wheat producing provinces, 2020 year. 

province variable Obs. Mean Median St. dev Min Max 

Agrigento 

Maximum 

temperature 
198 17.27042 16.475 3.656134 10.52143 31.60714 

Minimum 

temperature 
198 10.53427 9.921429 3.269273 4.15 21.2 

Yield 198 27 27 0 27 27 
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Ancona 

Maximum 

temperature 
198 15.0523 14.80455 4.87341 5.245454 28.81818 

Minimum 

temperature 
198 6.42034 5.990909 4.345694 -1.463636 16.89091 

Yield 198 45.3306 45.3306 0 45.3306 45.3306 

Avellino 

Maximum 

temperature 
198 15.16203 14.54545 4.195631 4.790909 28.70909 

Minimum 

temperature 
198 8.191552 8.095455 3.676873 -.0090909 18.63636 

Yield 198 32.81769 35 3.921524 25.80645 35 

Barletta-Andria-

Trani 

Maximum 

temperature 
198 16.11383 15.70625 4.502608 6.375 28.525 

Minimum 

temperature 
198 7.62822 7.15625 3.886316 -1.1625 17.4875 

Yield 198 21.92088 22 .1421842 21.66667 22 

Bari 

Maximum 

temperature 
198 15.81414 15.45833 4.549949 6.333333 29.175 

Minimum 

temperature 
198 7.309596 6.741667 3.7425 -1.9 15.99167 

Yield 198 20.24346 20 .4374887 20 21.02564 

Benevento 

Maximum 

temperature 
198 15.37965 14.735 4.230869 4.54 28.35 

Minimum 

temperature 
198 8.102222 7.995 3.768435 -.1 18.14 

Yield 198 32.00147 31.97674 .0444387 31.97674 32.08092 

Brindisi 

Maximum 

temperature 
198 16.79045 16.59 4.067458 8.61 28.66 

Minimum 

temperature 
198 8.679343 8.05 3.772157 -.2 18.74 

Yield 198 34.8064 34.52381 .5077994 34.52381 35.71429 

Bologna 

Maximum 

temperature 
198 14.48802 13.37143 5.873645 2.014286 28.45714 

Minimum 

temperature 
198 5.333694 4.835714 4.361542 -2.635714 15.53571 

Yield 198 54.32178 55.5577 2.220902 50.35106 55.5577 

Caltanissetta 

Maximum 

temperature 
198 16.8204 15.89 4.028488 9.41 32.56 

Minimum 

temperature 
198 9.514748 8.94 3.520087 2.61 22 

Yield 198 28 28 0 28 28 

Campobasso 

Maximum 

temperature 
198 15.20285 14.95455 4.480825 3.372727 26.70909 

Minimum 

temperature 
198 8.140358 8.2 3.817845 -1.163636 17.9 

Yield 198 35.76263 36 .4265517 35 36 

Catania 

Maximum 

temperature 
198 17.3101 16.73889 4.048381 9.516666 31.79445 

Minimum 

temperature 
198 8.244501 7.669444 3.742443 .3722222 19.37222 

Yield 198 28.57143 28.57143 0 28.57143 28.57143 
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Chieti 

Maximum 

temperature 
198 15.16586 14.795 4.622042 3.25 26.89 

Minimum 

temperature 
198 7.781061 7.65 3.902836 -1.2 18.08 

Yield 198 32.6417 32.84671 .3684098 31.98302 32.84671 

Enna 

Maximum 

temperature 
198 16.58646 15.75455 4.356249 8.218182 32.06364 

Minimum 

temperature 
198 8.238797 7.754546 3.665236 .4818182 20.07273 

Yield 198 30 30 0 30 30 

Ferrara 

Maximum 

temperature 
198 15.09104 14 6.145688 1.991667 29.18333 

Minimum 

temperature 
198 5.57319 5.341667 4.807333 -2.8 17.08333 

Yield 198 60.20202 64 6.824827 48 64 

Foggia 

Maximum 

temperature 
198 15.9456 15.52292 4.463743 5.341667 27.81667 

Minimum 

temperature 
198 8.216098 7.877083 3.775962 -.8 18.29583 

Yield 198 31.25 31.25 0 31.25 31.25 

Grosseto 

Maximum 

temperature 
198 17.01996 16 4.174036 9.141176 27.51765 

Minimum 

temperature 
198 7.026352 6.997059 4.34386 -1.876471 16.59412 

Yield 198 38.79645 38.84181 .0815015 38.65074 38.84181 

Macerata 

Maximum 

temperature 
198 14.77406 14.60909 4.793149 5.263637 28.03636 

Minimum 

temperature 
198 6.397888 6.027273 4.163119 -.9909091 16.48182 

Yield 198 42.00229 42.00229 0 42.00229 42.00229 

Matera 

Maximum 

temperature 
198 16.14141 15.80333 4.373894 6.466667 30.13333 

Minimum 

temperature 
198 7.865387 7.27 3.649867 .06 17.63333 

Yield 198 29.68525 29.68525 0 29.68525 29.68525 

Palermo 

Maximum 

temperature 
198 16.95558 16.17143 3.899543 9.852381 33.84762 

Minimum 

temperature 
198 10.14218 9.728571 3.256468 3.638095 19.40952 

Yield 198 25.99503 25.99503 0 25.99503 25.99503 

Perugia  

Maximum 

temperature 
198 14.29614 13.5125 4.94103 4.515 26.96 

Minimum 

temperature 
198 5.502298 5.37 4.366943 -2.92 15.535 

Yield 198 45.45914 44.86486 1.067896 44.86486 47.36842 

Pesaro-Urbino 

Maximum 

temperature 
198 14.78035 14.34091 4.952188 4.390909 28.68182 

Minimum 

temperature 
198 6.921442 6.786364 4.275691 -.9363636 17.32727 

Yield 198 38.00858 38.00858 0 38.00858 38.00858 
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Pisa 

Maximum 

temperature 
198 16.72483 15.875 4.305614 7.983333 27 

Minimum 

temperature 
198 7.081019 7.179167 4.555321 -2.35 16.78333 

Yield 198 37.21282 40.33502 5.610488 27.1819 40.33502 

Potenza 

Maximum 

temperature 
198 14.74603 14.36087 4.311705 4.573913 28.35217 

Minimum 

temperature 
198 7.983707 7.556522 3.500149 -.1913043 18.28696 

Yield 198 27.29257 27.29257 0 27.29257 27.29257 

Ravenna 

Maximum 

temperature 
198 14.83678 14.03182 5.718577 2.609091 28.87273 

Minimum 

temperature 
198 5.954132 5.440909 4.503898 -2.563636 16.74545 

Yield 198 66.57576 68 2.55931 62 68 

Roma 

Maximum 

temperature 
198 17.05811 16.0775 3.893504 9.67 27.955 

Minimum 

temperature 
198 7.608207 7.3925 4.132565 -.35 19.59 

Yield 198 29.23737 29 .4265517 29 30 

Rovigo 

Maximum 

temperature 
198 14.97117 13.71818 5.981333 2.472727 28.05455 

Minimum 

temperature 
198 5.668916 5.363636 4.904146 -2.936364 17.71818 

Yield 198 56.23271 59.41509 5.718627 46.00845 59.41509 

Siena 

Maximum 

temperature 
198 15.97519 14.77813 4.710545 6.7125 27.15 

Minimum 

temperature 
198 5.882323 5.953125 4.678793 -3.45 16.81875 

Yield 198 37.53158 38 .8417409 36.02664 38 

Teramo 

Maximum 

temperature 
198 14.60795 14.2125 4.647457 3.6875 26.6625 

Minimum 

temperature 
198 7.074495 6.925 3.945144 -1.1 17.55 

Yield 198 39.80582 39.80582 0 39.80582 39.80582 

Trapani 

Maximum 

temperature 
198 17.92341 17.12143 3.75761 10.22857 33.5 

Minimum 

temperature 
198 10.757 10.63571 3.492239 2.428571 21.32857 

Yield 198 22.90524 23.80952 1.624959 20 23.80952 

Viterbo 

Maximum 

temperature 
198 16.60761 15.75 4.229603 8.413333 27.76667 

Minimum 

temperature 
198 7.143199 6.993333 4.106516 -.5666667 17.82 

Yield 198 38.73369 38.02031 1.281932 38.02031 41.02564 
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Table 7. Effects of earliness on the relationship between durum wheat yield and weather conditions 

 starting growing anthesis maturity end 

 EM MM LM EM MM LM EM MM LM EM MM LM EM MM LM 

Minimum 

temperature 

-0.21574*** -0.18915*** -0.14759*** -0.06015*** -0.05224*** -0.05544*** 0.15038*** 0.13949** 0.20802*** 0.07918 -0.02572 0.00233 -0.34243* -0.33464* 0.04429 

(0.05802) (0.05257) (0.04752) (0.01944) (0.01929) (0.01927) (0.05808) (0.06170) (0.06669) (0.07492) (0.07999) (0.08207) (0.19684) (0.20040) (0.20892) 

Minimum 

temperature (sq) 

0.01431*** 0.01298*** 0.00917*** -0.00322* -0.00413** -0.00298* -0.00987** -0.00865* -0.01692*** -0.00880* -0.00162 -0.00158 0.01720* 0.01595 -0.00285 

(0.00394) (0.00364) (0.00335) (0.00173) (0.00171) (0.00170) (0.00446) (0.00455) (0.00472) (0.00456) (0.00469) (0.00465) (0.01028) (0.01008) (0.01005) 

Maximum 

temperature 

0.48706*** 0.33811*** 0.25528*** 0.01712 0.00387 0.00921 -0.02972 0.01816 0.13013 0.00072 -0.15447 -0.26802*** -0.37884* -0.21556 -0.00099 

(0.11419) (0.09905) (0.08780) (0.03572) (0.03472) (0.03381) (0.07884) (0.08382) (0.08923) (0.09370) (0.09737) (0.09974) (0.22896) (0.21750) (0.22702) 

Maximum 

temperature (sq) 

-0.01716*** -0.01237*** -0.00938*** 0.00180 0.00269* 0.00222 0.00275 0.00028 -0.00333 -0.00035 0.00456* 0.00836*** 0.01483** 0.00983* 0.00423 

(0.00422) (0.00375) (0.00340) (0.00158) (0.00150) (0.00143) (0.00265) (0.00274) (0.00285) (0.00271) (0.00274) (0.00273) (0.00592) (0.00549) (0.00555) 

Prov FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 6,496 7,472 8,447 34,105 35,215 36,217 10,667 10,523 10,401 12,235 12,073 11,953 3,006 3,016 2,958 

No. of prov 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

Notes: EM, MM, and LM, indicate the early-, middle-, and late-maturing durum wheat earliness, respectively.  Results show the estimates of the regressions model (1) for each year. Standard errors 

are shown in parenthesis. Phenological stages have been identified through the GDD approach, starting from November 15 as sowing date.
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Chapter 5 

 

General conclusions 
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Main findings  

 

Given the potential impact of weather events on crop yields, understanding the dynamics yield-

weather may help the farmers to cope with climate risks. First, the thesis deepened the linkages 

between durum weather yields and weather events. The overall results showed that temperatures and 

precipitation affect durum wheat yields in a nonlinear way. However, these relationships are valid 

only in certain phenological stages and most variables are not statistically significant: this limit opens 

a reflection on the need to collect more spatially and temporally refined data. Second, the thesis 

investigated how weather events that occur in phenological stages identified by different approaches 

(i.e., temporal specifications), and how different weather variables and combinations of thereof (i.e., 

design specifications) within the econometric model may lead to different results in the yield-weather 

assessment. The evidence suggests that the number of observations is not related to the number of 

yields-weather relationship and, in general, crop evapotranspiration and diurnal temperature range 

positively affect the yields in all phenological stages. The choice of sowing dates may also play a 

crucial role: a 10-days shift may lead to a different estimation of yield losses due to changes in 

weather. Clustering for spatial dummies among provinces, it emerged that some weather variables are 

more important in some provinces than others. Another implication is that the choice of specifications 

of the econometric model is very important to catch the relationships weather-yields. The negative 

effect of low temperatures, especially during the early stages, is always caught, regardless of 

specifications. The Growing Degree Days model based on sowing dates provided by Agri4Cast 

dataset seems to be the best that is likely closest to what could happen on farms supported by the 

agronomic literature: minimum temperatures negatively affect the yields when they occur in the 

starting and development stages (Baldoni and Giardini, 2000; Whaley et al., 2004; Angelini, 2007; 

Barlow et al., 2015), maximum temperatures negatively affect the yields when they occur in the 

flowering stage (Farooq et al., 2014; Rezaei et al., 2015; Zampieri et al., 2017; Mäkinen et al., 2018), 

heavily precipitation negatively affect the yields when it occurs in the maturity stage (Zampieri et al., 

2017; Mäkinen et al., 2018). Third, the thesis assessed the effects of temperatures on durum wheat 

yields among early-maturing, middle-maturing, and late-maturing varieties, distinguishing the effects 

across five phenological stages (i.e., starting, growing, anthesis, maturity, and end) identified through 

the Growing Degree Days approach, starting from the middle of November as sowing date. The levels 

and changes in temperatures affect durum wheat yields in several ways. More specifically, upward 

changes in the minimum temperatures are detrimental for to yields when they occur in the starting 

and growing phases, regardless of the earliness. Increases in maximum temperatures are indeed 

positively correlated (until a threshold of 14-15 °C) with the yields if they occur in the starting stage, 
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whereas a negative effect is found when the event occurs at the maturity for late-maturing varieties 

or end stage for early-maturing varieties. Generally, the impacts of chronic heat stress, i.e., high 

temperatures for a longer duration, are lower than the heat shocks, i.e., extreme high temperatures for 

a short duration (Li et al., 2013). However, early maturing varieties provides a better adaptation under 

warming conditions (Mondal et at., 2013), also because they may escape from the damages due to 

high temperatures by anticipating the crop cycle. Cold stress may cause morphological, physiological, 

biochemical, and molecular modifications in wheat. Phenotypic screening of cold-tolerant genes, pre-

sowing seed treatments, and exogenous application of growth hormones may be a suitable solution 

tolerating severe low temperature extremes (Hassan et al., 2021).  

 

Limitation and future research 

 

The limitations of the research work are at least twofold: first, weather stations are not widely 

distributed, therefore, it makes difficult to collect more refined data (e.g., at farm-level) for further 

empirical estimates; second, the effect of weather variables on crop quality has been neglected. The 

weather index-based insurance, whose working principle is based on the relationship between weather 

variables and yield, is a promising risk management tool although it presents a major limitation, i.e., 

basis risk (Barnett and Mahul, 2007; Anghileri et al., 2022). In conclusion, several challenges need 

to be addressed to maximize the potential of insurance schemes based on the weather-indexes: (i) 

investments in weather monitoring systems, remote sensing technologies, and data collection 

networks to ensure accurate index calculations and timely payouts, e.g., using satellite-derived 

datasets based on Normalized Difference Vegetation Index, also supported by low-cost in situ sensors 

(Enenkel et al., 2019); (ii) design appropriate indices that accurately reflect the risk exposure of 

farmers and calibrated them to capture variations in crop performance due to changes in weather, also 

considering the phenological stages more susceptible (Tappi et al., 2023); (iii) affordability and 

accessibility of weather index insurance remain significand barriers for small-scale and marginalized 

farmers, e.g., premium costs should be affordable, and insurance products need to be tailored to the 

specific needs and limitation of different farming systems and regions; (iv) knowledge and awareness, 

e.g., dissemination through seminars and workshops, partnerships between stakeholders, public 

institutions, and insurance companies, in order to improve the participation in crop insurance schemes 

which il still low (Santeramo and Ramsey, 2017). Premium subsidies encourage farms to increase 

both crop acreage and insurance coverage (Yu et al., 2018). Clearly, insurance does not compensate 

for the entire loss but represented an aid to the farmer to stay in the market. Farmers need to be 

informed about the availability of these tools and encouraged to adopt them, and only through a 
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combination of complementary risk management strategies (e.g., agricultural diversification together 

to crop insurances or mutual funds) may build more resilient farms. Furthermore, it is essential to 

involve the stakeholders, policymakers, researchers, professional association, and agronomist to 

develop effective risk management solutions and protect agricultural and environmental heritage for 

generations to come.  
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