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Premise  

The research activity consists of 3 main parts:  

The first part was focused on the correlation between the LASP1 expression and the level of 

malignancy of cancer. The activities were represented by in vitro experiments on human breast cancer 

cells (MDA-MB-231, SK-BR-3 and MCF-7), human oral squamous cell carcinoma cell lines (CAL-

27, HSC-2) and human gynaecological leiomyosarcoma cell line (SKUT-1). All activities were 

supervised by my tutor prof. Lorenzo Lo Muzio and co-tutor Prof. Domenica Mangieri (University 

of Foggia).  

The second part of my research study was conducted in Rudbeck laboratory, Uppsala University, 

Sweden and was focused on the study of Src family kinases (SFKs) in the vascular biology. The 

experimental activities were done in vitro in endothelial cell line, Human Umbilical Vein Endothelial 

Cells (HUVECs). All the activities were supported by prof. Lena Claesson-Welsh and Ph.D. Yi Jin 

(Rudbeck laboratory, Vacular Biology, Uppsala University, Sweden).  

The third part of research study was concentrated on the role of natural compounds in 

chemoprevention/chemotherapy. To structure and highlight all studied information, I did the 

literature overview of two natural compounds: piperine and ginger. 
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1. Expression analysis of LASP1 in human cancer cell lines  

Introduction 

Cancer takes place by malignant transformation of normal cells; it remains one of the most common 

causes of death worldwide [1]. In fact, the survival rate for patients suffering from tumors in 

developed countries remains very poor, despite advances in diagnosis, surgery, radiation, 

chemotherapy as well as target therapy [2]. Generally, cancer onset and progression are complex 

phenomena that involve numerous steps and a number of signaling pathways [3]. LIM and SH3 

protein (LASP1), is an actin-binding protein. It is believed that this protein plays a crucial role in 

cancer dissemination, progression, metastasis, and angiogenesis [4]. Several studies documented that 

LASP1, ubiquitously expressed in cells [5, 6], results up-regulated in numerous different tumor 

entities; it seems to be involved in several cues of tumorigenesis of several cancers including 

gallbladder cancer, human non-small-cell lung cancer (NSLC), colorectal cancer (CRC), ovarian and 

breast cancers, and choriocarcinoma [4, 7-12]. Thus, LASP1 appears to exert a driving role in 

regulating cancer cell metastatic propensity, probably perturbing the architecture and dynamics of 

focal adhesion, triggering cell migration, and invasion facilitating the dissemination of tumors. 

Cancer strongly interacts with the surrounding microenvironment including stromal cells (endothelial 

cells), pericytes (neovascular component), fibroblasts and ECM molecules. All these factors 

contribute to establish the fate of neoplastic cells [3]. Interestingly, both tumor masses and 

surrounding microenvironment are often characterized by hypoxia that, in turn, stabilizes HIF-1α, 

which in form of heterodimeric transcription factor, acts on target genes expression [13]. Several 

studies documented that hypoxia is, in part, responsible for induction of epithelial-mesenchymal 

transition (EMT) in various carcinoma [14]. EMT is a positive phenomenon of tumor dissemination, 

however, the mechanisms implicated in cytoskeleton dynamic during this event are not very clear. 

Interestingly, LASP1 is known to be a target of HIF-1α [15], this aspect allows to suppose that LASP1 

https://www.ncbi.nlm.nih.gov/pubmed/22552811
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may have a crucial role during EMT and consequent cancer aggressiveness. As matter of fact, Salvi 

and co-workers demonstrated that hepatocellular carcinoma overexpressed Vimentin, a key EMT 

marker, by means of LASP1 [16]. Moreover, experimental data demonstrated that in severe tumor 

circumstances, LASP1 can break its linkage with cytoskeleton, reinforcing its binding with the tight 

junctions (TJs) protein ZO2, and, as dimer LASP1-ZO2, moves to the nucleus [17]. Remarkably, the 

molecular structure of LASP1 contains a LIM cysteine-rich domain (N-domain) composed of two 

zinc fingers (Fig. 1), thus it is conceivable that the protein can bind directly the DNA acting as a 

transcriptional factor and/or as a regulator of target genes including angiogenic and proteases genes, 

both implicated in cancer dissemination. 

 

Figure 1. Schematic representation of LASP1 domain structure. The N-terminal portion is a LIM 

cysteine-rich domain composed of two zinc-finger residues. LIM domain is followed by two 35-

residue nebulin-like segments, repeated in tandem, denominated, respectively, R1 and R2 domains. 

R1/R2 domains are flanked by a phosphorylation motif (Ser-146 and Tyr-171). The C-terminal is a 

SRC homology region 3 (SH3) domain. Modified from Ruggieri et al [6]. 

 

The main activity consisted in working with different tumor cell lines and finding the correlation 

between the LASP1 expression and the level of malignancy of cancer and its contribution to EMT 

and the consequent ability of tumor to disseminate, that augments its aggressiveness (Fig. 2). 
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Figure 2. LASP1 functions in the pathological processes of cancer cell. LASP1 actively 

contributes to tumor aggressiveness by promoting cell proliferation, metastasis dissemination, and 

chromatin remodelling through the direct and indirect interactions with several proteins. Moreover, 

LASP1 oncogenic activity is controlled by several miRNAs which are modulated by HIF-1α. LASP1 

interacting proteins are indicated. The direct and indirect binding partners are indicated in deep pink 

and light blue, respectively. ZYX: zyxin; PXN: paxillin; VCL: vinculin; ACT: actin; VIM: vimentin; 

S100A11: S100 calcium-binding protein A11; HI: histone H1; FLOT1: flotillin-1; ZO-2: zonula 

occludens 2; DNMT1: DNA methyltransferase 1; UHRF1: ubiquitin-like with PHD and ring finger 

domain 1; G9a: histone methyltransferase G9a; SNAIL: snail family transcriptional repressor 1; HIF-

1α: hypoxia-inducible factor 1-alpha subunit. Modified from Ruggieri et al [6]. 

 

As far as hypoxia, being the “hallmark of cancer”, controls both directly and indirectly the expression 

of specific genes including LASP1, I have studied the viability of cancer cells in different hypoxic 

conditions, and I was establishing a hypoxic model for MDA-MB-231 cells in vitro. 
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Material and Methods:  

Cell cultures 

Human breast cancer cell lines (MDA-MB-231, SK-BR-3 and MCF-7) were cultivated in Dulbecco’s 

Modified Eagle Medium High Glucose (DMEM HG) (GIBCOTM) containing L-Glutamine 4mM 

(GIBCOTM), 100 U/mL penicillin and 100 mg/mL streptomycin   supplemented with 10% Fetal 

Bovine Serum (FBS) (GIBCOTM) in a humidified chamber of 5% CO2 at 37°C. Human oral squamous 

cell carcinoma cell line (CAL-27) and a human gynaecological leiomyosarcoma cell line (SKUT-1) 

were cultured with DMEM Low Glucose (DMEM LG) (GIBCOTM) supplemented with 100 U/mL 

penicillin and 100 mg/mL streptomycin (GIBCOTM), 10% FBS (GIBCOTM) in a humidified chamber 

of 5% CO2 at 37°C. HSC-2, another type of human oral squamous cell carcinoma cell line was grown 

in Roswell Park Memorial Institute 1640 (RPMI-1640) (GIBCOTM) supplemented with 100 U/mL 

penicillin and 100 mg/mL streptomycin (GIBCOTM), 10% FBS (GIBCOTM) in a humidified chamber 

of 5% CO2 at 37°C. 

The above-mentioned cell lines were cultured at 30, 50 and 80% of confluence in the Petri dish (low, 

medium, and high density, respectively). 

Cell lysates and protein dosage  

The cells were scripped and the cell lysates were prepared by solubilization in Tris-HCl buffer, pH 

7.5, containing 1% Igepal CA-630 (Spectrum chemical), 150 mM NaCl and proteinase inhibitor 

(100:1). The protein content of cell lysates was measured with Bradford method [18] and the samples 

were stored at -80°C until use. 

Western blotting 

The lysates were resolved by SDS-PAGE on an 12% gradient gel, 25µg of proteins was loaded in 

each lane. Proteins were then transferred to polyvinylidene fluoride (PVDF) membrane using the 

BIORAD Trans-Blot® Turbo™ Blotting System. The saturation of membrane was performed with 

https://en.wiktionary.org/wiki/%C2%B5
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10% of dry milk diluted in Tween-Tris-buffered saline (TTBS) for 1 hour at 37°C. Consecutively, 

the incubation using the specific primary rabbit anti-human LASP-1 antibody (ABCAM; code 

ab156872,) diluted in TTBS (1:20000) was done and was left overnight. The next day, after 3 washes 

in TTBS, the membrane was incubated with a goat anti-rabbit peroxidase-conjugated secondary 

antibody (Thermo Fisher Scientific; code 31460) diluted in TTBS (1:20000). Signals were visualized 

using the BIORAD ChemiDoc™ MP Imaging System. After that the stripping of membrane with a 

NaOH 0,25M was performed, the saturation in 10% dry milk was repeated for 1 hour on 37°C. 

Following, the incubation with the mouse anti-human beta-actin primary antibody diluted in Tris-

buffered saline (TBS) (1:10000) was left overnight. The next, day after 3 washes in TBS, the 

incubation with anti-mouse peroxidase-conjugated secondary antibody diluted TBS (1:2500) was 

performed. Signals were visualized using the BIORAD ChemiDoc™ MP Imaging System. 

Chemically induced hypoxia and viability analysis assay 

CoCl2 is often used to simulate a hypoxic environment for cell cultures [19]. In this study, confluent 

MDA-MB-231 cell line was cultured in DMEM with various concentrations of CoCl2 (50µM, 100 

µM, 200 µM) (Alfa Aesar™) and for different time duration (24h and 48 h). The cell viability analysis 

was performed by using trypan blue assay. 

 

  

https://it.vwr.com/store/product/21761132/tween-tris-buffered-saline-ttbs-10x-concentrate-ph-7-5
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwirsaSfqtf0AhXFOuwKHY0RAgAQFnoECAQQAQ&url=https%3A%2F%2Fwww.fishersci.it%2Fshop%2Fproducts%2Fcobalt-ii-chloride-anhydrous-97%2F11449517&usg=AOvVaw1YxAuP7CZ0gdrEHC8PE6kn
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Results and discussion  

In this study I first investigated the expression of LASP1 in a wide spectrum of cancer cells (Tab. 1), 

then I studied the effect of a hypoxic environment on the cell viability and on the biological behavior 

focusing on breast cancer MDA-MB-231 cells due to this cell line aggressiveness.  

 

Table 1. Cell lines studied and their main characteristics.  

Cell line  Main characteristics 

MDA-MB-231 Cell line derived from human mammary gland/breast; adenocarcinoma;                              

   originated from metastatic site: pleural effusion; highly aggressive, invasive  

                          and poorly differentiated triple-negative breast cancer (TNBC). 

SK-BR-3                 Cell line derived from human mammary gland/breast; adenocarcinoma; 

                             originated from metastatic site: pleural effusion; over-expresses the HER2 

                             gene product. 

MCF-7                  Cell line derived from human mammary gland/breast; adenocarcinoma; 

 originated from metastatic site: pleural effusion; cells have characteristics of  

 differentiated mammary epithelium. 

CAL-27  Poorly differentiated human squamous cell carcinoma at the middle of the  

 tongue; cells were resistant to treatment with VDS (vindesine sulfate),  

 CDP (cis-platinum) or ACTD (actinomycin D). 

HSC-2 Human oral cavity squamous cell carcinoma; cell line has neither invasive 

 nor metastatic potential. 

SKUT-1                 Uterine corpus leiomyosarcoma; cell line has a moderate invasive  

 properties. 

The information about cell lines was taken from https://www.lgcstandards-atcc.org/?geo_country=it 

and http://cellbank.nibiohn.go.jp/english/. 

 

 

As LASP1 is predominantly involved in the reorganization of cytoskeleton during cellular motility, 

the expression of LASP1 within the cells of the same cell line in different degrees of confluence was 

monitored (Fig. 3-5).  

 

http://cellbank.nibiohn.go.jp/english/
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Figure 3. Phase-contrast imaging for demonstration low, medium, and high densities of cell 

lines. MDA-MB-231 (panels A, B, C); MCF-7 (panels D, E, F); SK-BR-3 (panels G, H, I); CAL-27 

(panels J, K, L); HSC-2 (panels M, N, O); SKUT-1 (panels P, Q, R). The microscope effective 

magnification is 10x.  
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Figure 4. Analysis of LASP1 expression in different human breast cancer cells. (A) 

Representative western blot reflecting LASP1 protein level in MDA-MB-231, SK-BR-3, MCF-7 cell 

lysate; β-actin was used as a western blotting loading control. Signals were visualized using the 

BIORAD ChemiDoc™ MP Imaging System. (B) Normalized LASP1 expression (Normalized pixel 

density (NPD) within cell lines MDA-MB-231 and MCF-7 cell lines. 
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Figure 5. Analysis of LASP1 expression in different cell lines. (A). Western blot analysis of LASP1 

in SKUT-1, HSC-2, CAL-27, and SK-BR-3 cell lines; β-actin was used as a western blotting loading 

control. Signals were visualized using the BIORAD ChemiDoc™ MP Imaging System. (B) 

Normalized LASP1 expression (NPD) within cell lines HSC-2 and CAL-27 cell lines. 
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MDA-MB-231 is a highly aggressive, invasive, and poorly differentiated triple-negative breast cancer 

(TNBC) cell line [20, 21] and is more malignant than SK-BR-3 and MCF-7. In this work, LASP1 

results highly expressed in the MDA-MB-231 (regardless of confluence), more than in the SK-BR-3 

and MCF-7 cell lines. Thus, it is plausible to speculate that LASP1 correlates to the malignancy of 

the cancer cell lines. In the resting conditions, LASP1 localizes at the baso-lateral level of cellular 

membrane, where it regulates the anchorage of cells to ECM, interacting with actin as well as other 

components of focal adhesions (FAs) [6]. During cell migration and invasion (both crucial events in 

metastatic process) it localizes in the invasive membrane protrusions such as podosoma, lamellipodia, 

filopodia and invadopodia [4, 7, 17, 22-24]. Importantly, Endres and co-workers observed that 

LASP1 improved cell breast and prostate cancer invasion in vitro, both directly, acting on cellular 

projection formation, and indirectly, by promoting the secretion and activation of MMP-1, -2, -3, and 

-9 in these same invasive cellular protrusions [7].  

CAL-27 is a highly malignant and metastatic oral squamous cancer cell line, resistant to drug 

treatment. Notably, CAL-27 is more metastatic and malignant than HSC-2. Interestingly, the 

preliminary data of this work demonstrated that the LASP1 resulted more expressed in CAL-27 than 

in HCS-2 cell line. In particular, the higher expression of LASP1 in CAL-27 compared to its 

expression within HSC-2 is more evident in the medium density (representing the “exponential phase 

of cellular growth”). This leads to contemplate, as it has been already speculated for the breast cancer, 

the idea that the expression of LASP1 also for these two cell lines may be linked to the cell 

malignancy.  

In this experiment was noticed a difference between the LASP1 expression in breast cancer and oral 

squamous cell carcinoma cell lines (LASP1 in MDA-MB-231 in low density and medium densities 

is more expressed than in CAL-27 in the densities). But, as was mentioned above, these are 

preliminary data, thus it is difficult to make some final conclusions or comments, also because the 

results deal with different types of cancer.  
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Hypoxia indicates a decrease in the concentration of available oxygen at the tissues level. Hypoxia is 

able to limit and even arrest the physiological function of organs, tissue and cells [25]. Tumor cells 

commonly induce hypoxic conditions, caused by the rapid growth of tumor cells and the relatively 

limited blood supply in tumors [26, 27]. Hypoxia, in its turn, stabilizes HIF-1α, which in form of 

heterodimeric transcription factor, acts on target genes expression [13]. Interestingly, LASP1 is 

known to be a target of HIF-1α [15], this aspect allows to suppose that LASP1 may have a crucial 

role during EMT and consequent cancer aggressiveness.  

Treating Human breast cancer cells MDA-MB-231 with CoCl2 permitted to create the hypoxic 

conditions that are so characteristic for tumor microenvironment. The task of the experiment (using 

CoCl2 to mimic the hypoxic conditions in breast cancer cells) was to investigate the effect of a 

hypoxic environment on the cell viability and on the biological behavior of breast cancer MDA-MB-

231 cells. The aim of treating MDA-MB-231 cells with 50, 100, and 200 µM CoCl2 for 24h and 48 h 

(Fig. 6, Tab. 2) was to establish a hypoxic model for MDA-MB-231 cells in vitro.  
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Figure 6. Cellular viability after CoCl2 incubation. The percentage of live cells demonstrated after 

24h and 48h incubation with different concentrations (50µM, 100µM, 200µM) of CoCl2. The cell 

line, used for the cell viability detection, was human breast cancer cells MDA-MB-231. 

 

Table 2. The viability of MDA-MB-231 shown in percentage of live cell after 24h and 48h 

incubation with different concentrations (50µM, 100µM, 200µM) of CoCl2. 

 24h cell viability, % 48h cell viability, % 

50 µM CoCl2 concentration 97 97 

100µM CoCl2 concentration 

200 µM CoCl2 concentration 

CTRL (no CoCl2 added) 

96 

95 

100 

90 

93 

97 

  



Dr. Mariia Zadorozhna Final 

thesis 

 

17 
 

 

 

 

 

 

 

 

 

 

 

Part II   
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Vascular Biology research group Lena Claesson-Welsh, Department of Immunology, Genetics and 

Pathology (Rudbeck laboratory, Uppsala University, Sweden) 

In this laboratory I studied the role of SFKs (especially its member YES) in the dynamics of 

endothelial junctions in endothelial cells (ECs), and its role in cell migration.  

Research Activity 

Introduction 

Blood and lymphatic vasculature provide all body tissues with vital and essential elements, controls 

the levels of oxygen and removal of waste products [28]. Notably, the barrier between vascular lumen 

and around tissues is lined with endothelial cells (ECs) [29].  

The EC barrier controls exchange of all contents, arriving with blood [30]. To reach their destination 

all immune cells, gases, nutrients, hormones and growth factors must go through the EC barrier [31]. 

Additionally, the opening of junctions between ECs is needed to permit leakage for the passage of 

cells and larger molecules (>70 kDa) through the barrier [32].  

Within lots of diseases (i.e., inflammatory conditions, retinopathies, and cancer) vascular leakage 

aggravates the disease because of its persistence and debilitation of microenvironment [33].  

In the endothelium of established blood vessels, cell–cell junctions connect and coordinate the 

activities of the individual ECs for the control of vascular permeability, immune cell trafficking, and 

angiogenesis [34, 35]. The cell–cell junctions in the endothelium are defined as tight junctions (TJs) 

and adherens junctions (AJs), which are intermixed in ECs [36]. 

Adherens junctions are composed of the EC-specific vascular endothelial cadherin (VE-cadherin) 

[37]. VE-cadherin provides homophilic interactions between neighbouring ECs, and is associated 

with  (α)-, (β)- and (γ)-catenins, which in its turn connect to the cytoskeleton [38].  

https://katalog.uu.se/organisation/?orgId=X39:12
https://katalog.uu.se/organisation/?orgId=X39:12
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Tight junctions are built up of a range of proteins including claudins, occludins, JAMA and cingulin 

[39]. Interestingly some of these proteins are EC-specific (i.e., Claudin-5 (Cldn5)), which like VE-

cadherin, forms homophilic interactions between ECs [40].  

Adherens junctions can disassemble in response to certain stimuli such as inflammatory cytokines 

(e.g., histamine/bradykinin) and VEGF, by c-Src-mediated VE-cadherin phosphorylation [41] (Fig. 

7).  

 

 

Figure 7. Summary of signalling events downstream of VEGFR2 in regulation of VEGFA-

induced vascular permeability. Red rectangles indicate the VEGFR2–TSAd–Src–VE-cadherin 

pathway. Modified from Claesson-Welsh et al [42]. 

 

Thus, the components of adherens junctions have been figured out, but molecules that co-organize 

and regulate their function remain to be unclear. The composition and regulation of tight junctions 

has been even less studied. In the CNS, tight junctions are present in all vessels (arteries, capillaries, 

veins), providing an impermeable barrier that protects the sensitive brain tissue from inflammation, 

infection and oedema [43].  

As mentioned above, the phosphorylation of AJs component VE-cadherin is mediated by Src family 

kinases’ (SFKs) member, c-Src.  
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SFKs are the group of nonreceptor tyrosine kinases involved in the regulation of various signaling 

pathways involved in proliferation, survival, migration, angiogenesis, and metastasis (Fig. 8).  

 

Figure 8. SFK signaling pathways and function. SFKs role in angiogenesis, survival, proliferation, 

transcription, invasiveness, metastasis, and motility. Modified from Kim et al [44].  

 

SFKs are regulated by different growth factors and antigen receptors and their activation is important 

for generating appropriate cellular response [45]. There are 10 known members of this family: Src, 

Frk, Lck, Lyn, Blk, Hck, Fyn, Yrk, Fgr, and Yes [46]. These proteins share four Src homology (SH) 

domains involved in catalytic activity, protein-protein interaction, and cell membrane binding [47] 

(Fig. 9). 
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Figure 9. Schematic model of Src family kinases. SFKs conserved domain organization includes a 

myristoylated N-terminal segment followed by SH3, SH2, and tyrosine kinase domains, and a short 

C-terminal tail. The two main phosphorylation sites in SFKs are Tyr 416 located on the SH1 domain 

and Tyr 527 on the regulatory domain near the carboxy terminus. Modified from Okada et al [48]. 

 

There are some studies that explain the role of c-Src in the vascular permeability. c-Src activation in 

a VEGF (Vascular endothelial growth factor)/T cell-specific adapter (TSAd)-dependent manner, 

induce the activation of vascular permeability [49]. 

The aim of this study is to figure out the role of another SFK member, YES, in the endothelial junction 

dynamics.  
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Methods: 

Cell cultures.  

Endothelial cell line HUVEC was cultivated in Endothelial Cell GM MV2 medium (Sigma-Aldrich) 

supplemented with Fetal Calf Serum (FCS) (Sigma-Aldrich) at final concentration 0,05ml/ml (Sigma-

Aldrich), Epidermal Growth Factor (recombinant human) (hEGF) 5 ng/ml (Sigma-Aldrich), 

Hydrocortisone (HC) 0,2µg/ml (Sigma-Aldrich), Vascular Endothelial Growth Factor 165 

(recombinant human) (VEGF) 0,5ng/ml (Sigma-Aldrich), Basic Fibroblast Growth Factor 

(recombinant human) (hbFGF) 10 ng/ml (Sigma-Aldrich), Insulin-like Growth Factor (Long R3 IGF) 

(R3 IGF) 20ng/ml (Sigma-Aldrich), Ascorbic Acid (AA) 1 µg/ml (Sigma-Aldrich) in a humidified 

chamber of 5% CO2 at 37°C.  

 

siRNA transfection and starvation assay.  

In order to suppress YES and SRC expression, cultured HUVECs were transfected with YES and 

SRC short interfering (si)RNA (Sigma-Aldrich). An additional non-targeting scrambled siRNA 

served as a negative control (Sigma-Aldrich). HUVECs were transfected with the siRNAs using 

LIPOFECTAMINE RNAiMAX (Invitrogen). Then 48h after transfection the cells were incubated for 

3 hours with Starvation medium (Endothelial Cell GM MV2 medium without any supplement except 

0,2% FCS). 

 

VEGFA stimulation.  

After the 3h incubation with Starvation Medium (Endothelial Cell GM MV2 medium without any 

supplement except 0,2% FCS), cells were stimulated with VEGFA (PeproTech) for 5 and 15 minutes 

at the final concentration of 50ng/ml.  
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Cell lysates and protein dosage.  

Cells were scrapped and the cell lysates were prepared by solubilization in Lysis buffer (50mM Tris 

pH 7.5, 10mM MgCl2, 0,5M NaCl, 2% Igepal), containing proteinase and phosphatase inhibitors. The 

protein content of cell lysates was measured with Bradford method using the SYNERGY HTX multi-

mode reader. The cell lysates then were frozen at -80 °C until use. 

Western blotting.  

The lysates were loaded into NuPAGETM 2-12% Bis-Tris Gel, 30µg of proteins was loaded in each 

lane. Proteins were then transferred to PVDF membrane using the XCell II TM Blot Module (Life 

technologies). The saturation of membrane was performed with 5% of dry milk diluted in TTBS for 

normal protein and with 5% BSA diluted in TTBS for phosphorylated proteins for 1 hour at room 

temperature (RT). Consecutively, the incubation with the specific primary rabbit anti-human 

pVEGFR2 (phosphorylated Vascular Endothelial Growth Factor Receptor 2) (Y949) antibody 

(ABCAM), specific primary rabbit anti-human pSTAT1 (Signal transducer and activator of 

transcription 1) antibody (Cell Signalling), specific primary mouse anti-human VEGFR2 antibody 

(Santa Cruz), specific primary mouse anti-human STAT1 antibody (Abcam), specific primary mouse 

anti-human GAPDH antibody (Abcam), specific primary mouse anti-human YES antibody (BD 

bioscience) diluted in 5% dry milk for normal proteins (1:1000) and in 5% BSA for phosphorylated 

proteins (1:1000) was done and was left overnight at +4°C. The next day, after 3 washes in TBS-T, 

the membrane was incubated with a ECLTM Anti-rabbit IgG, Horseradish Peroxidase linked whole 

antibody (from donkey) (GE Healthcare Life Sciences) and ECL TM Anti-mouse IgG, Horseradish 

Peroxidase linked whole antibody (from sheep) (GE Healthcare Life Sciences) respectively, diluted 

in 5% BSA for phosphorylated proteins and in 5% dry milk for normal proteins (1:10000) for 1h at 

RT. Signals were visualized using the BIORAD ChemiDoc™ MP Imaging System (Fig. 10). The 

analysis of proteins expression was done with Image Lab software (Fig. 11, 12).  

https://en.wiktionary.org/wiki/%C2%B5
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Figure 10. Western Blotting analysis of VEGF/VEGFR2 signal pathway. The analysis of proteins 

expression was done within siCTRL, siYES, siSCR HUVECs treated (for 5 min and 15 min) or not 

with VEGFA (50 ng/ml). Membranes treated with specific primary antibodies (VEGFR2 and 

pVEGFR; STAT1 and pSTAT1; YES) and with a peroxidase-conjugated secondary antibodies. The 

analysis of proteins expression was done within siCTRL, siYES, siSCR HUVECs treated (for 5 min 

and 15 min) or not with VEGFA (50 ng/ml). 
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Figure 11A, 11B. Normalized pVEGFR2 expression. Expression levels of all proteins blotted for 

was analyzed by Image Lab software. Expression level of pVEGFR2 (Y949) initially normalized to 

GAPDH expression, after that VEGFR2 normalization to GAPDH was done, and as a final step the 

ratio of normalized pVEGFR2 to normalized VEGFR2 was found. The analysis of proteins 

expression was done within siCTRL, siYES, siSCR HUVECs treated (for 5 min and 15 min) or not 

with VEGFA (50 ng/ml). Experiments were performed at least three independent times. 
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Figure 12A, 12B. Normalized pSTAT1 expression. Expression levels of all proteins blotted for was 

analyzed by Image Lab. Expression level of pSTAT1 initially normalized to GAPDH expression, 

after that STAT1 normalization to GAPDH was done, and as a final step the ratio of normalized 

pSTAT1 to normalized STAT1 was found. The analysis of proteins expression was done within 

siCTRL, siYES, siSCR HUVECs treated (for 5 min and 15 min) or not with VEGFA (50 ng/ml). 

Experiments were performed at least three independent times. 
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Immunofluorescence staining analysis.  

The cells were seeded into the 6-well plate upon cover slips (Menzel-Gläser), and after transfection, 

incubation with Starvation medium and stimulation with VEGFA for 5 min and 15 min, cells were 

fixed with 2 ml per well of 4% paraformaldehyde for 10 min at RT, washed with PBS-T (Triton 

0,05%) three times (5 min/time) and permeabilized with a mixture of 3% BSA and 0,3% Triton X-

100. The cells were immunofluorescently stained with pPaxillin (pPAX) (Invitrogen) antibody, which 

was diluted 1:500 in 1% BSA and 0,1% Triton Blocking buffer, overnight at 4 °C. The cells were 

then washed with PBS-T three times (5 min/time) and incubated with donkey anti-rabbit IgG (H+L) 

ReadyProbes™ Secondary Antibody diluted in 1:500 in 1% BSA and 0,1% Triton Blocking buffer 

in the dark at room temperature for 1 h. Then cells were washed with PBS three times (5 min/time). 

The cover slips were mounted with DAPI Fluoromount-G (SouthernBiotech) onto the Menzel-Gläser 

Superfrost Plus (Thermo Scientific). Cells were examined by Leica SP8 LIGHTNING Confocal 

Microscope (Fig. 13). 

  

https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
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Figure 13. pPAX immunostaining in HUVECs. (A) pPAX immunostaining (red) on siCTRL and 

siYES HUVECs treated (for 5 min and 15 min) or not with VEGFA (50 ng/ml). DAPI (blue) staining 

shows nuclei. (B) pPAX-positive staining normalized to cell quantity for each condition. 

  

https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8/
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Scratch assay and live imaging.  

Several hours before live imaging SiR actin dye (Cytoskeleton, Inc.) was added to the wells 

previously silueted in Endothelial Cell GM MV2 medium. Right before live imaging the scratch assay 

was performed with a tip in both studied conditions: HUVEC siCTRL and HUVEC siYES. After that 

the the medium within the wells was changed to the fresh Endothelial Cell GM MV2 medium. Live 

imaging was performed for 15 hours with Leica SP8 LIGHTNING Confocal Microscope (Fig. 14). 

 

 

Figure 14. Live imaging of HUVEC siCTRL and HUVEC siYES. Imaging was accomplished for 

5 hours after using SiR actin dye and after performing the scratch assay.  
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Preliminary results and discussion  

Endothelial cells maintain homeostasis by regulating the passage of cells, fluid, and protein from the 

vascular space to the interstitial space [50]. Physiologic responses to trauma, infection, and tumor 

growth involve the production of cytokines and growth factors that bind their cognate receptors on 

endothelial cells. Such receptor binding results in the tyrosine phosphorylation of numerous 

molecules that effect changes in vascular permeability, including SFKs [51]. 

SFKs are signalling enzymes that have been recognized to regulate critical cellular processes such as 

proliferation, survival, migration, and metastasis. [47]. Studies of signalling pathways leading to the 

activation of Src and its closely related homologs in SFKs have been central toward understanding 

normal growth-regulatory processes, including proliferation, apoptosis, cell cycle control, 

angiogenesis, cell-cell adhesion, and communication [52].  

Src associates with adherens junctions by interacting with VE-cadherin [53]. Upon association in 

protein complexes, Src can phosphorylate VE-cadherin [54]. VEGF-A is produced under physiologic 

conditions by numerous cells, including tumor cells, and signals through receptor tyrosine kinases 

via autocrine and paracrine mechanisms [55]. Upon VEGF-A binding to its cognate receptors 

(VEGFR1 and VEGFR2 in vascular ECs), the intrinsic tyrosine kinase activity of these receptors is 

activated, leading to trans-phosphorylation and direct interaction with many SH-2-containing 

signalling molecules, including Src [56]. Once bound to VEGFR1 or VEGFR2, Src undergoes a 

conformational change leading to its activation and the subsequent phosphorylation of VE-cadherin 

[57]. The study of molecules that co-organize and regulate the functions of endothelial junctions is 

very important for better understanding of their dynamics in normal and pathological conditions.  

Analysing the expression levels of phosphorylated STAT1, it is noticeable, that siRNA-mediated 

YES knock-down (siYES) HUVECs have the lowest expression levels of pSTAT1 (Fig. 10,12). The 

difference between siRNA-mediated Src knock-down (siSRC) HUVECs pSTAT1 levels and 
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HUVECs transfected with a non-targeting control siRNA (siCTRL HUVECs) is observable. Data 

suggest that SFKs are involved in activation of STAT1.  

Paxillin, being one of the first adaptor molecules identified within adhesions, is a canonical adapter 

protein containing four LIM domains (double-zinc finger domains that regulate protein interactions) 

of which LIM2 and LIM3 are important for targeting paxillin to adhesions [58]. Paxillin contains 

many phosphorylation sites that act as substrates for kinases and phosphatases that regulate cell 

migration and adhesion dynamics [59]. Paxillin tyrosine phosphorylation is associated with the focal 

adhesion formation during cell migration [59]. Analysing immunostaining experiment results, I 

compare the quantity of pPAX within siYES HUVECs and siCTRL HUVECs (Fig. 13). It is 

noticeable that there is more pPAX within siYES HUVECs than in siCTRL cells. It is also plausible, 

that in siYES cells pPAX is more distributed in the focal adhesion sites. The highest level of PAX 

phosphorylation is observed in siYES cells treated for 5 min with VEGFA. The increased adhesion 

site size phosphoryation of paxillin might provoke the disassembly of adhesion sites what in its turn 

effect cell motility. 

By analysing the results of live imaging performed within HUVEC siCTRL and HUVEC siYES it 

becomes evident the differences between these 2 conditions. The movements of HUVEC siYES were 

less orchestrated, and the cells were more tended to lose and break adherens junctions. In the contrast, 

the movements of HUVEC siCTRL were more organised, more structured, and the adherens junctions 

were more stable in comparison to HUVEC siYES (Fig. 14).  

Better understanding of the mechanisms of SFK influence on cell-cell connection remodelling has an 

enormous interest in the therapeutic potential of SFK moderation treatment within inflammation-

related illnesses and neoplasms.  
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The role of natural compound in chemioprevention and chemiotherapy 

Another area of my research focus were natural compounds in chemoprevention/chemotherapy. To 

structure and highlight all studied information I did literature overview of two natural compounds: 

piperine and ginger.  

Since cancer is one of the most common and incurable diseases in humans, several pharmacological 

approaches have been developed (radiotherapy, chemotherapy, surgical intervention, target therapy) 

for the treatment of tumors and related metastasis. However, many counterproductive effects have 

been found including multidrug resistance [60]. It was evidenced that a healthy diet coupled with the 

consumption of specific phytochemical compounds may play a protective role against tumor onset 

[61-64]. According to this idea, it has been recently introduced the concept of “chemoprevention”, a 

term that refers to natural agents with the capability to hinder the malignant transformation and 

dissemination with negligible side effects [61]. The chemopreventive molecular mechanisms of 

piperine and ginger derivatives include cell cycle arrest, induction of cancer cell death, misbalancing 

of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of 

cancer cells in different cancer types (Fig. 15).  

The published reviews of chemopreventive/chemotherapeutic effects of piperine and ginger are 

presented below.  

 

 

  



Dr. Mariia Zadorozhna Final 

thesis 

 

34 
 

 

Figure 15. Schematic chemopreventive mechanisms of natural compounds. Natural compounds 

induce cell cycle arrest, cancer cell death and misbalancing of redox homeostasis. Furthermore, these 

compounds inhibit cancer stem cell formation, angiogenesis, epithelial-mesenchymal transition and, 

in parallel, decrease multidrug resistance. 
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Abstract
Cancer is among the leading causes of death worldwide. Several pharmacological protocols have been developed in order 
to block tumor progression often showing partial efficacy and severe counterproductive effects. It is now conceived that a 
healthy lifestyle coupled with the consumption of certain phytochemicals can play a protective role against tumor develop-
ment and progression. According to this vision, it has been introduced the concept of “chemoprevention”. This term refers to 
natural agents with the capability to interfere with the tumorigenesis and metastasis, or at least, attenuate the cancer-related 
symptoms. Piperine (1-Piperoylpiperidine), a main extract of Piper longum and Piper nigrum, is an alkaloid with a long 
history of medicinal use. In fact, it exhibits a variety of biochemical and pharmaceutical properties, including chemopreven-
tive activities without significant cytotoxic effects on normal cells, at least at doses < of 250 µg/ml. The aim of this review 
is to discuss the relevant molecular and cellular mechanisms underlying the chemopreventive action of this natural alkaloid.

Keywords Piperine · Chemoprevention · Natural compounds · Cancer therapy
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JNK  Jun N-terminal kinase
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MMPs  Matrix metalloproteinases
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STAT-3  Signal transducer and activator of 
transcription-3

TGF-β  Trasformin growth factor-beta
TQ  Thymoquinone
UV  Ultraviolet
UDP-GDH  Uridine diphosphate -glucose dehydrogenase
UDP-GT  Uridine diphosphate-glucoronyl transferase
VEGF  Vascular endothelial growth factor/receptors
VEGFRs  VEGF receptors
XO  Xanthine oxidase

Introduction

Cancer is one of the most common and incurable diseases 
in human in spite of improved approaches to the detection 
and treatment of this pathology. Several pharmacological 
approaches have been developed (radiotherapy, chemother-
apy, surgical intervention, target therapy) for the treatment of 
tumors and related metastasis, however many counterproduc-
tive effects have been found including multidrug resistance 
[1]. Genetic, environmental and lifestyle factors can con-
tribute to cancer risk. In fact, as emerged from experimental 
studies, several elements including unhealthy diet, cigarette 
smoking, alcohol consumption, environmental carcinogens, 
ultraviolet (UV) exposure, stress, physical inactivity as well 
as hormonal factors, strictly correlate to cancer onset and 
dissemination [2–4]. By contrast, a healthy diet coupled with 
the consumption of specific phytochemical compounds may 
play a protective role against tumor onset [5–8]. According 
to this idea, it has been recently introduced the concept of 
“chemoprevention”, a term that refers to natural agents with 
the capability to hinder the malignant transformation and 
dissemination with negligible side effects [5]. Piperine is 
one of the most widespread dietary alkaloid (Fig. 1) prin-
cipally found in the fruits and roots of Piper nigrum (black 
pepper) and Piper longum (long pepper) [9]. This compound 
is well known for its anti-inflammatory, immunosuppressive 

and antibiotics proprieties [9]. Additional studies attribute to 
piperine also chemopreventive/anti-cancer actions [10–15]. 
In this regard, the main cellular biological effects of piperine 
in vitro at specific doses (75–200 µM) and time of incubation 
(24–48 h) seem to include: inhibition of cellular prolifera-
tion and migration, arrest of cell cycle, induction of cancer 
cells death, alterations in redox homeostasis, modulation of 
angiogenesis and degradation of extracellular matrix (ECM) 
as detailed below (Fig. 2c, Table 1). Remarkably, it was also 
found that piperine may enhance tumour’s susceptibility to 
current anti-neoplastic drugs [1, 16, 17]. Interestingly, pip-
erine shows an anti-tumor action also in animal models [8, 
9]. Here we review the current knowledge about pharmaceu-
tical properties of piperine emphasizing the main relevant 
molecular and cellular mechanisms underlying its chemo-
preventive action (Fig. 3).

Piperine arrests cell cycle and cancer growth

Piperine is able to modulate cell cycle progression as a 
part of their chemopreventive mechanism [18] (Fig. 2a). 
Cell cycle is crucial to maintain cell proliferation and 
tissues integrity; it is, therefore, carefully regulated in 
well-defined checkpoints by specific proteins and kinases 
including cyclins, cyclin-dependent kinases (CDKs), and 
CDK inhibitors (CKIs) [19]. Deregulation of cell cycle 
and/or its arrest is often responsible of severe pathologies, 
including cancer [19, 20]. As mentioned above, piperine 
shows the ability to control the relevant checkpoints of 
cell cycle in tumor, contrasting with its progression [21]. 
For example, piperine results cytotoxic for human and 
murine melanoma cells (SKMEL-28 and B16F0, respec-
tively) in which it causes arrest of cell cycle at G1 phase 
by downregulating the level of cyclin D1 and the activa-
tion of CDK inhibitor-1 (p21/WAF1) [22]. In these same 
circumstances, it was observed that the alkaloid disrupts 
reactive oxygen species (ROS) homeostasis that, in turn, 
causes DNA, lipids and proteins damages [22]. Similar 
results were observed in vitro in human colon cancer, in 
which piperine arrests cell cycle at G1 phase downregu-
lating D1 and D2 cyclins and their partners CKD4 and 
CDK6 [23]. In this instance, piperine facilitated a reduc-
tion in phosphorylation of the retinoblastoma (Rb) protein 
and an up-regulation of p21/WAF1 and p27/KIP1 expres-
sion [23]. Comparable outcomes were reported in human 
prostate cancer cell lines, both in androgen dependent 
PC3 cells and androgen independent cells like LNCaP 
and DU145 lines, in which piperine arrests cell cycle at 
G0/G1 phase interfering with the expression of the CDK 
inhibitors p21 and p27 [24]. Other investigations showed 
that 1-Piperoylpiperidine is also able to block cell cycle 
at G2/M phase in some tumor models, including human 
osteosarcoma cells and in murine breast cancer (4T1 

Fig. 1  Chemical structure of piperine (1-[5-(1,3-benzodioxol-5- yl)-
1-oxo-2,4-pentadienyl]). Piperine is a hydrophobic alkaloid contain-
ing a heterocyclic ring structure and a basic nitrogen atom located 
inside the ring structure
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Fig. 2  Schematic anti-cancer action of piperine. a The alkaloid 
reduces cancer cell proliferation, interferes with cell cycle, cause an 
imbalance in cellular redox homeostasis, b and induces cell death. c 
Additionally, piperine inhibits angiogenesis, ECM degradation and 

thereby impedes the spreading of tumor cells and inhibits CSCs self-
renewal. d Furthermore, Piperine enhances the bioactivity of chemi-
cal and natural drugs

Table 1  Effects of piperine in different types of cancers

Molecular action of piperine in different kind of cancer
ROS reactive oxygen species, CDK cyclin-dependent kinases, p21 cyclin-dependent kinase inhibitor/p21, p27 cyclin-dependent kinase inhibitor 
1B/p27, PARP poly-ADP ribose polymerase, CD1 cyclin D1, CDKs cyclin-dependent kinases, mTORC1 mammalian target of rapamycin com-
plex-1, PKCα phospho-kinase C-alpha, ERK1/2 extracellular-regulated kinase 1/2, NF-κB nuclear factor-κB, AP-1 activator protein 1, MMP-9 
matrix metalloprotease-9, MAPK mitogen-activated protein kinase, JNK Jun N-terminal kinase, CYP1A cytochrome-P450 1A

Tumor entity Functions of piperine References

Breast cancer Arrest of cell cycle at different checkpoint in relation to cancer cell lines; unbalance of ROS homeosta-
sis and induction of apoptosis

[26, 49, 57]

Prostate cancer Interruption of cell cycle at G0/G1 checkpoint through the inhibitory activity of CDK; down-regulation 
of p21 and p27; induction of apoptosis by means of caspase-3 and PARP cleavage

[24, 43, 83]

Osteosarcoma Blockage of the cell cycle at G2/M phase by down-regulating cyclin B1 and by increasing the phospho-
rylation level CDK1and Chk2

[25]

Melanoma Arrest of cell cycle at G1 phase through downregulation of cyclin D1, activation of CDK (p21/WAF1) 
and unbalance of ROS homeostasis

[22]

Colon carcinoma Downregulation of D1 and D2 cyclins and their partner CKD4 and CDK6 with consequent arrest of 
cell cycle at G1 phase; mTORC1 inhibitory activity promoting cancer cell death

[23, 41]

Fibrosarcoma Inhibition of PKCα and ERK1/2 phosphorylation and reduction of NF-κB and AP-1 nuclear transloca-
tion, so leading to down-regulation of MMP-9 expression

[56]

Ovarian cancer Activation of intrinsic pathway of apoptosis after the release of mitochondrial cytochrome c to cytosol, 
the activation of caspase-3 and -9, the PARP cleavage and the inactivation of p38/MAPK and JNK

[44]

Lung cancer Reduction of oxidative stress mediated by mitochondrial activities and enhancement of both enzymatic 
and non-enzymatic defence systems

[76, 77]

Rectal adenocarcinoma Stimulation of ROS generation leading to dissipation of mitochondrial membrane potential, caspases 
cascade and apoptosis

[81]

Oral squamous carcinoma Mediation of mitochondrial pathway of apoptosis. [21]
Hepatocellular carcinoma Interaction with CYP1A1 enzyme, mediating deficiency of benzo(a)pyrene (BP) metabolism and con-

sequently abolishing cancer aggressiveness
[80]

Breast cancer stem cells Inhibition of Wnt/beta-catenin signalling pathway; repression of mammosphere formation [95, 97]
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cells), both in vitro and in vivo, by down-regulating cyc-
lin B1 and by increasing the phosphorylation level of cyc-
lin-dependent kinase-1 (CDK1) and kinase 2 (Chk2) [25, 
26]. Additionally, Jain and co-workers have shown that 
piperine increased the generation of intracellular ROS 
level in HeLa and MCF-7, which arrest cell cycle at G2/M 
phase with a consequent reduction in cell viability [27]. 
When human triple-negative breast cancer lines (TNBC: 
MDA-MB-231 and MDA-MB468) are treated with piper-
ine, the cell cycle is blocked at G1 phase through inacti-
vation of G1-associated cyclin D3 and CDK4 connected 
with down-regulation of the transcription factor E2F-1 
(utilized by growth factors in promoting entry into cell 
cycle). In the same cancer model, it was also reported 
that the piperine affects G2-associated cyclins B, CDK1 
and Cdc25C [28]. In translational terms, intratumoral 
administration of piperine (0.2 mg/kg) into fully devel-
oped tumours (approximately 100 mm3 in volume) every 
other day for a total of three injections, strongly inhibited 
the growth of TNBC (MDAMB-468 cells) xenografts in 
NOD/SCID mice [28].

It seems evident that the sum of all these effects 
reduces the survival of neoplastic cells and supports the 
chemopreventive action of piperine.

Piperine induces autophagy and/or apoptosis 
in cancer cells

Autophagy is a self-degradative process important for bal-
ancing sources of energy in the embryo development and 
in response to several causes of cellular stress. This phe-
nomenon is characterized by a cascade of events includ-
ing degradation of cytoplasmic proteins or entire organelles 
[29]. Autophagic process is often associate with a variety of 
sources of stress, comprising deprivation of growth factors 
and nutrients, inhibition of receptor tyrosine kinases/Akt/
mammalian target of rapamycin (mTOR) signaling, inhi-
bition of proteasome, endoplasmic reticulum (ER)-derived 
stress and unbalanced of ROS homeostasis [30–32]. Conven-
tionally, autophagy is recognised as an event able to overstep 
all these stresses, allowing cell survival [33]. Remarkably, 
this phenomenon was initially proposed as a suppressor of 
tumorigenesis [34] while more recent observations have 
demonstrated that there is a link among autophagy, tumori-
genesis and cancer invasion [35]. Actually, the correlation 
between autophagy and cancer is controversial; in this con-
text, it seems that autophagy could function as tumor acti-
vator, directly affecting the dynamic assembly/disassembly 
of cell–matrix focal adhesions (FAs), which are essential 

Fig. 3  A schematic diagram showing main molecular targets of Pip-
erine. The alkaloid interferes with cancer proliferation by inhibiting 
the expression of cyclins, CDK and other molecular regulators of cell 
cycle (e.g. E2F1, pRb). Piperine exerts anti-migratory, anti-invasive 
and anti-metastatic effects by blocking the VEGF/VEGFRs signal 
pathway and MMPs. Piperine rises in CYP 450s and glutathione-

metabolizing enzymes (GPx, GR), which indicated anti-cancer effect. 
Moreover, as anticancer compound, by down-regulating oncogenic 
factors (e.g. JNK, pSTAT-3, Akt) and by interfering with ROS sig-
nal pathway, piperine is able to abolish tumorigenesis. Piperine selec-
tively induces tumor cell death (apoptosis and autophagy) by acting 
the expression and activities of related proteins and signals
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for an efficient migration and invasion of cells [36], and/or 
as tumor suppressor, provoking a programmed cell death of 
type II [37]. In cancer, as in health, autophagy depends on 
several prerequisites of stress including microenvironment 
conditions (hypoxia, nutrients availability, angiogenesis, 
etc.) [38]. Concerning the pro-death role of autophagy in 
tumor, in addition to current chemical drugs, some phyto-
chemicals and natural compounds have been identified as 
efficient agents in inducing cell-death through autophagy, 
including curcumin and piperine [24, 39]. As demonstrated 
by Ouyang et al, piperine is responsible of cell cycle arrest 
and programmed cell death of type II (autophagy) in human 
prostate cancer (LNCaP and PC3 cell lines), documented 
by an increase in cellular level of phosphatidylethanolamine 
conjugate 3II (LC3II/ATG8), a crucial marker of this phe-
nomenon [24]. A well-known pathway controlling cell sur-
vival and deregulated autophagy in several human diseases, 
including cancer, is mTOR complexes signaling, interact-
ing with several proteins to form two distinct complexes 
named mTOR complex 1 (mTORC1) and 2 (mTORC2) [40]. 
mTORC1 signaling pathway through a variety of environ-
mental cues controls cell cycle and growth, homeostasis and 
metabolism [40]. In a recent paper, it was reported that in 
colon carcinoma, piperine exhibited mTORC1 inhibitory 
activity promoting cancer cell death in vitro [41]. Based on 
these observations, it appears evident that autophagy and 
apoptosis can be envisioned as two phenomena strictly inter-
connected that could serve to abrogate cancer. The process 
of apoptosis is generally characterized by well-defined cell 
morphological features and energy-dependent biochemical 
mechanisms. Apoptosis is usually executed through two 
major ways: mitochondria-mediated intrinsic pathway and 
death receptor-mediated extrinsic route [42]. At the molecu-
lar level, piperine can induce both intrinsic and extrinsic 
signaling of this phenomenon (Fig. 2b). Yaffe et al. demon-
strated that piperine caused EE-stress dependent in colon 
cancer cells (HT-29) activating correlated pro-apoptotic 
signals such as upregulation of C/EBP homologous protein 
(CHOP), Glucose-regulated protein 78 (GRP78), Inositol-
requiring enzyme-1(IRE1a) and NH2-terminal kinase (JNK) 
[23]. The overexpression of these pro-apoptotic proteins 
were accompanied by reduction in Akt phosphorylation 
and survivin expression, both implicated in cell survival 
mechanisms [23]. Activation of caspases and consequent 
apoptosis were also observed in murine and human breast 
cancer cells following piperine treatment [26]. Furthermore, 
in androgen-dependent and androgen-independent prostate 
cancer cell lines, (PC3 and LNCaP, DU145 respectively) 
the alkaloid induced programmed cell death in vitro [24]. 
These results were confirmed by activation of caspase-3 
that, in turn, cleaved PARP (in its cleaved form, PARP is 
another positive regulators of apoptosis) [24]. Piperine also 
caused an inhibition of both phosphorylation of STAT-3 

and nuclear translocation of the transcription factor NF-kB 
[43]. The anti-proliferative/pro-death effect of piperine in 
prostate cancer was also confirmed in in vivo studies. In 
fact, tumour growth was substantially reduced following 
piperine treatment in nude mice subcutaneously implanted 
with LNCaP and DU-145 cells. In detail, results showed that 
piperine treatment (100 mg/kg body weight) via intraperi-
toneal injection against LNCaP xenotransplants resulted in 
a 72% reduction in tumour size as compared to the DU-145 
treated group, where the reduction in tumour size was noted 
to be 41% [43]. Additionally, it was demonstrated that the 
alkaloid showed anti-proliferative activities in human ovar-
ian A2780 cancer cell in dose- and time-dependent man-
ners [44]. In this circumstance, piperine induced the release 
of mitochondrial cytochrome c to cytosol, the activation of 
caspase-3 and -9, the PARP cleavage and the inactivation of 
p38/MAPK and JNK, so triggering the intrinsic pathway of 
apoptosis [44]. It is important to highlight the fact that pip-
erine has selective cytotoxic autophagic/apoptotic efficacy 
on tumor cells whereas similar effects are not observed in 
normal cells at least at concentration < 250 µg/ml [8–10]. 
Additional beneficial effects have been reported induced by 
piperine, such as pain reduction, blood pressure lowering 
and increasing the absorption of nutrients [45–47].

Piperine indirectly interferes in cancer cell 
dissemination: effects on angiogenesis 
and extracellular matrix (ECM) degradation

Angiogenesis consists in the growth of new blood vessels 
from the pre-existing vasculature. In tumor, angiogenesis, 
which supplies oxygen and nutrients, is important for the 
proliferation as well as for the metastatic spread of cancer 
[48]. Piperine interferes with many aspects of angiogenesis 
in vitro and in vivo (Fig. 2c). For example, Doucette et al., 
by using cultures of human umbilical vein endothelial cells 
(HUVECs), showed that the alkaloid inhibited cell prolifera-
tion, migration, formation of tubule-like structures, and, it 
also stopped cellular cycle at G1/S phase [49]. As demon-
strated by the same authors, the spice extract was also able 
to inhibit spouting process of rat aorta in ex vivo model and 
in vivo angiogenesis induced by breast cancer cell grafted 
on chick chorioallantoic membrane (CAM) [49]. At molec-
ular level, in the context of anti-angiogenic properties, it 
seems that piperine selectively targets vascular endothe-
lial growth factor/receptors (VEGF/VEGFRs) signal and 
phosphoinositide-3 kinase(PI3K)/Akt pathways [49–51]. 
On the basis of these experimental observations, piperine 
can be contemplated as an angiopreventive compound. This 
aspect could assume a certain pharmacological relevance; 
in fact, it is well known that targeting angiogenesis can be 
an important mechanism in cancer therapy as it reduces 
tumor proliferation by depriving the cancer of oxygen and 
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nutrients [52]. Interaction of cancer cells with their microen-
vironment plays a significant role in defining the severity of 
cancer [53]. Accordingly, evidences indicate that there is a 
crucial link among malignant cell dissemination, angiogen-
esis and ECM degradation. This last phenomenon is actu-
ated by the proteolytic action of several enzymes including 
matrix metalloproteinases (MMPs), a family of  Ca++-and 
 Zn++-dependent endopeptidases [54, 55]. As emerged by 
experimental studies, piperine negatively modulates the 
expression and activation of MMPs corroborating the idea 
that the alkaloid, apart its direct anti-cancer effect, also indi-
rectly hampers tumor spreading (Fig. 2c). As matter of fact, 
Hwang and co-workers by pre-treating human fibrosarcoma 
cell line (HT-1080) with phorbol-12-myristate-13-acetate 
(PMA), developed a high invasive phenotype of this cancer 
model due to enhanced expression of MMP-9 [56]. Then, 
the same authors demonstrated that piperine showed anti-
invasive effects through inhibition of PKCα and ERK1/2 
phosphorylation and reduction of NF-κB and AP-1 nuclear 
translocation. Consequently, all these molecular mechanisms 
down-regulated MMP-9 expression [56]. Many studies pro-
posed that increasing in epidermal growth factor receptor 2 
(HER2) dimerization could drive proliferation and migration 
of carcinomas by induction of MMP-2 and MMP-9 (also 
known as gelatinases A and B). For example, dimeric form 
of HER2 (with EGFR1 or HER3) has been identified as an 
important regulator of metastatic potential of human breast 
cancer [57]. Piperine significantly inhibited spreading of 
human breast cancer cells overexpressing HER2, by down-
regulating gelatinases activation through NF-kB and AP-1 
transcription factors inactivation and by interfering with 
ERK1/2, p38/MAPK/Akt axis [57]. Additionally, as dem-
onstrated by Lai and co-workers, piperine suppresses lung 
metastasis of 4T1 murine breast cancer model by decreasing 
the expression of MMP-9 and MMP-13 [26].

Piperine disturbs redox homeostasis in cancer

ROS and free radicals represent a group of highly reactive 
molecules generated through a variety of sources including 
mitochondria, NADPH oxidases (Nox), xanthine oxidase 
(XO), and uncoupled endothelial nitric oxide synthase 
(eNOS), lipoxygenase, cyclooxygenase, and CYP-P450s 
enzymes [58–60]. They are involved in the regulation of a 
number of biological processes acting directly or indirectly 
as signalling factors [61, 62]. At physiological levels, ROS 
exist on stable equilibrium and can be implicated in cell 
survival or in defensive responses by means of enzymatic 
(catalase, proxidase and superoxide dismutase) and non-
enzymatic molecules (i.e. glutathione, flavonoids and anti-
oxidants such as vitamins A, C and E) [63, 64]. Notably, 
cells are able to preserve ROS homeostasis by balancing 
their production and elimination [65–67]. On the contrary, 

under metabolic stress, cellular amount of ROS increases 
with consequent oxidation of lipids, DNA and proteins 
[66–70], which in turn, can transform normal cells to 
malignant cells [64, 71, 72]. It is well known that cancer 
produces elevated levels of oxidative signals able to acti-
vate oncogenes and/or down-regulate tumor suppressors, 
which in turn, drive cell invasion and dissemination [71, 
73–75]. Recent evidences indicate that phytochemicals 
and natural compounds including piperine, by means of 
their intrinsic anti-oxidative proprieties, can contribute 
to defensive responses against ROS [68, 70]. For exam-
ple, low doses of piperine (not more than 200 µg/ml), by 
quenching ROS, attenuate oxidative stress and delay can-
cer development [68, 69]. As matter of fact, on mice model 
of lung cancer, oral administration of piperine decreased 
oxidative stress mediated by mitochondrial activities and 
by enhanced enzymatic and non-enzymatic defence sys-
tems [76, 77]. Moreover, in rat models of colon cancer 
induced by carcinogens such as 7,12-dimethyl benzan-
thracene, dimethyl aminomethyl azobenzene and 3-methyl 
cholanthrene, piperine was able to abrogate cellular ROS 
damages orchestrated by the above mentioned drugs [78]. 
All together, these observations seem to be in accordance 
with the concept that the modulation of intracellular ROS 
level can be proposed as a way to target oxidative stress 
responsible of tumourigenesis [79, 80]. In this context, 
high doses of piperine can also contribute in ROS genera-
tion causing cell death in many types of cancer cells [81]. 
Thus, depending on the context and on the piperine dos-
age, the alkaloid may act as anti-oxidant agent, abrogat-
ing or delaying tumorigenesis, or as pro-oxidant mediator, 
committing cancer cell to death [27, 81, 82]. For instance, 
in oral squamous carcinoma and in aggressive human rec-
tal adenocarcinoma, piperine stimulated the generation of 
ROS, leading to dissipation of mitochondrial membrane 
potential, caspases activation and apoptosis induction [21, 
81]. Similar conditions were also detected in hepatocel-
lular carcinoma, in which it has been showed that piper-
ine causes ROS-dependent apoptosis inhibiting the central 
molecule of the antioxidant defence system namely cata-
lase, both in vitro in Hep G2 cells and in vivo, in dietil-
nitrosamine induced hepatocellular carcinoma at 5 mg/kg 
body weight of dosage [80]. In addition, in PC3 human 
prostate cancer cells, after treatment with piperine, it was 
observed an increase of intracellular levels of ROS and 
 Ca++ followed by mitochondrial membrane depolarization 
and programmed cell death [83]. Of note, the hydrophobic 
nature and poor aqueous solubility can represent a limit for 
cell incorporation and bioavailability of the alkaloid. Thus, 
Jain and co-workers, in order to scavenge this limit, have 
recently demonstrated that piperine loaded in nanofibers 
results more permeable in HeLa and MCF7 cancer cells, 
causing cell death ROS-dependent [27]. Therefore, the 
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ability of piperine to induce oxidative stress and con-
sequent apoptosis in cancer cells reinforce its potential 
chemopreventive ability (Fig. 2a, b).

Piperine inhibits cancer stem cells (CSCs)

CSCs represent a small subset of cancer cells with a high 
pro-metastatic phenotype; they show phenotypic and func-
tional features comparable to normal stem cells, including 
self-renewal and differentiation ability [84]. As emerged by 
a number of recent papers, two “hallmarks of cancer” such 
as hypoxia and epithelial-mesenchymal transition (EMT) 
can contribute to the persistence of stem cells in cancer [85, 
86]. Moreover, evidences indicate that CSCs are not only 
involved in cancer cell spreading but they are also respon-
sible of chemotherapy and radiotherapy resistance [84, 87, 
88]. Thus, it is plausible to think that the differentiation of 
these cells in a more mature/resting phenotype can assume a 
therapeutic significance. Some natural compounds are under 
investigation to test their ability in inducing stem cells differ-
entiation [89–91]. For example, it has already demonstrated 
that piperine stimulates osteoblast differentiation acting 
on the expression of osteogenic marker genes by means of 
AMPK phosphorylation [91]. It is crucial to further explore 
the mechanism involved in the generation and perpetua-
tion of CSCs in order to optimize efficient pharmaceutical 
approaches. Recent data indicate that several aberrant path-
ways are implicated in the maintaining of self-renewal and 
differentiation aptitude in CSCs including Wnt/beta-catenin, 
Hedgehog, Insulin-like growth factor, (IGF), Notch, PI3K/
Akt/mTOR and NF-κB signaling [20, 92–94]. Interestingly, 
some of these signals are influenced by piperine and other 
natural compounds [95]. For example, piperine inhibits Wnt/
beta-catenin signaling pathway in breast CSCs (Fig. 2c) 
especially when combined with curcumin [95, 96] and, as a 
consequence, it hinders the mammospheres formation, thus 
affecting their self-renewal ability [95, 97].

Piperine inhibits multidrug resistance and enhances 
the bioavailability of anti‑cancer compounds

Development of multidrug resistance in cancer is a severe 
problem that restricts the use of chemotherapeutics in suc-
cessful treatment [1]. Several factors participate, often in 
cooperation, in conferring multidrug resistance including 
EMT, CSCs, hypoxia, transforming growth factor-beta 
(TGF-β) and p-glycoprotein (P-gp) [1, 98, 99]. Currently, 
there are not experimental evidences regarding if and how 
piperine could act on repression of EMT, hypoxia, and 
TGF-β -multidrug resistance on cancer; by contrast, some 
investigations have shown that the alkaloid intervenes in 
P-gp and CSCs activities. P-gp is a 170 kDa membrane 
linked protein, member of the ATP-binding cassette (ABC) 

superfamily. The protein confers resistance by mediating 
the ATP-dependent efflux of a number of anticancer drugs 
[100, 101]. The use of many anti-cancer treatments such as 
vincristine, vinblastine, docetaxel, cyclophosphamide, flu-
tamide, ifosfamide and paclitaxel causes overexpression of 
P-gp with a consequent induction of multidrug resistance 
[101]. It seems that piperine is able to suppress, or at least, 
down-regulate P-gp dependent drugs-resistance by compet-
ing with its ATP binding site. In support of this hypoth-
esis, it has been recently demonstrated that two piperine 
analogues, namely Pip1 and Pip2, when co-administered 
with vincristine or colchicine or paclitaxel could reverse 
drug resistance in vitro in cervical and colon cancer cells 
overexpressing P-gp [102]. Metabolism, kinetics and bio-
availability of xenobiotic agents (chemical drugs or natural 
compounds) depend, in part, on cytochromes P450 action 
(CYP3A4, CYP1A, CYP1B1, CYP1B2, CYP2E1, CYP3A4, 
etc.) [70, 103]. It has been recently demonstrated that 
bioavailability of anti-cancer drugs including docetaxel, 
etoposide, 5-fluorouracil, paclitaxel and rapamycin can be 
enhanced by piperine both in vitro and in vivo (Fig. 2d) [16, 
57, 104–106]. For example, in 5L rat hepatoma, piperine 
mediates deficiency of benzo(a)pyrene (BP) metabolism 
through a direct interaction with CYP1A1 enzyme and, con-
sequently, it abolishes cancer aggressiveness [107]. Apart 
from influencing CYP-P450 isoforms, piperine modulates 
many other drugs metabolizing enzymes (DMEs) which 
include uridine diphosphate-glucoronyl transferase (UDP-
GT), UDP-glucose dehydrogenase (UDP-GDH), 5-lipoox-
ygenase, cyclooxygenase [108]. About that, oral adminis-
tration of piperine in mice model of lung carcinogenesis 
not only causes a significant activity reduction of phase-I 
enzymes (i.e. CYP-450 family), but also, causes a concrete 
increase in glutathione-metabolizing enzymes including 
glutathione peroxidase (GPX) and glutathione reductase 
(GR) [109]. As mentioned above, piperine is also capable to 
enhance the bioactivity of some natural compounds, such as 
curcumin, resveratrol and thymoquinone (TQ). Many studies 
have reported that the phytochemicals, above mentioned, 
also possess chemopreventive actions [110–131] (Table 2). 
Regarding curcumin, it has been shown that this spice, in 
combination with piperine, has greater antimetastatic effect 
in vitro on breast cancer lines MCF-7 and MDA-MB-231 
[95] as well as in diethylnitrosamine-induced hepatocarci-
noma cells [132]. Concerning the increased efficacy of res-
veratrol, piperine substantially improved the bioavailability 
of this aromatic compound, mostly through an inhibitory 
effect on UDP-glucuronosyltransferase [133]. In fact, for its 
elimination from the body, as other phenols, resveratrol is 
biotransformed through the glucuronidation process [134]. 
TQ is a natural aromatic compound, predominated present 
in Nigela sativa volatile oil; it exhibits a wide spectrum of 
positive features including anti-angiogenic and anti-cancer 
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effects, inhibiting tumour growth and angiogenesis both 
in vitro and in vivo [135] without toxicity on healthy cells 
[136]. It has been demonstrated that a combination of TQ 
and piperine can work synergistically in inhibition of breast 
cancer growth in vitro and in vivo (syngraft model). This 
combination seems to act mainly by apoptosis induction, 
angiogenesis inhibition and by shifting the immune response 
toward the modulation of the immune system [137].

Piperine metabolism and availability

Piperine was extracted as a yellow crystalline compound 
with a melting point of 128–130 °C and its chemical struc-
ture is identified as piperoylpiperidine with the chemical 
formula of C17H19NO3 [138]. Piperine is a very weak 
base, which upon acid or alkali hydrolysis decomposes to a 
volatile basic piperine, known as piperidine (C5H11N), and 
piperic acid (C12H10O4) [139].

Piperine metabolism was elucidated in studies performed 
in animal models [140, 141]. When orally administered, 
piperine is rapidly and almost completely absorbed through 
the gastrointestinal trait and could be detected in plasma 
after 15 min [142]. The maximum plasma concentration 
was reached at 6 h and its half-life was to be 18 h [143]. 
Only 3% of not absorbed piperine was directly excreted in 
the feces. Piperine did not undergo any metabolic changes 
during absorption and it is rapidly metabolized by liver 
while its metabolites are excreted by urine. It has been 
demonstrated that piperine is able to interact with several 
enzymes involved in drugs metabolism and it is able to affect 

metabolic pathways and processes such as oxidative phos-
phorylation. The final result is a slowdown of drugs metabo-
lism and biodegradation with a consequent more availability 
for pharmacological actions [141].

Conclusion and perspective

Current available drugs for treating cancer are often 
expensive, toxic, and little effective. Piperine possesses 
high potential chemopreventive properties due to induction 
of cell cycle arrest, increased autophagy and apoptosis, 
as well as redox homeostasis unbalance. Furthermore, it 
inhibits angiogenesis and ECM degradation. Therefore, 
the alkaloid directly and indirectly affects tumor cell sur-
vival and quenches invasion and metastasis processes, 
without significant toxic effects on normal cells [8–10]. 
Additionally, piperine enhances the therapeutic efficacy 
of the current available anti-cancer drugs and represents 
a good adjuvant to certain phytochemical compounds 
including curcumin, resveratrol, thymoquinone. In sum-
mary, piperine has a number of health effects and thera-
peutic properties; nevertheless, its biological applications 
are limited due its hydrophobic nature. In fact, piperine is 
slightly soluble in water (40 mg/L at 18 °C) [144]. This 
facet is the rate-controlling step in the absorption process 
and limits its clinical employment. However, in order to 
improve the bioavailability of this compound, several 
attempts have been made to develop new formulations. 
Among the various approaches, nanoparticles, liposomes, 

Table 2  Summary of the main chemopreventive actions of some natural compounds

VEGF/VEGFRs vascular endothelial growth factor/vascular endothelial growth factor receptors, PI3 K)/Akt phosphoinositide 3-kinase/protein 
kinase B, CSC cancer stem cell, COX-2 cyclooxygenase-2, FGF-2 fibroblast growth factor-2, EMT endothelial-mesenchymal transition, Her-2 
human epidermal growth factor receptor 2, EGF-R epidermal growth factor receptor, TWIST1 twist family BHLH transcription factor 1, STAT3 
signal transducer and activator of transcription 3

Compounds Main effects References

Piperine Interruption of cell cycle at different checkpoints by downregulation of cyclins through the inhibition of 
CDKs activity; promotion of cancer cell death through activation of apoptosis and autophagy; preven-
tion of angiogenesis by targeting VEGF/VEGFRs signal pathway; unbalance of ROS homeostasis with 
consequent cell death; quenching multi-drug resistance

[22, 39, 41, 43, 44, 
49, 50, 68, 69, 
78, 102]

Curcumin Arrest of the cell cycle at the G1/S transition by upregulating the expression of the Cip/Kip protein fam-
ily of CDK inhibitors; induction of autophagic and apoptotic cell death; suppression of angiogenesis 
by decreasing the levels of bFGF, VEGF, angiopoetin-1 and 2, COX-2, MMP-9 and AP-1; inhibition of 
tumor growth and metastasis by maintaining of NF-kB in its inactive form

[110]

Resveratrol Arrest of cell cycle at different checkpoints by modulating the CDK inhibitor; increase of ROS genera-
tion provoking apoptosis; inhibition of EMT by suppressing both the PI3 K/AKT/NF-κB pathway and 
the EMT-related gene expression; suppression of the initiation, and progression of carcinogenesis by 
decreasing the expression of ERK and VEGF and by reducing the phosphorylation of Her-2 and EGF-R

[115]

Thymoquinone Interruption of cell cycle at different checkpoints due to decreased cyclins levels; induction of apoptosis 
and autophagy; blocking of a tumor angiogenesis and tumor growth via inhibited activity of NF-kB and 
its downstream targets including VEGF; reduction of invasion and metastasis by downregulating the 
transcriptional activity and expression of TWIST1 promoter; inhibition of cell proliferation by down-
regulating STAT3 downstream targets

[124]
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microspheres and self-emulsifying drug delivery systems 
have been developed and demonstrated to ameliorate its 
bioavailability, also reducing its toxicity [138, 145–148].
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Abstract: Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East
Asia, is one of the most used spices and condiments for foods and beverages. It is also used in
traditional medicine for many human disorders including fever, gastrointestinal complications,
arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory,
antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the
potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of
this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent
and to structure the cellular and molecular mechanisms through which ginger acts in different cancer
types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this
review, show that ginger derivatives perpetrate its anti-tumor action through important mediators,
involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance
of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of
cancer cells.

Keywords: ginger extracts; chemoprevention; chemotherapy; natural compounds

1. Introduction

Cancer, being a multifactorial disease, is the second biggest cause of death in the
world despite a great development of different types of its treatment [1]. Therapeutic
options against cancer include surgical procedure, radiation therapy, chemotherapy as well
as target and gene therapy [2]. Since the currently available treatment options are often
accompanied by severe toxicity and side effects, consequently, researchers are consistently
searching for new therapeutic solutions [3].

In this regard, 50% of approved cancer therapeutic agents are derived from natural
products and, secondarily, medicinal plants metabolites have demonstrated a great per-
spective as a source of anticancer and chemopreventive compounds [4]. Composts isolated
from edible plants have the advantage of low toxicity profiles and can simultaneously
target multiple signaling pathways [5]. Therefore, dietary natural products can provide
novel and fascinating preventive/therapeutic options for different kinds of neoplasia.

Ginger is known for having more than 60 active compounds, broadly divided into
volatile and nonvolatile compounds [6]. Volatile components include hydrocarbons, mean-
while rhizome from ginger contains nonvolatile pungent phenolic compounds like 6-
gingerol, 6-shagol, 6-paradol, and zingerone [7] (Figure 1, Table 1).
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Figure 1. Chemical structure of main phenolic compounds of ginger: (a) 6-gingerol (1-[4’-hydroxy-3’-methoxyphenyl]-5-
hydroxy-3-decanone), (b) 6-paradol, (c) 6-shogaol, and (d) zingerone. 

Figure 1. Chemical structure of main phenolic compounds of ginger: (a) 6-gingerol (1-[4’-hydroxy-3’-methoxyphenyl]-5-
hydroxy-3-decanone), (b) 6-paradol, (c) 6-shogaol, and (d) zingerone.
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Table 1. Chemopreventive activities of phenolic compounds of ginger.

Phenolic Ginger Compounds Chemopreventive Activities References

6-gingerol

Blockage of the cell cycle at G2/M phase; decrease of cells in the SubG0
phase; depolarization and potential subsequent deterioration of the

mitochondrial membrane; induction of apoptosis; inhibition of
angiogenesis; induction of growth suppression; enhancement the

doxorubicin efficacy

[8–12]

6-paradol Reduce blood glucose [7]

6-shogaol

Arrest of the cell cycle in G2/M phase; decrease levels of STAT3 and
NF-κB-regulated target genes including cyclin D1; induce apoptosis;

downregulation of surviving; decrease tumor volume and tumor burden;
restore wild type p53 function; provoke autophagy; inhibit phase I

enzymes (Cyt-p450 and Cyt-b5); increase phase II enzymes (GST, GR,
and GSH); reduce the cleavage of Notch1

[13–17]

Zingerone Inhibition of TGF-β1 induced epithelial-mesenchymal transition,
migration, and invasion [18]

These exact compounds have been studied for their anti-bacterial, antioxidant, and
anti-inflammatory properties [19]. Ginger phenolic compounds especially have also shown
anti-tumor properties [9,20,21] (Figure 2). In this review, we will more deeply discuss the
chemopreventive molecular mechanisms of ginger derivatives including arrest of the cell
cycle, induction of cancer cell death, misbalancing of redox homeostasis, inhibition of cell
proliferation, angiogenesis, migration, and dissemination of cancer cells in different cancer
types (Table 2, Figure 3).
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Figure 2. Schematic anti-cancer action of ginger and its phenolic derivatives. This natural compound
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and induces cell death. Additionally, ginger derivatives inhibit angiogenesis, EMT, and CSCs.
Furthermore, they decrease multidrug resistance and enhance chemopreventive effects.
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Table 2. Effects of ginger in different types of cancer.

Tumor Entity Functions of Ginger References

Breast cancer

Blockage of the cell cycle at G2/M phase; Induction of typical
apoptotic changes in nuclear morphology, chromatin condensation

and fragmentation, membrane shrinkage and blebbing; enabled
autophagy followed by caspase-independent apoptosis; induction

of autophagy

[16,18,22]

Prostate cancer
Arrest of cell cycle in the G1 phase with subsequent decrease in S and
G2/M through p21 dependent pathway; downregulation of MRP1

and GST-protein expression
[23,24]

Ovarian cancer Suppressed production of NF-κB regulated angiogenic factors; p53
stimulation of apoptosis through Bcl-2 elimination [25,26]

Colon cancer

Arrest of cell cycle at different check points by inhibition of cyclin
dependent kinases and activation of cell cycle check points;

upregulation of p21 expression; reverse of EMT to
Mesenchymal–epithelial transition (MET) through the upregulation

of miR-200c

[17,19,27,28]

Hepatocellular carcinoma

Arrest of cell cycle at the G2/M phase; inhibition of the
PI3K/AKT/mTOR and STAT3 signaling pathways; inhibition of Bcl-2
expression and up-regulation of Bax, cytochrome c, caspase-9 and -3

protein expressions

[21,29]

Gastric adenocarcinoma
Interruption of cell cycle at different check points; mediation of

mitochondrial pathway of apoptosis;
unbalance ROS homeostasis and induction of apoptosis

[30]

Non-small lung epithelium cancer
The loss of mitochondrial membrane potential of that leads to

increase in Bax/Bcl-2 ratio and activation of mitochondrial
death cascade

[31,32]

Melanoma Induction of caspase independent cell death via the inhibition of
ERK1/2, p38 and Akt signaling pathway [33]

Endometrial adenocarcinoma Induction of apoptosis by increasing the expression of p53 and Bax
and simultaneously decreasing the expression of Bcl-2 [34]

Cervical cancer
Induction of typical apoptotic changes in nuclear morphology,

chromatin condensation and fragmentation, membrane shrinkage
and blebbing

[35]

Lung cancer Sensitization of TRAIL-induced apoptosis by inhibiting
autophagy flux [36]

Head and neck squamous carcinoma
Increase in apoptotic death by downregulation of surviving;

inhibition of mutant p53 Bcl-2 expression, and increased expression
of Bax, regulation of Bax/Bcl-2 ratio which induce cell apoptosis

[37,38]

Pancreatic cancer
Activation of AMPK, a positive regulator of autophagy, and

inhibition mTOR, a negative autophagic regulator; unbalance ROS
homeostasis and induction of autosis

[39]

Molecular action of ginger and its derivatives in different kinds of cancer.
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Figure 3. A schematic diagram showing main molecular targets of ginger derivatives. The natural compound participates
in the cell cycle arrest by inhibiting the expression of cyclins, CDKs, and levels of STAT3, NF-kB target genes, and by
activation of cell cycle check points and increased expression of p21. Moreover, by increasing Bax/Bcl-2 ratio outburst of
cytochrome C, activating AMPK, and by decreasing autophagy flux and survivin expression, ginger derivatives provoke
cancer cell death. They participate in the alteration of redox homeostasis, which stops cancer cell proliferation. By blocking
activation of p38 MAP kinase (p38 MAPK) and NF-kB, ginger derivatives inhibit COX-2 expression and as a result block
angiogenesis. Ginger extracts decrease β-catenin in the WNT signaling pathway, which leads to the inhibition of gene
transcription, involved in EMT and CSCs, and, additionally, downregulate MRP1 and GST-protein expression, involved in
multidrug resistance.

2. Ginger Derivatives and Cell Cycle Arrest

Cell cycle is critical to maintaining cell proliferation and tissue integrity; therefore, it is
thoroughly controlled in defined checkpoints by specific proteins and kinases that include
cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) [30]. Deregulation
of cell cycle and/or its arrest are often responsible for cancer onset and progression [30].
Experimental studies demonstrated that some ginger derivates were able to modulate
cell cycle progression as a part of their chemopreventive mechanism [40] (Figure 2) For
example, in recent work regarding the treatment of breast cancer cells (MCF-7 and MDA-
MB-231) with 6-shogaol, the arrest of the cell cycle in G2/M phase was reported in both
monolayer and cancer-stem cell-like spheroids, and in the last experimental setting, 6-
shogaol also interfered with the stem cell self-renewal pathway [13]. In another study,
ginger extract arrested cell cycle at G0/G1 and G2/M phases in the HT 29 colon cancer
cell line at a low concentration (455 µg/mL), whereas in the HCT116 colon cancer cell line,
the same effect was reached at a higher concentration (496 µg/mL) due to the inhibitory
effect on CDKs [41]. Furthermore, in the HT29 and HCT116 colon cancer cell lines, ginger
extract treatment caused a significant reduction in cyclin D1 gene expression coupled with
down-regulation of mTOR and Wnt/β-catenin pathways and consequent cell cycle arrest
in the G0/G1 phase [41,42]. In addition, it was reported that human colon cancer cells
(HCT116) treated with R. stricta (CAERS) and crude flavonoid extracts from Z. officinale
(CFEZO) acted synergistically in cycle progression by inhibiting cMyc and the Cdk4/cyclin
complex while upregulating p21 expression, a transcriptional target of p53 [43]. Saha
and co-workers observed that cancer prostate cell lines (human PC3; DU145; LNCaP
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and murine HMVP2) treated with 6-shogaol, showed decreased levels of several signal
transducer and activator of transcription 3 (STAT3) and NF-κB-regulated target genes
including cyclin D1 [14]. In addition, zerumbone (a sesquiterpene derived from the ginger
plant Zingiber zerumbet) caused the arrest of cell cycle in the G1 phase in human prostate
cancer cell line (DU-145) culture [14]. Furthermore, zerumbone caused a cell cycle arrest
at G2/M (in a dose-dependent manner) by inhibiting PI3K/AKT/mTOR and STAT3 in
hepatocellular carcinoma (human HepG2, Hep3B, Sk-Hep-1, SNU-182, SNU-449, Huh-7,
and MHCC-LM3 cell lines, and murine Hepa1 cell line) [25]. The same compound impeded
shunting of glucose-6-phosphate through the pentose phosphate pathway, thereby forcing
tumor cells to undergo a cell cycle arrest. In human gastric adenocarcinoma (AGS), the
6-gingerol treatment showed a notable increase in the percentage of cells in the G2/M
phase, accompanied by a resultant decrease of cells in the SubG0 phase [8].

Another study showed that zerumbone (ZER) administration significantly retarded
the growth of orthotopic MDA-MB-231 xenografts in severe combined immune-deficient
(SCID) mice [44]. The antitumor effect of ZER in vivo was accompanied by reduced
cell proliferation as evidenced by Ki-67 (proliferation marker) expression and increased
apoptosis. Additionally, ZER administration was well-tolerated by the mice and did not
cause weight loss or any other side effects.

Based on the above-mentioned observations, it seems evident that ginger derivatives
interfere with the proliferation and cell cycle of cancer cells by arresting cell cycle in G0/G1
or G2/M phases, by significantly reducing the cyclin D1 gene expression, by upregulating
p21 expression, and by inhibiting PI3K/AKT/mTOR and STAT3.

3. Ginger and Cellular Death

Apoptosis, or programmed cell death, evolved as a rapid and irreversible process
to efficiently eliminate dysfunctional cells [31]. Apoptosis is usually executed in two
ways: Mitochondria-mediated intrinsic pathway and death receptor-mediated extrinsic
route. In this process are involved cysteine-aspartate proteases (caspases) and the Bcl-2
family proteins (e.g., Bax, Bcl-2) [29,32]. Moreover, it is well known that in pathological
conditions such as cancer, alterations/mutations in the p53 gene are one of the main causes
of apoptosis changes [33]. As matter of fact, studies effected by Pashaei-Asl et al. showed
that the treatment of ovarian cancer cell line SKOV-3 with ginger extract for 48 h caused
the decrease of Bcl-2 gene expression, and the subsequent p53-induced apoptosis [45]. In
another study, depolarization of the mitochondrial membrane and its potential subsequent
deterioration (∆Ψm) were observed after 6-gingerol administration within the human
gastric adenocarcinoma cell line (AGS) [8]. Interestingly, disruption of the mitochondrial
permeability through the transition pore with decrease in ∆Ψm is one of the pivotal events
in cell response to apoptotic stimuli [34]. Mitochondria-mediated apoptosis in 6-gingerol-
treated AGS cells was followed by cytochrome c release, elevation in the Bax/Bcl-2 ratio,
and activation of caspases-3 and -9 [8]. Aqueous extract of ginger (GAE) induced cellular
apoptosis and disrupted cellular interphase microtubules also within human non-small
lung epithelium cancer (NSCLC) A549 cell lines, by increasing the Bax/Bcl-2 ratio and
activating the mitochondrial death cascade [46]. In addition, 6-shogaol induced apoptosis
in hepatocarcinoma cell lines (Hep-2) by loss of cell viability, enhanced ROS production,
lipid peroxidation resulted in altered mitochondrial membrane potential, and increased
DNA damage [15]. In particular, the prooxidant role of 6-shogaol seemed to inhibit
Bcl-2 expression accompanied by an up-regulation of Bax, cytochrome c, released by
altered mitochondria, and caspases-3 and -9 activation [15]. Similarly, β-Elemene, another
extract from the ginger plant, triggered apoptosis in NSCLC through the cytochrome-
c mitochondrial release, mediating the intrinsic apoptotic pathway [47]. Furthermore,
torch ginger (Etlingera elatior, EE) induced caspase-independent cell death in mouse B16
melanoma cells through the inhibition of the ERK1/2, p38, and Akt signaling pathway [37].
In fact, it is well-known that the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are
crucial in the context of DNA-damaging drug-induced apoptosis [38]. Terpenoids present
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in the Steam Distilled Extract of Ginger (SDGE) induced apoptosis in endometrial cancer
cells (ECC-1 and Ishikawa cell lines) at IC50 of 1.25 µg/mL by increasing the expression of
p53 and Bax and simultaneously decreasing the expression of Bcl-2 by 90% [48].

Survivin is a member of the inhibitor of apoptosis (IAP) family and results in being
up-regulated in different human cancers [35]. Interestingly, over-expression of this protein
is associated with inhibition of apoptosis, resistance to chemotherapy, and a higher aggres-
siveness of tumors [49]. In this context, recent study showed that 6-shogaol, at 20 µM and
40 µM, provoked downregulation of survivin in head and neck squamous cell carcinoma
(HNSCC) cell lines and consequently a significant increase in apoptotic death [16].

A very important fact is that there are some results of in vivo experiments confirming
the positive role of ginger derivatives in apoptosis induction within cancer. In this setting, oral
squamous cell carcinoma induced by painting with 0.5% 7,12-dimethylbenz[a]anthracene-
induced (DMBA-induced) in hamster buccal pouch (HBP) (male golden Syrian hamsters)
evidenced over-expression of the mutant form of p53 and Bcl-2 coupled with decreased
expression of wild type p53 and Bax [17,50]. Oral treatment with 6-shogaol (at 20 mg/kg of
body weight) showed significantly decreased tumor volume and tumor burden, restored
wild-type p53 function, and activation of apoptotic stimuli [17].

Methanolic extract of Zingiber officinale rhizome (ZOME) induced morphological
changes such as cell shrinkage and nuclear condensation demonstrating apoptotic prop-
erties of ZOME within cervical cancer HeLa and breast cancer MDA-MB-231 cell lines 1.
Moreover, apoptosis of these cancer cell lines was gradually raised with an increasing order
of concentration of extract, which revealed dose-dependent apoptosis [51].

Autophagy is a self-destructive process important for balancing sources of energy
in the embryo development and as a response to several triggers of cellular stress (e.g.,
deprivation of growth factors/nutrients, inhibition of proteasome, inhibition of receptor
tyrosine kinases/Akt/mammalian target of rapamycin (mTOR) signaling, and unbalance
of ROS homeostasis) and is characterized by a cascade of events including degradation of
cytoplasmic proteins or entire organelles [36,52,53]. Interestingly, the correlation between
autophagy and cancer is controversial; in this context, it seems that autophagy could act as
a tumor suppressor, provoking a programmed cell death of type II [22] and/or as tumor
activator, directly affecting the cell–matrix focal adhesions (FAs), essential for efficient
migration and invasion of cells [39].

Interestingly, co-treatment with gingerol and TRAIL of TRAIL-resistant A549 ade-
nocarcinoma cells increased the LC3-II and p62 levels, that attested the inhibition of
autophagy [54]. The gingerol treatment strongly enhanced apoptosis in TRAIL-resistant
A549 cells, which was confirmed by the intracellular apoptosis indicator cleaved caspase-3.
The results of this study suggested that gingerol sensitized TRAIL-induced apoptosis in
A549 lung adenocarcinoma cells by inhibiting autophagy flux.

The semi-synthetic analogue SSi6, generated after chemical modification of the 6-
gingerol molecule, using the acetone-2,4- dinitrophenylhydrazone (2,4-DNPH) reagent, en-
hanced selective cytotoxic effects on MDA-MB-231 (Triple negative breast cancer, (TNBC))
cells [55]. Remarkably, unlike the original 6-gingerol molecule, SSi6 enabled autophagy
followed by caspase-independent apoptosis in tumor cells. A time-dependent association
between SSi6-induced oxidative stress, autophagy, and apoptosis was reported. Initial
SSi6-induced ROS accumulation (1 h) led to autophagy activation (2–6 h), which was
followed by caspase-independent apoptosis (14 h) in TNBC cells. Additionally, the data
showed that SSi6 induction of ROS accumulation played a key role in the promotion
of autophagy and apoptosis [55]. Another experiment showed that breast cancer cells
MCF-7 and MDA-MB-231 after 6-shogaol treatment underwent cell death, exploiting the
autophagy route proved by cytoplasmic vacuole formation as well as the recruitment and
cleavage of the microtubule-associated protein LC3 [13].

Another recent study showed that 6-Gingerol treatment in the human lung cancer cell
line (A549) and in A549 tumor xenografts could increase the number of autophagosomes,
ROS, and iron concentration, decrease the survival and proliferation rate of A549 cells, and
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significantly decrease tumor volume and weight [56]. Interestingly, 6-Gingerol treatment
significantly suppressed USP14 expression, indicating that 6-Gingerol promoted autophagy
effected by inhibition of USP14-Beclin 1. Remarkably, daily oral feeding of 100 mg/kg
body weight of ginger extract (GE) inhibited growth and progression of PC-3 (prostate
cancer) xenografts by approximately 56% in nude mice, as shown by measurements of
tumor volume [57]. Tumor tissue from GE-treated mice showed reduced proliferation index
and widespread apoptosis, as determined by immunoblotting and immunohistochemical
methods, compared with controls.

Also, recent research demonstrated that the human pancreatic cancer (Panc-1) cell
line treated with the extract of Syussai ginger (SSHE) revealed several features that were
not observed in classical-type autophagy, including nuclear shrinkage, focal membrane
rupture, electron dense mitochondria, empty vacuoles, and focal perinuclear swelling [58].
It appeared that these morphological features coincided well with the recently discovered
form of cell death, “autosis”, which is a Na+ and K+ -ATPase-regulated form of cell
death [23]. SSHE markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62
protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. So, SSHE inhibited
cell proliferation and subsequently induced the autotic death of pancreatic cancer Panc-
1 cells.

To sum up, the chemopreventive effect of ginger derivatives may be expressed by its
ability to enhance some types of cellular death in cancer, like apoptosis, autophagy, and
autosis by elevating Bax/Bcl-2 ratio, releasing cytochrome c, activating caspases-3 and -9,
and downregulating the survivin.

4. Ginger, Its Constituents, and ROS Balance

Reactive oxygen species (ROS) are a group of highly reactive molecules generated
through a variety of sources (mitochondria, NADPH oxidases (Nox), xanthine oxidase (XO),
and uncoupled endothelial nitric oxide synthase (eNOS), lipoxygenase, cyclooxygenase,
and CYP-P450s enzymes) [59–61]. Elevated ROS rates have been detected in almost
all cancers, where they promote many aspects of tumor development and progression.
However, tumor cells also express increased levels of antioxidant proteins to detox from
ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer
cell function [62].

A challenge for novel therapeutic strategies will be to direct the ROS signaling towards
ROS-induced apoptotic route. In this scenario, recent studies showed that ZOME scavenged
the ROS actions, in a dose-dependent manner, both in human cervical cancer (HeLa) cells
and in breast cancer (MDA-MB-231) cells [51]. Another study reported that after treatment
of AGS cells with 6-gingerol, an increase in the level of reactive ROS led to a decrease in
mitochondrial membrane potential and consequent induction of apoptosis [8]. Also, the
incubation of DU-145 prostate carcinoma cells with zerumbone led to a reduction of cell
viability, in a dose- and time-dependent manner, by increasing the ROS production [63].
Additionally, Akimoto and co-workers demonstrated that the extract of Syussai ginger
(SSHE) had a strong inhibitory effect on cell growth as well as pro-apoptotic activity in
pancreatic cancer in vitro [58]. In particular, the authors showed that ROS production was
suppressed in SSHE-treated Panc-1 cells at early stages that might be due to the antioxidant
properties of the ginger extract [64]. However, prolonged treatment of cells with SSHE
caused a marked increase in ROS production, which induced autotic cell death. The
extract was also effective under hypoxic conditions, which inevitably develop in all solid
tumors to varying degrees and influence the resistance of tumor cells to radiotherapy and
conventional chemotherapy [64]. Recently, Kathiresanet et al. discovered that 6-shogaol
(20 mg/kg body weight) had a potent anticancer activity against DMBA-induced oral
carcinogenesis in the HBP model by restoring antioxidant levels, thereby preventing lipid
peroxidation. In addition, 6-shogaol was also able to inhibit phase I enzymes (Cyt-p450 and
Cyt-b5) and increase phase II enzymes (GST, GR, and GSH) that enhanced the detoxification,
thereby preventing the carcinogenesis [17].
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Another interesting clinical study had the principal objective to examine the antioxi-
dant activity of ginger extract orally administered as a daily supplement in newly diag-
nosed solid tumor patients receiving moderate-to-high emetogenic potential chemother-
apy [65]. All participants were women, of whom 39 patients (91%) were diagnosed with
breast cancer who received anthracycline-based regimen, 24 patients (56%) were diagnosed
with stage II, and 13 patients (30%) diagnosed with stage III. In all, 90% of patients had a
good performance status (ECOG = 0). A daily supplement of ginger extract, started 3 days
prior to chemotherapy, showed significantly elevated antioxidant activity and reduced
oxidative marker levels in patients who receive moderate-to-high emetogenic potential
chemotherapy compared to a placebo [65]. In subsequent cycles of chemotherapy, pa-
tients seemed to have significantly elevated oxidative defense status based on their higher
blood levels of Cu-Zn superoxide dismutase (CuZn-SOD), catalase (CAT), glutathione
(GSH/GSSG), and GPx couplet with significantly reduced levels of malondialdehyde
(MDA) and NO2-/NO3- after continuously receiving ginger extract. This effect was not
observed in patients who received placebos. Furthermore, patients taking ginger extract
continuously were inclined to increase antioxidant enzyme blood levels and decrease
oxidative stress blood level [65].

In summary, ginger derivatives could play an important role in maintaining redox
homeostasis: In some cases, by decreasing the quantity of ROS-induced tumor-promoting
events, and in other cases, in contrast, by increasing oxidative stress and provoking
cell death.

5. Ginger and Angiogenesis

Angiogenesis, the formation of new blood vessels from pre-existing endothelium, de-
pends on complex cellular activities, such as extracellular matrix degradation, proliferation
and migration of endothelial cells, and morphological differentiation of endothelial cells to
form tubes. Thus, this phenomenon is tightly controlled by positive factors such as vascular
endothelial growth factor (VEGF) and negative regulators including endostatin, throm-
bospondin, etc., [66,67]. Neovascularization is fundamental in a variety of physiological
processes such as embryonic development and pregnancy [68]. On the other hand, angio-
genesis is a crucial event for tumor progression and metastatic cascade, therefore many
cancer therapies are directed against the tumor-associated vasculature [69–71]. Recent
observation showed that a series of natural compounds, including ginger extracts, were
proposed as antiangiogenic/angiopreventive substances both in in vitro and in vivo [20,26].
In this contest, it was demonstrated that 6-gingerol was able to inhibit the proliferation and
tube formation of human umbilical vein endothelial cells (HUVECs) in response to VEGF
or bFGF [9]. Also, 6-gingerol strongly inhibited sprouting of endothelial cells in the rat
aorta model and angiogenesis in the mouse cornea in response to VEGF; while in the mouse
model of melanoma, i.p. administration of the above-mentioned ginger extract reduced the
number of lung metastasis, with the preservation of apparently healthy behavior [9]. Kim
and their collaborators showed that in phorbol ester-stimulated mouse skin, 6-gingerol was
capable of inhibiting tumor promoter-induced activation of AP-1 and COX-2 expression by
blocking the activation of p38 MAP kinase (p38 MAPK) and NF-κB [72]. Since p38 MAPK,
NF-κB, and COX-2 are involved in angiogenesis, the anti-angiogenic activity of 6-gingerol
might be due to blocking their activation.

Moreover, the use of CAM assay showed that ginger extracts were capable to reduce
neovascularization as well as blood vessel diameter in a dose-dependent manner [73]. The
importance of 6-gingerol in angioprevention and cancer treatment was also supported
by further experimental evidence that demonstrated that the ginger extract was a potent
inhibitor of endothelial cell proliferation as tube-like formation in vitro and in vivo, directly
inhibiting the growth of rat YYT colon cancer cells or mouse MS1 endothelial cells in
response to the growth factors derived from another colon cancer cell line (mouse CT26) [74].
Interestingly, there is an inverse dose-dependent relationship between proliferation and
concentration of the ginger extract used [74].
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NF-κB, as well as IL-8, plays an important role in tumorigenesis, given its ability
to control the expression and function of numerous genes involved in cell proliferation,
sustained angiogenesis, and evasion from apoptosis. Different tumor types, including
ovarian cancer, have been shown to express high constitutive NF-κB activity [75]. It
was shown that 6-gingerol treatment of cultured ovarian cancer cells induced serious
growth suppression by inhibiting NF-kB activation and decreasing the VEGF and IL-8
secretion [10].

In summary, ginger derivatives seem to be potent anti-angiogenic substances that
point to a possible role in preventing cancer from becoming malignant, presumably by
selective inhibition of neovessel formation in tumor sites.

6. Cancer Stem Cells, Epithelial-Mesenchymal Transition and Ginger

In many tumors, a subpopulation of cells named cancer stem cells (CSCs) is in-
volved in dissemination through their stemness properties. In fact, CSCs play a criti-
cal role in metastatic potential, resistance to chemotherapies, as well as the relapse of
malignancies [76–79]. These cells are frequently identified in various tumors, including
brain, pancreas, liver, ovary, colon, lung, skin, and prostate cancers [77,80,81]. Together
with CSCs, the epithelial–mesenchymal transition (EMT) is responsible for the metastatic
propensity of cancer; in fact, it is reported that EMT cells show stem cell-like facets [82,83].
The Wnt/β-catenin signaling pathway is considered to be a critical inducer of the EMT
process and is important in maintaining cancer stem cell properties [84], and β-catenin is
the main mediator for the Wnt signaling from the cytoplasm through the nucleus [27,85,86].
Different studies show that defective functions in the Wnt/β-catenin pathway are the
key oncogene stimulus in 90% of patients affected by colon cancer and, coincidently, this
pathway has a principal role in CSCs maintenance in CRC patients [76,87].

MicroRNAs (miRs) are endogenously small, noncoding RNAs that can post-tran-
scriptionally regulate gene expression and seem to play an important role in maintaining
normal cellular functions [88]. Studies have shown that the miR-200 family plays a signifi-
cant role in the inhibition of the proliferation and metastases potential of CSCs and EMT
phenomenon by suppressing Wnt/catenin signaling [89]. One recent study showed that
zerumbone could reverse EMT to the mesenchymal–epithelial transition (MET) through
the upregulation of miR-200c by decreasing β-catenin expression in CRC HCT-116 and
SW-48 cell lines and by inhibiting the transcription of genes involved in EMT and CSCs [90].
As a result, CRC HCT-116 and SW-48 cell lines showed reduced cell viability after zerum-
bone treatment.

Another study demonstrated that ZD 2-1, a mixture of ZD 2, novel zingerone deriva-
tive, and zingerone, significantly inhibited the TGF-β1 induced an increase in migration
and invasion in SNU182 hepatocellular carcinoma cells when the concentration of ZD
2-1 reached 40 µM [18]. In particular, ZD 2-1 inhibited nuclear translocation of NF-kB
and activation of p42/44 MAPK/AP1 signaling pathways in the TGF-β1 induced EMT,
probably by inhibiting activation of MMP-2/9 and p42/44 MAPK [87].

In another experiment, 6-shogaol was found to interfere with the Notch pathway,
which is known to be actively involved in the self-renewal of CSCs. The treatment of MCF-7
and MDA-MB-231 breast cancer lines, both in monolayer and 3D spheroids configuration,
with 25 µM of 6-shogaol, reduced the cleavage of Notch1 in a time-dependent manner, and
consequently, decreased the Notch targets (Hes1 and Cyclin D1), in this way interfering
with the stem cell self-renewal pathway [13].

Additionally, the anti-tumor effects of [10]-gingerol in vivo was validated by using
metastatic 4T1Br4 tumor-bearing mice [91]. Control mice over the subsequent 14 days of
treatment showed weight loss, indicative of cachexia typically observed in mice with a high
tumor burden. In contrast, mice from the [10]-gingerol (10 mg/kg) group gained some
weight. The results indicated a significantly lower incidence of mice with brain lesions in
the [10]-gingerol-treated group (1/13) compared to controls (7/13) [91]. Moreover, [10]-
gingerol reduced spontaneous lung and bone metastatic burden. In addition, [10]-gingerol
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was well-tolerated in vivo, induced a marked increase in caspase-3 activation, and inhib-
ited orthotopic tumor growth in a syngeneic mouse model of spontaneous breast cancer
metastasis. Importantly, by using both spontaneous and experimental metastasis assays,
it was evidenced that [10]-gingerol significantly inhibited metastasis of multiple organs
including lung, bone, and brain.

7. Ginger and Multidrug Resistance

Multidrug resistance (MDR) mechanisms are associated with increased expression
of the P-glycoprotein (Pgp) or increased cellular metabolism of drug detoxifying proteins,
such as glutathione-S-transferase (GST), that are correlated with increased resistance to
apoptosis [24,92]. Additionally, multidrug resistance-associated protein 1 (MRP1), involved
in the transport of many antitumor agents, is overexpressed in many chemoresistant cancer
types including gastric cancer, neuroblastoma, and prostate cancer [93,94].

Recent research found that GST and MRP1 protein expression in the docetaxel-resistant
human prostate (PC3R) cancer cell line was higher than in the docetaxel-sensitive human
prostate (PC3) cancer cell line [95]. The results showed that 6-gingerol, 10-gingerol, 6-
shogaol, and 10-shogaol inhibited the proliferation of PC3R cells through the downregula-
tion of MRP1 and GST-protein expression [95]. Another study showed that a combined
therapy of 6-gingerol with doxorubicin (doxo) could enhance the efficacy of doxo-based
regiments in the treatment of Pgp-mediated MDR tumor with no severe side effects [12].
6-gingerol in combination with doxo produced a significant increase of doxo accumulation
(up to 44%) with the concentration of ginger at 10 and 20 µM in combination with doxo
2, 4, and 8 µM within the doxo-resistant human uterus sarcoma cell line MES-SA/Dx5.
Additionally, the increase in GSH production was significant (up to 13%) at a higher (20 µM)
6-gingerol concentration [12]. So, on one hand, 6-gingerol could act as chemosensitizer
inhibiting Pgp activity and, on the other hand, at high concentrations, it could have an
anti-oxidative capacity that could be useful to protect MDR-negative normal cells against
the damage caused by the generation of free radicals during anticancer treatment while its
extrusion from resistant cells via Pgp could reduce the protective effects of cells increasing
doxo sensitivity. Combined treatment of ginger oil with Methotrexate (MTX) increased
the cytotoxic effect of MTX by 1.54-fold for the CCRF-CEM, T-cell Acute Lymphoblastic
Leukemia (T-ALL) malignant cell line and 2.3-fold for Nalm-6 (B-ALL) cells, while the
cytotoxic activity of this herbal extract in normal mononuclear cells was negligible [11].
Additionally, 11 out of 12 patient samples showed 1.2–16.5% increased apoptosis compared
with the untreated samples. It was also shown that the more resistant cells were to the
chemotherapy drug, the more sensitive they were to the medicinal herb. These data in-
troduced ginger as a promising candidate for improved combination therapies in ALL,
especially for those patients who show resistance to chemotherapy [11].

8. Ginger Enhanced Bioavailability and Combined Treatment

Low bioavailability alongside the poor solubility of ginger derivatives hinders their
clinical application, probably due to poor absorption, hydrophobicity, extreme instability,
and rapid metabolism, with concomitant elimination [96,97]. Recently, nanotechnolo-
gies (polymer nanoparticles or micelles, liposomes, inorganic nanoparticles, and nano-
emulsions) have shown a huge advantage in enhancing bioavailability of these compounds
as well as their oral absorption, reducing medicinal herb doses and toxicity, thereby improv-
ing the target ability and therapeutic effects [98,99]. Comparatively, self-assembled micelles
could provide several advantages to drug delivery systems because of their high drug load-
ing capacity, low dose of formulation required, and long circulation time [100,101]. In the
recent study, the polyethylene glycol (PEG) derivative of linoleic acid (mPEG2K-LA) was
first employed as a material for forming micelles to encapsulate 6-shogaol and enhance its
solubility [102]. The formulated 6-shogaol loaded micelles (SMs) significantly slowed the
drug release in stimulated media of the gastrointestinal tract and increased the sensitivity
of tumor cells to the prototype drug. A high drug encapsulation of 80% was achieved under
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a drug loading capacity of 7%, which greatly enhanced the 6-shogaol delivery efficiency
versus general oral delivery systems. Therefore, SMs show a slower release rate than the
free 6-shogaol [102]. More importantly, the in vitro cytotoxic effect of SMs in HepG2 cells
is significantly higher than free 6-shogaol [102]. In addition, SMs showed enhanced oral
bioavailability and liver and brain distribution compared to free 6-shogaol. The in vivo
liver protection study in mice also demonstrated that SMs markedly reduced the activities
of serum AST, ALT, and liver MDA levels, while they remarkably increased the antioxidant
activities (GSH-Px, T-SOD). Therefore, the novel SMs are expected to serve as a promising
carrier for 6-shogaol to enhance its cancer treatment and hepatoprotection [102].

Because radiotherapy is one of the main treatment options in head and neck cancer,
6-shogaol was combined with irradiation to evaluate a possible radiosensitizing effect [16].
The results of this study showed that 6-shogaol enhanced the effect of irradiation on
SCC25, CAL27, two squamous cell carcinoma cell lines of the tongue and FaDu, and a
squamous cell carcinoma cell line of the pharynx in vitro. Cell viability assays showed that
irradiation in combination with 6-shogaol lead to a stronger growth inhibition than each
treatment method alone. Experiments demonstrated a synergistic effect of 6-shogaol and
irradiation, therefore a radiosensitizing capability of 6-shogaol can be supposed [16]. A
recent study described a nanovector made from ginger-derived lipids that can serve as a
delivery platform for the therapeutic agent doxorubicin (doxo) to treat colon cancer [28].
The nanoparticles from ginger were created and their lipids were reassembled into ginger-
derived nanovectors (GDNVs). A subsequent characterization showed that GDNVs are
efficiently taken up by colon cancer cells. Modified GDNVs conjugated with the targeting
ligand folic acid-mediated targeted delivery of doxo to Colon-26 tumors in a xenograft
tumor model in vivo and enhanced the chemotherapeutic inhibition of tumor growth
compared with free drug [28]. Such delivery vehicles have enhanced the permeability
and retention effect that allowed drugs to reach tumors more passively through leaky
vasculatures surrounding the mass. The result of this study demonstrated that GDNVs
loaded with doxo successfully inhibited tumor growth in a Colon-26 xenograft tumor
model [28].

Additionally, the studies reported the effects of combined treatment (ginger and gelam
honey), which downregulate the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin,
Gsk3β, Tcf4, and cyclin D1 while cytochrome C and caspase 3 genes were shown to be
upregulated in HT29 colon cancer cells [103]. Furthermore, an extract mixture of turmeric,
ginger, and garlic induced apoptosis in MCF-7 and ZR-75 breast cancer cell lines [104]. A
combined treatment with NE mix-tamoxifen caused the extension of apoptosis indicating
a potential role of the NE mix in sensitizing the ER-positive breast cancer cells towards
tamoxifen. Moreover, a combined treatment with NE mix-tamoxifen altered the expression
of apoptotic markers (p53 and Caspase 9) leading to apoptosis in breast cancer cell lines.

So, nanotechnologies and combined treatment seem to increase the efficiency of ginger
derivatives therapeutic effects by increasing their bioavailability.

9. Conclusions and Future Perspectives

Nowadays, available drugs for treating cancer are often toxic, expensive, and little
effective. Ginger derivatives possess high potential chemopreventive properties such as
cell cycle arrest, increased cellular death (apoptosis, autophagy and autosis), as well as
redox homeostasis unbalance. Furthermore, they inhibit angiogenesis, CSCs formation,
and the EMT process. Therefore, this natural compound directly and indirectly influences
tumor cell survival and inhibits invasion and metastasis processes, without significant toxic
effects on normal cells [18,26]. Additionally, ginger enhances the therapeutic efficacy of the
currently available anti-cancer drugs and represents a good adjuvant to certain phytochem-
ical compounds including turmeric, garlic, and gelam honey [103,104]. A very important
moment in ginger derivatives’ chemopreventive properties is that they do not cause side
effects, but on the contrary, they ease the side effects provoked by other cancer treatments,
like radio- and chemotherapy, giving ginger a considerable advantage in being considered
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a chemopreventive natural compound [105,106]. However, most of the known activities
of ginger components have been studied only in in vitro and in vivo studies, except for a
few clinical studies in human subjects. Therefore, more substantial and well-controlled
clinical human studies are needed to illustrate its efficacy as an anticancer agent, since it is
a safe and encouraging alternative. The recent development of nanotechnologies (polymer
nanoparticles or micelles, liposomes, inorganic nanoparticles, and nano-emulsions) pro-
vides a chance to improve oral absorption, bioavailability of ginger, while also improving
the target ability and its therapeutic effects [28,102]. In summary, ginger derivatives have
various health effects and therapeutic properties; nevertheless, their biological applications
are limited due to their hydrophobic nature. The low aqueous solubility of this compound
seems to be the major obstacle for its lab-to-clinic development as a drug; therefore, it
appears to be necessary to use advanced extraction methods to improve its bioavailability.

Author Contributions: M.Z. wrote and prepared the manuscript; D.M. wrote and supervised the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: None of the authors have a conflict of interest.

Abbreviations

ALT alanine aminotransferase
AP-1 activator protein 1
AST aspartate aminotransferase
ATPase adenosine triphosphatase
B-ALL B-cell Acute Lymphoblastic Leukemia
Bcl-2 B-cell lymphoma 2
CAM chorioallantoic membrane
Caspases cysteine-aspartate proteases
CAT catalase
CDK cyclin-dependent kinases
CFEZO crude flavonoid extracts from Z. officinale
CKI cyclin-dependent kinases inhibitor
COX-2 cyclooxygenase-2
CRC colorectal carcinoma
CSCs cancer stem cells
CuZn-SOD Cu-Zn superoxide dismutase
CYP-P450 cytochrome P450
DMBA 0.5% 7,12-dimethylbenz[a]anthracene
DNA deoxyribonucleic acid
DNPH dinitrophenylhydrazone
ECOG Eastern Cooperative Oncology Group
EE Etlingera elatior
EMT epithelial-mesenchymal transition
eNO endothelial nitric oxide synthase
ERK Extracellular signal-regulated kinase
FAs focal adhesions
GAE aqueous extract of ginger
GDNVs ginger-derived nanovectors
GR glutathione reductase
GSH Glutathione
GST glutathione-S-transferase
HBP hamster buccal pouch
HNSCC head and neck squamous cell carcinoma
HUVECs human umbilical vein endothelial cells
IAP inhibitor of apoptosis
IL-8 interleukin 8
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LC3-II light chain3-II
MAPK Mitogen-Activated Protein Kinase
MDA malondialdehyde
MDR multidrug resistance
MET esenchymal–epithelial transition
miRs microRNA
MMP Matrix metalloproteinase
MRP1 multidrug resistance-associated protein 1
mTOR the mechanistic target of rapamycin
MTX methotrexate
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
Nox NADPH oxidases
NSCLC non-small-cell lung cancer
PEG Polyethylene Glycol
Pgp P-glycoprotein
PI3K phosphatidylinositol-3-kinase
RNA ribonucleic acid
ROS reactive oxygen species
SCID severe combined immune deficient
SDGE Steam Distilled Extract of Ginger
SMs 6-shogaol loaded micelles
SSHE extract of Syussai ginger
STAT3 signal transducer and activator of transcription 3
T-ALL T-cell Acute Lymphoblastic Leukemia
TNBC triple negative breast cancer
TNF tumor necrosis factor
TRAIL TNF-related apoptosis-inducing ligand
USP14 ubiquitin-specific peptidase 14
VEGF vascular endothelial growth factor
XO xanthine oxidase
ZOME Methanolic extract of Zingiber officinale rhizome
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Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder char-
acterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of 
this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, 
genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood 
vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver 
fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. 
Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident 
liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and 
chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as 
well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the 
cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic 
therapies in this pathology.

Keywords Liver fibrosis · Angiogenesis · Anti-angiogenic drugs · Liver information · Liver fibrosis regression

Introduction

Genetic, environmental and lifestyle factors (e.g. alcohol 
abuse), mechanotransduction signal pathway and viral infec-
tions can contribute in onset and progression of liver fibrosis 
(LF) [1–6]. Histologically, this disorder can be classified as 
a chronic fibro-inflammatory condition characterized by an 
excessive deposition of extracellular matrix (ECM) proteins 

including collagen fibers (I, III, and IV) [7–9]. Clinically, 
portal hypertension can be a key feature in patients suffering 
from severe form of LF [10, 11]. Evidence from a number of 
studies demonstrates that angiogenesis, the formation of new 
blood vessels from pre-existing vasculature, plays a crucial 
role in the progression of this complex disease [12–15]. It 
is well known that inflammation and hypoxia are two ele-
ments that strongly promote neovascularization [16–18]. 
Interestingly, both phenomena can be considered as markers 
of LF [19, 20]; thus, it is reasonable that angiogenesis takes 
place during hepatic fibrogenesis [12, 13]. Consequently, 
it is conceivable that anti-angiogenic approaches could 
represent a useful tool in the treatment of LF. The present 
review will describe the general aspects of the pathogenesis 
of LF, focusing on the link between hepatic fibrogenesis 
and angiogenesis. Meanwhile, selective strategies targeting 
angiogenesis for the preservation of the hepatic tissue will 
be introduced.
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The pathogenesis of liver fibrosis

As aforementioned, histologically, fibrotic hepatic paren-
chyma is characterised by chronic inflammation and 
exacerbated production of ECM molecules with conse-
quent abnormality in the liver tissue [7, 8]. The inflam-
matory foci are comprised of lymphocytes, plasma cells, 
monocytes/macrophages  (LY6Chi phenotype) as well as 
granulocytes [21, 22]. All these inflammatory components 
indirectly participate in the process of fibrogenesis by 
producing soluble/paracrine signals including cytokines, 
chemotactic molecules, fibrogenic agents [23, 24]. Also, in 

the chronic hepatic injuries, cholangiocytes, hepatocytes, 
liver sinusoidal endothelial cells (LSECs) and non-sinusoi-
dal endothelial cells (ECs), together with resident Kupffer 
cells secrete various sclerotic stimuli such as transforming 
growth factor- β (TGF-β, the “master mediator” of many 
fibrotic disorders), platelet-derived growth factor (PDGF), 
and epidermal growth factor (EGF) [25]. Figure 1 depicts 
the many cell types and molecular effectors involved in LF, 
leading to the activation of HSCs. Generally, the primary 
effectors of fibrogenesis are resident fibroblasts, myofi-
broblasts [26, 27], and their bone marrow-derived circu-
lating precursors namely fibrocytes [28, 29]. In damaged 
liver, activated hepatic stellate cells (HSCs) are mainly 

Fig. 1  During liver injury, quiescent HSCs or other precursors (e.g. 
bone marrow-derived fibrocytes, portal fibroblasts, hepatocytes in the 
epithelial-mesenchymal transition) are activated by various cell types 
resident in the liver, including hepatocytes, cholangiocytes, sinusoidal 
and non-sinusoidal endothelial cells, pericytes, macrophages  LY6Chi, 
Kupffer cells, as well as Th17 T cells and other lymphoid cells. All 
these cell types secrete pro-fibrogenic mediators that ultimately acti-

vate HSCs or other precursors that eventually transform into myofi-
broblasts and operate to deposit ECM. CCL CC chemokine ligands, 
DAMP danger associated molecular pattern, IL interleukin, NO nitric 
oxide, PDGF platelet-derived growth factor, ROS reactive oxygen 
species, TGF-β transforming growth factor-β, TNF-α tumor necrosis 
factor-α
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responsible of fibrogenesis in at least 2 ways: on one hand 
they produce ECM, on the other hand impede ECM deg-
radation by secreting proteases inhibitors including endog-
enous tissue inhibitors of metalloproteinases (TIMPs) [30, 
31]. There is a lot of evidence showing that epithelial-mes-
enchymal-transition (EMT) has also a great importance in 
fibrotic lesions. Accordingly, hepatocytes as well as ECs/
LSECs can undergo a process of epithelial-(endothelial)-
mesenchymal transition (EMT) through autocrine/par-
acrine signals mediated, in part, by TGF-β [32]. Addi-
tionally, recent work discovered that pericytes, are also 
involved in the process of fibrogenesis [33–35]. In fact, 
these mural cells seem to have the capability to detach 
from basement membrane surrounding hepatic capillary to 
accumulate within the injured hepatic tissues, where they 
undergo phenotypic transformation into ECM-producing 
myofibroblasts [33–35]. As a consequence, a wide range 
of cells, growth factors and other stimuli are engaged in 
the liver fibrogenesis [33–35].

The link between angiogenesis and liver 
fibrosis

Angiogenesis is a growth factor-dependent phenomenon 
taking place during all stage of the human development; 
during adult life, at least in healthy conditions, it happens 
only in certain circumstances, for example during pregnancy 
and menstrual cycle [36, 37]. By contrast, experimental and 
clinical evidences indicate that angiogenesis accelerates the 
progression of many disorders such as cancer growth and 
metastasis, rheumatoid arthritis, diabetic retinopathy and 
other complex diseases including LF [12, 38–42]. It is well 
known that inflammation and hypoxia are crucial elements 

in induction of neovascularization. As previously speci-
fied, hepatic tissue affected by fibrosis, shows permanent 
inflammation and low oxygen level, offering a prototypical 
microenvironment for neovascularization [43, 44]. In detail, 
accumulation of ECM in liver parenchyma is a main cause of 
hypoxia, which in turn, stabilizes the dimeric transcription 
factor “hypoxia-inducible factor” (HIF) [45]. HIF regulates 
the transcription of an array of genes including those con-
trolling angiogenesis such VEGF, PDGF-B, matrix metal-
loproteinases (MMPs) as well as TIMPs [46–49]. As matter 
of fact, hypoxic areas co-localize with those of an increased 
microvessel density (MVD), fibrous septa and inflamma-
tory foci [48, 50, 51]. In addition, hypoxia further stimulates 
the infiltration of inflammatory cells [52], which, in turn, 
contribute to angiogenesis and fibrotic phenomena [53]. In 
conclusion, in injured liver, hypoxia, angiogenesis, chronic 
inflammation and fibrosis drive each other following an acti-
vated loop, and synergistically exacerbate the severity of the 
LF (Fig. 2) [15, 16, 54]. 

To incite neoangiogenesis, VEGF binds to its recep-
tors VEGFRs stimulating the formation of new functional 
vessels (Fig. 3). By the signals generated by bound VEG-
FRs, VEGF is the leading regulator of ECs/LSECs activ-
ity during all steps of angiogenesis [55]. In LF, VEGF is, 
in part, produced by ECs/LSECs themselves suggesting 
an autocrine action of this signal pathway; but damaged 
hepatocytes and activated HSCs seem to be the principal 
sources of this relevant growth factor [56]. The latter evi-
dence highlights the crucial role of HSCs in LF because 
they constitute a crossroad among inflammation, fibrosis 
and angiogenesis (Fig. 4) [12, 16, 57, 58]. PDGF-B, prin-
cipally produced by ECs/LSECs, acts during vessel stabili-
zation, orchestrating the formation/maturation of vascular 
tube and its coverage through the recruitment of PDGFRs 

Fig. 2  Link among hypoxia, 
angiogenesis, inflammation 
and liver fibrosis. Hypoxia, 
angiogenesis, inflammation and 
fibrosis drive each other activat-
ing a pathological loop in liver
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positive pericytes/HSCs [57]. FGF, through an autocrine 
loop, is involved in LF angiogenesis not only inducing the 
activation of ECs/LSECs, but also, increasing HSC pro-
liferation and recruitment [12]. Ang-2 is acutely released 
from activated ECs/LSECs, upon stimulation with inflam-
matory cytokines, proangiogenic factors, and hypoxia and 
competitively inhibits the binding of Ang-1 to Tie-2 [59] 
that, instead, serves to maintain survival and quiescence 
of endothelium [60]. Inflammatory cells also secrete a 
plethora of angiogenic factors (VEGF, PIGF, PDGF, 
FGF, Angiopoietins, TGF-β, etc.) [12, 61–67]. For exam-
ple, both infiltrating macrophages and resident Kupffer 
cells, once activated, contribute to angiogenesis releasing 
reactive oxygen species (ROS), nitric oxide (NO), tumor 
necrosis factor- α (TNF-α) and other angiocrine molecules 
[12]. As above cited, in drastic circumstances, LF is com-
plicated by portal hypertension (PHT) accompanied by 
severe hepatic structural disorder correlated to diffuse 
fibrosis [68]. Angiogenesis also participates in the patho-
genesis of PHT, in part modulating HSCs activation and, 
on the other hand, provoking the formation of portal-veins 
collaterals [69]. Cellular molecules involved in promoting 
angiogenesis and their roles in LF are listed in Table 1 
[57, 70–75].

Anti‑angiogenesis approaches slow down LF

Considering the indisputable importance of neovasculariza-
tion in LF progression, it is plausible that blocking angio-
genesis may offer a method to attenuate the aberration of 
hepatic tissue or prevent more serious damage including 
cirrhosis [14, 76]. For this reason, some anti-angiogenic 
strategies including natural compounds are currently under 
investigation [77]. Since VEGF is the most efficient pro-
angiogenic factor, generally most anti-angiogenic therapies 
have been focused on blocking the VEGF signal pathway 
[76, 78] (Fig. 3). Bevacizumab, a humanized monoclonal 
antibody neutralizing VEGF-A [72, 79, 80], in combina-
tion to other drugs, is currently used to treat different kinds 
of tumors [74, 81, 82]. It also shows a strong anti-fibrotic 
effect in human Tenon’s fibrosis [83]. High VEGF-A lev-
els in the aqueous humor of patients with nonneovascular 
glaucoma have been reported [84], and this increase may 
contribute to post-operative inflammation and fibrosis. Since 
Tenon’s fibroblasts have been shown to express VEGF-A 
receptors [84], these findings highlight once more the inti-
mate relationship between angiogenesis and fibrosis, as it 
occurs in LF. An interesting study conducted by Huang 
et al. [85], showed that bevacizumab alleviates LF in vivo by 

Fig. 3  The VEGF/VEGFR signalling axis, its contribution to angio-
genesis and treatment modalities interfering with its activity. Bind-
ing of VEGF ligands to their cognate receptors (VEGFRs) leads to 
receptor dimerization and autophosphorylation triggering a down-
stream intracellular phosphorylation cascade. Monoclonal antibodies 

target VEGFs, preventing its binding to VEGFRs, while monoclonal 
antibodies targeting VEGFRs prevent the binding of VEGFs, result-
ing in the inhibition of VEGFR signalling. The treatment of receptor 
tyrosine kinase inhibitors (RTK-Is) inhibits the activation of VEGF/
VEGFR signalling
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neutralizing VEGF produced by hepatocytes and by block-
ing HSCs activation. The effects of VEGFRs neutralizing 
antibodies such as anti-VEGFR1 and anti-VEGFR2 have 
also been explored [86, 87] (Fig. 3). Results show that the 
use of anti-VEGFR-2 antibody results more effective than 
the anti-VEGFR-1 antibody when used alone [87], although 
combined treatment with both antibodies gave some tissue 
improvement in LF [87]. Additionally, the use of the mul-
tiple receptor tyrosine kinase inhibitors such as sorafenib 
and sunitinib blocking PDGFR-β and VEGFRs signaling 
pathways is under investigation [88] (Fig. 3). Sorafenib 
attenuates LF by reducing HSCs proliferation/activation 
and inducing their apoptosis both in vitro and in vivo [88, 
89]. Sunitinib also decreases LF, switching off inflammation, 
HSCs activation and angiogenesis [90, 91]. PDGF-B and its 
signaling pathway and cyclooxygenase-2 are also involved 
in HSCs activation [92, 93]. Gao at al demonstrated that 
the use of celecoxib (a cyclooxygenase-2 inhibitor) shows 
similar effect in vivo as those obtained with sorafenib [94]. 
It is implicit that enhancing the expression and the activation 
of the ECM proteases can also contribute to the resolution of 

fibrosis [95, 96]. In line with this idea, it has been shown that 
the decrease of LF is associated with increased expression 
of MMPs (MMP-2 and -14) as well as decreased expression 
of TIMP-1 and -2 in hepatic tissue [30, 97].

Along with the use of immunotarget therapy above listed, 
recently, the regenerative potential of stem cells is being 
exploited in fibrotic diseases. Accordingly, the injection of 
bone marrow-derived mesenchymal stem cells (BMSCs) 
including endothelial progenitor’s cells (EPCs) seems to 
reduce the severity of LF by increasing the degradation of 
ECM by means of proteases/MMPs [98, 99]. In fact, exper-
imental evidences showed that EPCs transplantation was 
shown to effectively promote the remodelling of damaged 
liver tissues in a dimethylnitrosamine (DMN) rat liver fibro-
sis model [100, 101].

Other approaches to slow down LF

Additionally, studies have demonstrated that LF may be 
prevented or reversed by bioactive food components and 
natural products, including fumagillin analogue (TNP-470), 

Fig. 4  Schematic model of HSCs activation. Quiescent HSCs are 
activated, during lung injury, by a host of factors, including hypoxia, 
inflammatory stimuli and growth factors produced by liver cells, such 
as hepatocytes and endothelial cells. HSCs transform into myofi-
broblasts and contribute to angiogenesis, fibrosis and inflammation. 
Once activated, HSCs act as proangiogenic cells and may respond to 
stimuli such as hypoxia through the increase of VEGF, Ang-1, and 
their related receptors VEGFR-2 and Tie-2. Activated HSCs are the 

prime downstream effectors of excess ECM deposition and they also 
produce the fibrogenic cytokine TGF-β. Moreover, fibrolysis is com-
promised, e.g. by an increased synthesis of TIMPs and a decreased 
production of fibrolytic MMPs. Finally, activated HSCs contribute to 
inflammation in liver fibrosis by producing chemokines, including CC 
chemokines ligands (CCL2, CCL3, CCL5) and the CXC chemokines 
ligands (CXCL8, CXCl9, CXCL10, CXCL12). MCP-1 monocyte 
chemoattractant protein-1
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astaxanthin, curcumin, blueberry, silymarin, vitamins (C, 
D, E), resveratrol, quercetin, coffee and green tea extracts 
[102–104]. Generally, the anti-fibrotic effect of all these 
natural compounds seems to be mainly attributed not only 
to their antioxidant and anti-inflammatory features but also 
to their ability to revert the activated forms of HSCs in a 
more quiescent phenotype [102].

Current challenges and future directions

Inflammation, fibrosis and angiogenesis are strictly inter-
twined during the progression of chronic liver diseases 
(CLDs), including chronic viral hepatitis, PTH, non-
alcoholic and alcoholic liver diseases. This brings to the 
notion that a wealth of cellular and molecular mecha-
nisms are implicated in liver fibrosis and angiogenesis. 
Interactions among hepatocytes, HSCs, Kupffer cells, and 
endothelial cells have been described, with HSCs repre-
senting a crossroad at the interaction between inflam-
mation, angiogenesis, and fibrosis. Angiogenic factors, 
including VEGF, PDGF, FGF, Ang-2, EGF, and vari-
ous cytokines, are important mediators of angiogenesis 
in fibrosis associated with CLDs. Besides these factors, 
metabolic abnormalities, including adipokines, may dys-
regulate angiogenesis, and hence influence inflamma-
tion and fibrosis. Moreover, it has also been shown that 
endoplasmic reticulum stress and related unfolded protein 

response, and neuropilins are involved in liver angiogen-
esis and fibrosis [12]. Given the plethora of cellular and 
molecular mechanisms, a better appraisal of this complex-
ity may be caught by three-dimensional (3D) models that 
can recapitulate liver architecture and interactions among 
different cell types [105, 106]. Indeed, one obstacle in the 
development of efficient therapies is the lack of robust 
and representative in vitro models of human liver fibrosis 
through which novel drugs can be tested. Currently used 
animal models are not useful for dissecting the relative 
role of each component since the predictive value for 
human physiologic responses in terms of pharmacokinet-
ics and pharmacodynamics is sometimes poor. Moreover, 
they are not suitable for large scale screening of antifi-
brotic compounds. The main 3D models that are being 
used and implemented include cocultures of hepatocytes 
and HSCs, achieved by insert cultures, spheroids (pre-
senting many cell types), or liver tissue cultures. More 
advanced techniques are bioprinting and microfabricated 
microfluidic devices to provide a constant flow of oxy-
gen and fresh nutrients and remove the metabolic waste 
generated (as replacement of bile canaliculi). Finally, 
organotypic models, such as precision cut liver slices and 
decellularised 3D scaffolds, will offer more opportunities 
to test novel drugs in a context maintaining the intact 
hepatic architecture and cellular heterogeneity. Thus far, 
the main focus of the field has been on the maintenance 
of functional hepatocytes for prolonged culture periods; 

Table 1  Molecules involved in angiogenesis and their role in LF cited in this review

Angiogenic factor Actions during angiogenesis Role in angiogenesis in LF References

VEGF • Promotes endothelial cell survival and homeostasis
• Promotes endothelial cell detachment from the base-

ment membrane
• VEGF and Notch co-operate in an integrated 

intercellular feedback that functions as a ‘‘branching 
pattern generator’’

Produced by damaged hepatocytes and activated HSC 
→ capillarization of sinusoids

[70]

PDGF-B Recruitment of pericytes Produced by ECs/LSECs this factor stimulates HSC 
proliferation, differentiation, and migration, as well 
as transforms HSC into myofibroblasts

[57]

TGF-β Stimulates mural cell induction, differentiation, prolif-
eration, and migration and promotes production of 
extracellular matrix

Release of TGF-β by necrotic hepatocytes during 
liver damage is one of the first signals to activate 
adjacent quiescent HSC → trans-differentiation into 
myofibroblasts

[71]

FGF This factor is mitogenic for endothelial cells and 
increases the expression of VEGF

Induces the activation of ECs/LSECs, and increases 
HSC proliferation and recruitment

[72, 73]

ANG1 and Tie-2 ANG1, produced by mural cells, activates its endothe-
lial receptor Tie-2

ANG1 stabilizes vessels, promotes pericyte adhesion, 
and makes them leak resistant by tightening endothe-
lial junctions

Autocrine ANG1 promotes HSC/myofibroblast migra-
tion

[70]

EGF and TGF-α They are mitogenic for endothelial cells and increase 
angiogenesis in in vivo model

Hepatocyte-derived EGF induces HSC migration
Autocrine TGF-α is involved in transformation into 

myofibroblasts

[74, 75]
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incorporation of non-parenchymal cells (such as endothe-
lial cells, Kupffer cells, and HSCs) will allow the use of 
these culture systems for in vitro fibrosis studies [105]. 
In order to gain higher number of cells and make sus-
tainable these models, stem cells are a suitable source of 
different cell types. Many stem cell types, including liver 
progenitor/stem cells, extra-hepatic biliary tree stem cells, 
embryonic stem cells as well as induced pluripotent stem 
cells (iPSCs) have been reported to generate hepatocyte-
like cells [107] and cholangiocytes [108, 109], and more 
recently LSECs and HSCs [110]. Further studies should 
determine whether these cell types are fully functional 
and can reconstitute organotypic models. Another essen-
tial feature of these models will be the inclusion of stiffer 
materials mimicking the deposition of collagen that is a 
feature of liver fibrosis. Depending on the hardness of 
the substrates used, i.e. soft versus stiff, the quiescent 
phenotype of HSCs will be maintained, or they will trans-
form into activated myofibroblasts [5, 106]. Recently, a 
novel 3D organotypic liver models comprised of hepat-
ocytes, LSECs, HSCs, Kupffer cells, and the Space of 
Disse mimic demonstrated how a mechanical gradient 
resulted in transitioning phenotypes in hepatic cells and 
cause varying profiles of fibrotic markers [111]. Thus, 
mechanotransduction and biomechanics are parameters 
that should be envisioned as essential in constructing 
these models. These advanced in vitro models have been 
used for testing drug induced liver injury, determined by 
alcohol or medications, in the developmental phase of 
pharmaceuticals [105, 112] or in the evaluation of drugs 
already in clinical trials [113]. In addition to inhibitors 
of angiogenesis, that could result in unspecific effects, 
genetic tools may target profibrotic and proangiogenetic 
genes with an unprecedented precision. Small interfering 
RNAs and antisense oligonucleotides have been vehicled 
by nanocarriers (lipoplexes and nanoparticles) that are 
preferentially engulfed by nonparenchymal cells, promi-
nently HSCs and myofibroblasts. The target genes to be 
downregulated include TGFβ-1, TGFβ receptors, osteo-
pontin, integrins, and chemokine receptors [58]. Complex 
3D and organotypic models are also essential in finding 
novel noninvasive markers of angiogenesis in liver fibro-
sis. Histological follow-up does not have the power to 
reliably detect antifibrotic drug effects in the short term. 
Validated serum markers would measure the activity of 
angiogenesis and fibrogenesis and therefore enable the 
selection of patients likely to respond to antiangiogenic 
and antifibrotic therapies, and to detect responders to 
these therapies. Finally, these models could capture the 
inter-individual genetic and environmental variations, 
increasing the pace towards the personalised medicine 
approach [58], and will be paramount to design more pre-
cise and real-to-life clinical trials.

Relevant conclusion

Anti-angiogenic therapy for hepatic fibrosis resolution has 
received increasing attention in recent years. However, it is 
not possible to overlook the fact that the LF is a multifacto-
rial disorder, and angiogenesis in only one of the phenom-
ena that favours its genesis and progression. Moreover, the 
limited preclinical/clinical studies impede to know in detail 
any counterproductive effects of antiangiogenic therapies 
in this aberrant circumstance. Consequently, further large 
randomized studies need to be conducted before deducing 
that anti-angiogenic approaches can be used in the treatment 
of liver fibrosis.
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