Micropropagation of Origanum vulgare L. by shoot buds, as a potential model system for studying carbon skeleton diversion from growth to secondary metabolism as adaptive response to nutrient deficiency, has been performed. In addition, the antioxidant phenolic compounds, produced by shoots under nutritional stress or in response to exogenously added proline, have been studied. Caffeic acid, rosmarinic acid, and lithospermic acid B have been isolated in oregano shoot cultures by reversed-phase high-performance liquid chromatography, and their structures have been elucidated by tandem mass spectrometry. Both nutritional stress, which in turn causes a moderate increase of constitutive free proline, and exogenous proline affect growth and antioxidant phenolic content of oregano shoots, compared to control. The role of proline, and the associated redox cycle, as a form of metabolic signalling based on a transfer of redox potential amongst interacting cell pathways, which in turn elicit phenolic metabolism via stimulated carbon flux through oxidative pentose phosphate pathway, is discussed. Furthermore, the potential use of oregano tissue and callus cultures as a new strategy to enable the production of useful secondary metabolites on a commercial scale is also discussed.

Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress.

LATTANZIO, VINCENZO;
2009-01-01

Abstract

Micropropagation of Origanum vulgare L. by shoot buds, as a potential model system for studying carbon skeleton diversion from growth to secondary metabolism as adaptive response to nutrient deficiency, has been performed. In addition, the antioxidant phenolic compounds, produced by shoots under nutritional stress or in response to exogenously added proline, have been studied. Caffeic acid, rosmarinic acid, and lithospermic acid B have been isolated in oregano shoot cultures by reversed-phase high-performance liquid chromatography, and their structures have been elucidated by tandem mass spectrometry. Both nutritional stress, which in turn causes a moderate increase of constitutive free proline, and exogenous proline affect growth and antioxidant phenolic content of oregano shoots, compared to control. The role of proline, and the associated redox cycle, as a form of metabolic signalling based on a transfer of redox potential amongst interacting cell pathways, which in turn elicit phenolic metabolism via stimulated carbon flux through oxidative pentose phosphate pathway, is discussed. Furthermore, the potential use of oregano tissue and callus cultures as a new strategy to enable the production of useful secondary metabolites on a commercial scale is also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11369/336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact