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The aim of this preliminary feasibility study was to verify whether visible/near infrar-

ed(vis/NIR) spectroscopy could be used to predict the oil content of intact olives entering

the mill, and of olive paste, pomace and pat"e during the milling process. Three different

extraction methods (3-phase decanters, 2-phase decanters and 2.5-phase decanters) were

considered, and two optical devices were tested: (i) a process device for non-contact

analysis and (ii) a system equipped with an immersion probe for contact measurements,

both working in the spectral range 400e1650 nm. 35 samples of olives were collected during

the experimental tests, 50 samples of olive paste, 50 samples of pomace and 50 samples of

pat"e. The collected samples (olives, olive paste, pomace and pat"e) were used to calculate

partial least squares (PLS) regression models.

Results regarding the non-contact analyses were encouraging, except for the measures

on olives. On pomace, satisfactory models were calculated for the vis/NIR range [Ratio

Performance Deviation (RPD) > 2], and a good model with R2 ¼ 0.81 and RPD ¼ 2.68 in

validation was calibrated in the NIR range. The device equipped with an immersion probe

achieved good predictive models for the oil content prediction on pat"e (R2 and RPD values

ranged 0.77e0.82 and 3.00e3.43).

The predictive models could be easily applied in an on-line system to monitoring the

entire extraction plant and to perform a feed-forward control, allowing a reduction of oil

leakage to minimise the oil losses and to maximise the extraction yield.
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1. Introduction

The food industry converts agro-materials into products using
a variety of different processes. The choice of the process to
achieve the best supply chain performance is carried out ac-
cording to the efficiency and quality of the product to remain
competitive on the market. For the production of an extra-
virgin olive oil of excellent quality, a company should

consider implementing and/or improving some parts of the
olive oil production chain: olive harvesting and handling; car-
rying out the milling operation a short time after olive har-
vesting; using advanced mill plant equipped with suitable
technologies to control themilling conditions. The last point is
a good starting point for an optimisation of theprocess because
differences from the standard operating conditions are the
principal cause of failures to maintain the highest standards
during processing and these affect the final product's quality.
In the extra virgin olive oil extraction chain, control of the
process and its management determines the conditions to

produce a high quality extra-virgin olive oil, needed to retain
consumer confidence, but process control is also important to
evaluate potential losses of the plant's yield. Thus, process
control is essential for achieving effective competitiveness.

The extra virgin olive oil extraction plant is set up as a
number of interconnected machines arranged in series and in
some cases, even in parallel (Leone et al., 2015). The main
operations of the entire process are: olive cleaning, olive
crushing to obtain a paste, paste malaxation, solideliquid
separation and liquids separation. Solid-liquid separation is
one of themost important operations; it consists of separating

the solids (pomace) from the other olive components (oil and
waste water).

The solideliquid centrifuges are classified according to the
characteristics of the products in output from the decanter
(Altieri, Di Renzo, & Genovese, 2013; Leone, Romaniello,
Zagaria, & Tamborrino, 2015):

" 3-phase decanters, able to separate oil (5e10% of hu-
midity) from dry pomace (50e55% of humidity) and
waste water. In three-phase sedimentation, 10e30% of
warm water is added to the inlet olive paste;

" 2-phase decanters, able to separate oil (5e10% of hu-
midity) from the wet pomace (65e70% humidity). In
two-phase sedimentation, no water is added to the inlet
olive paste;

" 2.5-phasedecanters,able to separateoil (5e10%humidity)
fromdry pomace rich in heavy solids at 50e55%humidity
and to produce a new by-product called ‘‘pat"e,’’ which
contains wastewater enriched by soft solids without pit
fragments and having a semi-solid consistency.

An important evaluation parameter for a decanter's per-

formance is the oil extractability. This parameter is calculated
by dividing the oil extracted by 100 kg and the oil contained in
those 100 kg of olives. The decanter's extractability can vary
according to (i) the type of decanter, (ii) the wear/mainte-
nance, (iii) the cultivar and ripeness of the olives processed,
(iv) the particle size and rheology of olive paste and finally on
(v) the decanter adjustments. Extractability is in the range

80e90% (Tamborrino, Leone, Romaniello, Catalano, & Bianchi,

2015); the oil that is not extracted remains in the unbroken
cells or is trapped in the cytoplasm tissues, or is emulsified
into the aqueous phase. The extractability reflects the de-
canter's correct functioning, and it is very important to know
it. The quantification of residual oil in the pomace is consid-
ered a crucial control for the qualitative optimisation of the
olive oil extraction plant.

To obtain on-line information on the oil content in input
olives and in the output by-products allowsmanagers to react
to imperfections in the process by corrective actions or by
redefining/reinforcing preventive actions. Nowadays the

traditional or rapid Soxhlet method is used to analyse the oil
content in olives, pomace and pat"e, requiring a time-
consuming drying step, followed by an extraction using sol-
vent. This method is now often substituted in routine ana-
lyses by nuclear magnetic resonance (NMR) spectroscopy, but
this technique is also not very rapid due to water interference.
For this reason, the olive pomace sample must be completely
dry. Consequently, this method is unsuitable for an on-line
application during process control.

The investigationof thecharacteristics of theolives entering
the milling process and of the features of by-products during

milling could allow operators to control the quality of the pro-
cess. A better monitoring of the oil production process also
dependsoncontrollingproductionof thepaste, thepomaceand
thepat"e, the intermediateproducts between theolives entering
into the process and the oil outlet from the mill, to establish
correlations among olives, paste, pomace, pat"e and oil. Hence,
in the olive oil industry, quick and easy-to-use technologies are
required to (i) assessolive ripeningandthecharacteristicsof the
by-products, (ii) for early detection of possible failures, (iii) to
monitor in a lasting way the production process during its
crucial steps in order to control the oil quality and yield. The

sector could be helped by optical non-destructive and rapid
applications for the olive oil production chain optimisation.

Over the last 30 years, on/in-line NIR spectroscopy has
gained much success by placing on the market efficient and
advanced tools for continuous product quality monitoring in
the food processing industry, such as for fruit, vegetables,
meat, grain, dairy products and beverages (Huang, Yu, Xu, &
Ying, 2008; Porep, Kammerer, & Carle, 2015). Regarding the
oil sector, several studies have highlighted the enormous op-
portunities offered by NIR spectroscopy in terms of applica-
tions for quality control during the process, performing on/in/
at-line measurements on olive fruits, on pastes, and on oils

(Armenta, Moros, Garrigues, & Guardia, 2010). Researchers
tend to focus attention on the on-line applications of non-
invasive technologies in order to reduce the gap between
laboratory scale experimentation and the olive milling in-
dustry (Ortega, Gila, Puerto, Garcı́a, & Ortega, 2016). A number
of studies applying different vibrational techniques in the
olive oil chain can be found in the literature, mainly with the
aim of standardising the procedure for an application as offi-
cial control of the end product (Nenadis& Tsimidou, 2017). For
this purpose, it is crucial to evaluate the optimal spectral
range to be used and the chemometric methods to be per-

formed to obtain robust predictive models for the estimated
parameters. On intact olives, Giovenzana, Beghi, Civelli,
Marai, and Guidetti (2015) and Beghi, Giovenzana, Civelli,
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Cini, and Guidetti (2013) studied the capability of portable

visible/near infrared (vis/NIR) and NIR spectrophotometers to
investigate different texture indices for the characterisation of
olive fruits entering the milling process. Salguero-Chaparro,
Baeten, Fern"andez-Pierna, and Pe~na-Rodrı́guez (2013) used
NIR spectroscopy on intact olives for the on-line determina-
tion of the oil content, moisture and free acidity parameters.
NIR has been used in the laboratory or in processing mill lines
for the analysis of olive by-products such as olive pomace. On
olive paste and pomace, Garcı́a S"anchez, Ramos Martos, and
Ballesteros (2005) tested the suitability of NIR and NMR spec-
troscopy for the determination of moisture and fat contents,

while Gallardo, Osorio, and Sanchez (2005) used near-infrared
spectroscopy for the real-time determination of moisture and
fat content in olive pastes and pomace obtained from 2-phase
and 3-phase decanters; Barros, Nunes, Martins, and Delgadillo
(2009) applied Fourier transform Near Infrared Spectroscopy
(FTNIR) spectrometry (1000e2500 nm) in combination with
partial least squares regression for direct, reagent free deter-
mination of fat andmoisture content inmilled olives and olive
pomace; Muik, Lendl, Molina-Dı́az, and P"erez-Villarejo (2004)
compared NIR reflectance and Raman spectrometry to deter-
mine the oil and water content of olive pomace. Marquez,

Dı́az, and Reguera (2005) used an optical NIR sensor for on-
line characterisation of virgin olive oil.

Theaimof this preliminary study is to verify the applicability
of two different vis/NIR spectroscopy devices to predict the oil
contentof intactolivesentering themill and thentoevaluate the
oil content in olive paste, pomace and pat"e during the milling
process. Three different extraction methods will be considered.
The predictivemodels determined starting fromvis/NIR spectra
on olive pastes and by-products during the production process
could be applied in an on-line system to monitor the entire
extraction plant and to perform a feed-forward control to

minimise oil losses and to maximise the extraction yield.

2. Material and methods

2.1. Industrial olive oil extraction plants and samples
collection

Experimental tests were performed in two different full-scale
mills during the cropping season 2015e2016. The first plant

was located in Foggia and the second one in Trani (BT).

The first mill was constituted by a defoliator, a washing

machine, a partial de-stoning machine (Pietro Leone e Figli
s.n.c., Foggia - Italy), a series of six malaxer machines, a 3-
phase solideliquid horizontal centrifugal decanter (mod. NX
X32, Alfa Laval Corporate AB, Lund, Sweden), and two
liquideliquid vertical plate centrifuges. The malaxer is a ma-
chine in which the olive paste is kneaded and thermally
conditioned. The 3-phase decanter discharges 2 liquid phases
(waste water and oil) and one solid phase (dry pomace). Mass
flow rate of the plant was 3000 kg h#1 and the malaxation was
performed for 30 min at 27 $C (Fig. 1).

The second mill was equipped with a hammer crusher

(model Frangolea, Barracane s.r.l., Modugno, BA, Italy), a set of
four malaxer machines (model Gramola 3000, Barracane s.r.l.,
Modugno, BA, Italy), connected in series, a decanter centrifuge
model Megala 650 CI (Barracane s.r.l., Modugno, BA, Italy) and
a liquideliquid vertical plate centrifuge (model Grande 3000,
Barracane s.r.l., Modugno, BA, Italy). A Megala 650 CI decanter
centrifuge can operate in 2.5-phase, which produces dry
pomace rich in rigid solids and pat"e. During the experimental
test the mass flow rate was set to 6500 kg h #1 and the
malaxation was performed for 50 min at 27 $C.

Olives, olive pastes and pomace in the Foggia mill and ol-

ives, pomace and pat"e in the Trani mill, were collected at
regular time intervals.

35 samples of olives, 50 samples of olive paste, 50 samples
of pomace and 50 samples of pat"e were collected during the
experimental tests.

All samples were subjected to non-destructive analysis,
acquiring the vis/NIR spectra immediately after the sampling
in an experimental station installed in the olive mill. Subse-
quently, the acquired samples were sealed and stored for 4
days in the cooling room at 2 $C before the laboratory analyses.

All tests were conducted on olive fruits of the ‘Coratina’
cultivar (Olea europaea L.) with a maturity index value in the
range 1.8e2.0. The fruit's ripeness was determined according
to the proposed method of the International Olive Council
(IOOC, 2001). The olives were purchased by the mills' owners.
The olives were harvested a few hours before the experi-
mental tests, near the mills.

2.2. Visible/near infrared systems

The spectral acquisitions were performed using two optical
devices on samples taken from the different sections of the

Fig. 1 e Extraction lines considered for the experiments (solid line ¼ extraction by 3-phase decanter; dash line ¼ extraction
by 2.5 phase decanter). * soft solids (pulp þ skin); ** wastewater þ soft solids fraction; *** dark solids þ soft solids fractions.
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plants, simulating the measurement conditions foreseeable

when using the devices installed on the plants: (i) a device for
non-contact analysis at a variable distance between sensor
and sample and (ii) a system equipped with an immersion
probe for contact measurements.

2.2.1. Device I
The samples' spectral acquisitions were performed using a
process vis/NIR device (Corona Process, Zeiss, Germany) built
to work in operative process conditions for non-contact
analysis of flows and/or non-homogeneous products (device
features: dimension 400 (w) % 300 (l) % 300 (p) mm, weight

about 15 kg). The system carries out measurements in the
vis/NIR spectral range (380e1650 nm, spectral resolution
2.0 nm) at a variable autofocused distance between sensor
and sample in the range 80e600 mm. The device is therefore
ideally suited for on-line application during the milling pro-
cess. The system will allow the operators to define real-time
objective indicators on the product usefully for better plant
management.

The optical device consisted of four components: 1) a
lighting system (halogen lamp) with auto calibration of white
and black references, 2) a spectrophotometer, 3) hardware for

data acquisition and instrument control, and 4) the power
supply.

Spectra were acquired in reflectance mode: the sample's
surface was irradiated by the light source through a 60 mm
spotlight. Each spectral sample was obtained by averaging
three acquisitions in three different spots of the batch. Each
acquisition represents an average of ten reflectance spectra.
Themeasurementswere performed at about 400mmbetween
sensor and probe (olives, olive paste and pomace).

2.2.2. Device II
The optical analysis was also carried out using a laboratory
spectrophotometer MCS 600 (Zeiss, Germany) characterised
by a double acquisition module: 450e950 nm and
950e1650 nm, spectral resolution 3.0 nm. The instrument was
equipped with a probe for contact and immersion reflection
measurements (particularly suited for non-solid samples such
as pat"e). In the optic probe the fibres are arranged in a 6-
around-1 configuration. Spectra were acquired through a Y-
shaped, bidirectional fibre optic probe. A Y-shaped fibre
allowed the light coming from the halogen lamp to be guided
to illuminate the sample while simultaneously collecting the
radiation coming from it and guiding it back to the spectro-

photometer. The internal components of Device II are similar
to those explained for Device I.

The measurements on olive paste, on olive pomace and on
pat"e samples were performed using Device II.

2.3. Oil content in olives, paste, pomace and pat"e

The total oil mass fraction was determined on a 40 g sample

that was previously dehydrated until it reached a constant
weight. The olive samples were also previously milled. The oil
was extracted by hexane using an automatic extractor (Ran-
dall 148, Velp Scientifica,Milano, Italy) following the analytical
technique described by Cherubini et al. (2009).

2.4. Statistical analysis

The acquired data were processed using chemometric tech-
niques to extract maximum data information. Chemometric
analysis was performed using The Unscrambler software
package (version 9.8, CAMO ASA, Oslo, Norway). Four pre-
treatments were applied to the vis/NIR and NIR spectra to
maximise the model accuracy. Moving-averaged smoothed
spectra (15 point-wide window corresponding to a window of
4.5), multiplicative scatter correction (MSC), standard normal

variate (SNV) and Savitzky Golay first derivative (der1) were
applied before building the calibrationmodels. Pre-treatments
were applied to improve the signal-to-noise ratio in order to
reduce spectral noise. The available samples were used to
calculate the chemometric regression model for reference
parameters using partial least squares (PLS) regression anal-
ysis. The PLSmethod is particularly suitable in the case of high
correlation among variables, i.e. for spectral data of intact
fruit and vegetables (Nicolaı̈ et al., 2007).

A procedure for outlier detection during model calibration
was performed. The vis/NIR and NIR spectra were checked
visually for abnormal spectra, which may result from incor-

rect sampling (Lachenmeier, 2007). Moreover, the “influence
plot” function of The Unscrambler software was studied for
the detection of outliers. For the determination of the number
of samples considered as outliers not to be included in model
calibration, the “Hotelling T2 Computations” function was
applied (a value 0.05). To evaluate model accuracy the
following were considered: the coefficient of determination in
calibration (R2

cal), the coefficient of determination in cross-
validation (R2

cv), root mean square error of calibration
(RMSEC), and root mean square error of cross-validation
(RMSECV). Calibration models were evaluated using a cross-

validation leave-more-out procedure using five groups for
the training set (cancellation groups), randomly selected. The
use of a small number of cancellation groups contributes to
avoiding model overfitting (Casale, Casolino, Ferrari,& Forina,
2008). Due to different sample sizes used for each model, the
sample number incorporated for each cancellation group
ranged from 5 to 18 samples. Moreover, the Ratio Performance
Deviation (RPD) value was calculated. RPD is defined as the
ratio between the standard deviation of the response variable
and RMSECV. RPD values below 1.5 indicate that the calibra-
tion is not useful. When the RPD value is higher than 2,

quantitative predictions are possible. Valueswere in the range
1.5e2.0, indicating that the algorithm has the possibility to
distinguish between high and low values (Williams & Norris,
2001). The best model calibrations were selected based on
minimising the RMSECV and maximising R2 and RPD.

3. Results and discussion

Figure 2 shows the spectra acquired on intact olive, olive paste
and pomace using Device I (Fig. 2a), and for olive paste,
pomace and pat"e, using Device II (Fig. 2b). A visual analysis of
the spectra highlights the principal wavelength peaks and
trends allowing a clear separation of spectra from intact ol-
ives, olive paste, pomace and pat"e. The comparison of the
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three spectral groups shows wide differences in the
550e680 nm range, due to external colour differences in the
samples which are related to changes in the amount of
pigment (related to the presence of anthocyanins) causing a
decrease in reflectance in the visible band associated with the
absorption peak at 540 nm. A high reflectance absorption
could be noticed around the chlorophyll absorption peak at

680 nm (McGlone, Jordan, & Martinsen, 2002).
In the NIR region, a reflectance peak is noticeable around

970 nm (absorption peak relative to the second overtone of the
water OeH bond in the near infrared region). The in-depth
peak at 970 nm is characteristic of the vis/NIR measure-
ments on products very rich in water, like fruits. Also, the
peaks around 1180 nm and 1440 nm arise from typical water
absorption (Kavdir, Buyukcan, Lu, Kocabiyik, & Seker, 2009;
Williams & Norris, 2001).

Results for thePLS regressionmodels fromspectra acquired
usingDevice I for the prediction of the oil content starting from

different sample matrices collected in correspondence with
critical steps of the milling process (olives entering the mill,
paste during the malaxation, pomace and pat"e in the outlet of
the decanter) are shown in Table 1. A dataset combining olive
paste and pomace spectra was also used for the model calcu-
lation. Since (i) absorption of OH bonds relating to water con-
tent and, consequently, to oil content, were found in the NIR
region and (ii) the acquisition in the visible regionwas affected
by the olive surface and pulp colour increase during ripening
causing a disturbance in the oil content estimation, specific
models deriving only from the NIR spectral range

(700e1650 nm)were also calculated. Overall, the results of this
preliminary study are encouraging, except for measures on
olives. In this preliminary study, the data set available was not
particularly wide and the variability of the sample was not a-
priori controlled butwas due to the natural variability found in
samples at the full-scale plants. This was probably due to the
use of olives from the same cultivar, with a ripeness index in a
small range 1.8e2.0 and harvested from the same production
area. Models performance could be improved once calibrated
under operating conditions using larger sample datasets from
self-learning calibration systems andmostly using olives from

different cultivars andwith a wide range of ripeness index, for
example between 1 and 3.5.

Good results were obtained using the wider combined
dataset with the paste and pomace samples, with R2 and RPD

higher than 0.90 and 3.30 respectively, for both the measured
spectral ranges. In general, slightly better results were ob-
tained using the NIR range. On pomace, satisfactory models
were calculated for the vis/NIR range 380e1650 nm (RPD > 2),
and a good model with R2 ¼ 0.81 and RPD ¼ 2.68 in validation
was calibrated in the NIR range (700e1650 nm) using SNV and
der1 pretreatments. Models developed for intact olives and

olive paste did not reach sufficient predictive performance
considering R2 and RPD values in validation. For intact olives
was not possible to calibrate a model for the NIR range due to
the very low correlation between spectra acquired from a
distance of 400 mm and olives' oil content in this range.
Slightly better results were also obtained using the visible
spectral range. This is probably due to the very low number of
samples in this preliminary study and to the low correlation
between the unevenness of the external characteristics of
olive samples and the internal oil content. Some studies
regarding the application of vis/NIR spectroscopy to intact

olives can be found in the literature, reporting good results
with R2 ranged 0.70e0.90 (Stella et al., 2015). The authors, in a
previous feasibility study, used a portable vis/NIR spectro-
photometer for the estimation of the texture of the olives
entering themill in a lab-scale plant, with encouraging results
(R2 ¼ 0.68 and RMSECV% ¼ 8.2%) (Beghi, Giovenzana, Civelli,
Cini, & Guidetti, 2013). However, most of the published
studies concern the monitoring of ripening evolution,
exploiting the advantages for the calibration of the models
from the high variability of the data which are also due to
individual olive's surface colour changes. Moreover, some

studies were performed in more controlled sampling condi-
tions where measurements were carried out through direct
contact between the sensor and the single berry (Bellincontro,
Caruso, Mencarelli, & Gucci, 2013).

Table 2 shows the results for the PLS regression models
from spectra acquired using the Device II for the prediction of
the oil content starting from different sample matrices
collected in different points of the milling process (paste
during the malaxation, pomace separation at the 3-phase
decanter, pat"e separation at the 2.5-phase decanter). Also in
this case a dataset combining olive paste and pomace spectra

was used for the model calculation, and specific models
deriving from the NIR spectral range (700e1650 nm) only were
calculated. Device II was particularly suitable for liquid sam-
ples thanks to the immersion probe. For this reason, good

Fig. 2 e Spectra coloured based on the different analysed matrices using device I (a) and device II (b).
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predictive models were calculated for the oil content predic-
tion on pat"e (R2 and RPD values ranged 0.77e0.82 and

3.00e3.43). MSC pretreatment on smoothed spectra showed
better results for the NIR range.

Good resultswerealsoobtainedusing thecombineddataset
with the paste and pomace samples, for both the vis/NIR and
NIR spectral ranges. R2 and RPD values ranged 0.89e0.92 and
3.01e3.81, respectively. Der1 pretreatment gave better model

performances for both the spectral ranges. Figure 3a shows an
example of a PLS model calculated for the prediction of oil

content (a) inpomacesamplesusingdevice I, andSNVandder1
as pre-treatments; Fig. 3b shows the model for pat"e samples,
using device II and MSC as pre-treatment. Bendini et al. (2007)
applied FT-NIR for in-process monitoring of different cultivar
pastes in diffuse reflectance mode, obtaining models with R2

equal to 0.92 for the prediction of oil content.

Table 1 e Descriptive statistics and statistics of the PLSmodels elaborated on vis/NIR and NIR spectra acquired by Device I,
for the oil content estimation (g).

Matrix Spectral
Range (nm)

Pretreatments n$ samples Mean SD Calibration Validation

CV% LV R2
cal RMSE R2

val RMSECV RMSECV% RPD

Olives 380e1650 smooth, MSC 27 6.11 0.93 15.2 3 0.40 0.51 0.30 0.56 9.17 1.67
smooth, SNV, der1 27 6.11 0.93 15.2 3 0.36 0.49 0.22 0.55 9.00 1.70

700e1650 smooth, MSC 27 6.11 0.93 15.2 2 0.15 0.74 0.08 0.82 13.42 1.13
smooth,SNV, der1 27 6.11 0.93 15.2 2 0.12 0.86 0.10 0.90 14.72 1.03

Olive paste 380e1650 smooth, MSC 44 6.92 1.62 23.4 11 0.66 0.82 0.31 1.18 17.05 1.37
smooth, SNV, der1 44 6.92 1.62 23.4 7 0.74 0.78 0.59 1.03 14.88 1.57

700e1650 smooth, MSC 44 6.92 1.62 23.4 6 0.60 0.92 0.38 1.16 16.76 1.40
smooth, SNV, der1 44 6.92 1.62 23.4 7 0.67 0.82 0.48 1.06 14.88 1.57

Pomace 380e1650 smooth, MSC 37 1.63 0.27 16.6 8 0.89 0.08 0.76 0.13 7.98 2.06
smooth, SNV, der1 37 1.63 0.27 16.6 11 0.95 0.06 0.77 0.13 7.98 2.06

700e1650 smooth, MSC 37 1.63 0.27 16.6 8 0.74 0.12 0.41 0.18 11.04 1.49
smooth, SNV, der1 37 1.63 0.27 16.6 7 0.90 0.07 0.81 0.10 6.13 2.68

Olive paste þ
pomace

380e1650 smooth, MSC 90 4.07 2.86 70.3 3 0.91 0.81 0.91 0.86 21.13 3.32
smooth, SNV, der1 90 4.07 2.86 70.3 4 0.93 0.75 0.91 0.86 21.13 3.32

700e1650 smooth, MSC 90 4.07 2.86 70.3 3 0.92 0.80 0.91 0.84 20.64 3.40
smooth, SNV, der1 90 4.07 2.86 70.3 4 0.93 0.73 0.91 0.82 20.15 3.49

PLS¼ Partial Least Square; smooth¼ smoothing; MSC¼multiplicative scatter correction; SNV¼ standard normal variate; der1¼ first derivative;
SD ¼ standard deviation; CV% ¼ coefficient of variation (%); LV ¼ latent variables; RMSE ¼ root mean square error; RMSECV ¼ root mean square
error of cross validation; RPD ¼ Relative percent deviation.

Table 2 eDescriptive statistics and statistics of the PLSmodels elaborated on vis/NIR and NIR spectra acquired by Device II,
for the oil content estimation (g).

Matrix Spectral
Range (nm)

Pretreatments n$ samples Mean SD Calibration Validation

CV% LV R2
cal RMSE R2

val RMSECV RMSECV% RPD

Olive paste 450e1650 smooth, MSC 42 6.92 1.62 23.4 2 0.30 0.85 0.25 0.89 12.86 1.82
smooth, SNV, der1 42 6.92 1.62 23.4 3 0.54 0.69 0.44 0.77 11.13 2.10

700e1650 smooth, MSC 42 6.92 1.62 23.4 3 0.35 0.85 0.12 1.03 14.88 1.57
smooth, SNV, der1 42 6.92 1.62 23.4 4 0.56 0.75 0.48 0.84 12.14 1.92

Pomace 450e1650 smooth, MSC 36 1.63 0.27 16.6 2 0.29 0.18 0.24 0.19 11.66 1.41
smooth, SNV, der1 36 1.63 0.27 16.6 4 0.52 0.17 0.39 0.19 11.66 1.41

700e1650 smooth, MSC 36 1.63 0.27 16.6 2 0.41 0.16 0.24 0.20 12.27 1.34
smooth, SNV, der1 36 1.63 0.27 16.6 5 0.59 0.13 0.32 0.17 10.43 1.59

Pat"e 450e1650 smooth, MSC 44 0.72 0.48 66.7 5 0.84 0.12 0.79 0.14 19.44 3.43
smooth, SNV, der1 44 0.72 0.48 66.7 4 0.83 0.12 0.77 0.14 19.44 3.43

700e1650 smooth, MSC 44 0.72 0.48 66.7 4 0.86 0.12 0.82 0.14 19.44 3.43
smooth, SNV, der1 44 0.72 0.48 66.7 3 0.81 0.14 0.77 0.16 22.22 3.00

Olive paste þ
pomace

450e1650 smooth, MSC 88 4.07 2.86 70.3 5 0.93 0.74 0.91 0.83 20.39 3.44
smooth, SNV, der1 88 4.07 2.86 70.3 4 0.94 0.68 0.92 0.75 18.43 3.81

700e1650 smooth, MSC 88 4.07 2.86 70.3 4 0.91 0.85 0.89 0.95 23.34 3.01
smooth, SNV, der1 88 4.07 2.86 70.3 3 0.92 0.78 0.92 0.82 20.15 3.49

PLS¼ Partial Least Square; smooth¼ smoothing; MSC¼multiplicative scatter correction; SNV¼ standard normal variate; der1¼ first derivative;
SD ¼ standard deviation; CV% ¼ coefficient of variation (%); LV ¼ latent variables; RMSE ¼ root mean square error; RMSECV ¼ root mean square
error of cross validation; RPD ¼ Relative percent deviation.
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Predictive models obtained for the pat"e were promising
and usable for the quantification of the residual oil content in

a view of a real-time control and adjustment of the extraction
process using the 2.5-phases decanter. Moreover, predictive
models obtained for the paste and pomace dataset using both
the devices are usable for the monitoring of operative pa-
rameters in different steps of the milling process, for the
enhancement of extraction oil yield and the control of semi-
finished products of the process. Studies reported in the
literature concerning the application of NIR spectroscopy on
olives for the estimation of the oil content reported results
with R2 > 0.81 (Ortega, Gila, Puerto, Garcı́a, & Ortega, 2016).
Most of these studies, however, involved experiments con-

ducted on lab-scale or pilot-scale plants. No literature is
available regarding the vis/NIR and NIR applications on semi-
finished products of the process (i.e. paste, pomace and pat"e)
sampled directly in full-scale plants. In fact, a requirement of
efficient food processing is to ensure that all the product is
obtained according to the production protocols and specially
to identify in real-time the performance of single process
steps and single machines. This would allow operators to
identify in real-time the batches that did not meet agreed
standards and the machines that do not give the best results.
This reactive approach allows managers to optimise the pro-

cess in real-time, ensuring quality standards and reducing the
final financial loss.

In the olive oil extraction industry, the increasing de-
mand for non-invasive measurement of oil content in by-
products and waste remains a challenge for the process.
Moreover, there is a need for studies performed directly at
full-scale plants on real and uncontrolled samples to
contribute to the ongoing discussion on real-scale applica-
bility. The olive oil sector is in fact interested in new user-
friendly systems for rapid analysis that can be performed
directly on-line on the milling plant with the objective of

using information from sensors to optimise the process. In
the mill, the oil loss in by-products and waste is estimated
to range between 10% and 15% of the total oil content in the
olives. Such losses could occur for various reasons up to
20%e25% without the miller noticing, causing considerable
economic losses. Automation in the olive milling industry is
a key point for obtaining a high quality product through

optimising process yields at low cost and thus a close
cooperation between research teams and the industrial

sector is necessary.

4. Conclusions

This study tested the applicability of vis/NIR spectroscopy
directly at full-scale plants as a rapid technique for the pre-
diction of the oil content at different points in the oil extrac-
tion process. A specific aim was to use spectral data sets

covering different stages of the oil production processes in the
calculation of models. Overall, the results are encouraging,
except for measures on intact olives. Good results were ob-
tained using combined datasets with paste and pomace
samples, for both the vis/NIR and NIR spectral ranges.

The tested Device II was equipped with an immersion
probe particularly suitable for liquid samples, and therefore
good predictive models in validation (R2 ranged 0.77e0.82)
were calculated for the oil content prediction from the pat"e
data set. Using the combined dataset with the paste and
pomace samples, models with R2

val in the range 0.89e0.92

were obtained, for both the measured spectral ranges, allow-
ing us to envisage the possibility, in a future operative phase,
of employing combined models usable in these two different
stages of the process.

Regression models obtained could be the starting point to
design a real-time prediction of crucial indices to support
specific requirements of the process, considering that the
tested devices are already designed for process applications
and are built to be easily installed on process lines. The key
aspect for the industrial application of these technologies is to
get robust calibration models. Further studies will be needed

because a full-scale application requires a lot of samples in
order to develop models that can be used in a production
context. This factor is decisive and partly explains why vis/
NIR and NIR spectroscopy are still only installed to a limited
extent in the industries in question. To help real scale cali-
bration, the chemometric tools of devices must provide self-
learning model calibration systems that involve the use of
the acquired spectra directly on the process to strengthen
models by expanding the data sets over time.

Fig. 3 e Examples of PLS model calculated for the prediction of oil content (g) in (a) pomace, using device I and (b) pat"e, using
device II.
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